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Abstract—A novel approach is introduced to construct a fuzzy
regression model when both input data and output data are
interval-valued fuzzy numbers. Using a distance on the space
of interval-valued fuzzy numbers, a least-squares method is
developed. Also, a nonlinear programming model is proposed
to estimate the crisp parameters for the interval-valued fuzzy
regression model. A real example demonstrates the feasibility
and efficiency of the proposed method. Moreover, two goodness
of fit indices are introduced and employed for more evaluation
of such fuzzy interval-valued regression models.

Keywords—Interval-valued fuzzy number, fuzzy regression,
least-squares method, goodness of fit.

I. INTRODUCTION

Since fuzzy set theory was introduced by Zadeh [1], many
new approaches and theories treating imprecision and uncer-
tainty have been proposed. Specifically, the intuitionistic fuzzy
set theory pioneered by Atanassov [2] and the interval-valued
fuzzy set theory suggested by Grozafczany [3] and Turksen [4]
are two well-known generalizations of the fuzzy set theory. In
fact, it has been pointed out that there is a strong connection
between Atanassov’s intuitionistic fuzzy sets and the interval-
valued fuzzy sets [5], [6], [7]. Over the last decades, the theory
of interval-valued fuzzy sets has been developed in different
directions. In this introduction we shall briefly review some
works on this topic.

Gorzalczany [8] investigated approximate reasoning based
on interval-valued fuzzy sets. Wang and Li [9], [10] presented
the applications of interval-valued fuzzy numbers and interval-
distribution numbers in pseudo-probability metric spaces. They
investigated the concept of interval-valued fuzzy number and
studied some of its properties and presented a method for
calculating correlation between and information energy of
interval-valued fuzzy numbers. Hong and Lee [11] presented
some algebraic properties and a distance measure for interval-
valued fuzzy numbers. Grzegorzewski [12] studied some dis-
tances between interval-valued fuzzy sets based on Hausdorff
metric. Wang et al. [13] investigated the combination and
normalization of the interval-valued belief structures. Deschri-
jver [14] investigated some arithmetic operators in interval-
valued fuzzy set theory. Chen and Chen [15] presented a
method for handling information filtering problems based
on interval-valued fuzzy numbers and presented a similarity
measure between interval-valued fuzzy numbers. In Chen
[16], Chen presented a method for handling the similarity
measure problems of interval-valued fuzzy numbers. Chachi

and Taheri[17] investigated two general classes of similarity
measures between intuitionistic fuzzy sets. Chen and Ouyang
[18] investigated an inventory model by fuzzifying the carrying
cost rate and interest earned rate, simultaneously, based on the
interval-valued fuzzy numbers.

Although, there has been a lot of research on fuzzy regres-
sion analysis (see, e.g. [19], [20], [21], [22]), so far as the au-
thors know, there is no work on regression analysis for interval-
valued fuzzy data. In this paper we introduce an approach to
the problem of regression modeling when the available data
of the response variable (output) and independent variables
(inputs) are interval-valued fuzzy numbers. To do this, we
consider a regression model, in which the coefficients are crisp.
We then use a distance on the space of interval-valued fuzzy
numbers and a least-squares method to obtain coefficients of
the proposed model.

The rest of this paper is organized as follows. In Section
II, we review some preliminaries of interval-valued fuzzy sets
theory. In Section III, a distance between interval-valued fuzzy
numbers is introduced. In Section IV, we state the proposed
model and explain how the coefficients are obtained. In Section
V, the proposed model is illustrated via a real world data set in
the filed of soil science. The obtained models are evaluated by
using some indices in Section VI. A brief onclusion is given
in the last section.

II. PRELIMINARIES

In this section, we review some elementary definitions
and a well-known result of the interval-valued fuzzy sets and
interval-valued fuzzy numbers, due to Wang and Li [9], Hong
and Lee [11] and Zhixin and Hongmei [23]. Let I = [0, 1] and
[I] = {[a, b]|a ≤ b, a, b ∈ I}. For any a ∈ I , define ā = [a, a].

Definition 1. We define ∨t∈Tat = sup{at : t ∈ T} and
∧t∈Tat = inf{at : t ∈ T}, where at ∈ I, t ∈ T . We also
define for [at, bt] ∈ [I], t ∈ T ,

1)
∨
t∈T [at, bt] = [

∨
t∈T at,

∨
t∈T bt],∧

t∈T [at, bt] = [
∧
t∈T at,

∧
t∈T bt],

2) [a1, b1] = [a2, b2] iff a1 = a2, b1 = b2,
[a1, b1] ≤ [a2, b2] iff a1 ≤ a2, b1 ≤ b2,
[a1, b1] < [a2, b2] iff [a1, b1] ≤ [a2, b2], but [a1, b1] 6=
[a2, b2].

Definition 2. Let X be an ordinary nonempty set. Then

• The mapping A : X → [I] is called an interval-valued



fuzzy set (IVFS) on X. The set of all IVFS on X is denoted by
IF(X).

• For A ∈ IF (X), let A(x) = [A−(x), A+(x)], for all
x ∈ X . Then two fuzzy sets A− : X → I and A+ : X → I
are called lower fuzzy set and upper fuzzy set of A, respectively.

• The value of ΠA(x) = A+(x) − A−(x) is called the
degree of non-determinancy of the element x ∈ X in the IVFS
A.

Definition 3. Let A ∈ IF (X) and [λ1, λ2] ∈ [I]. We call
A[λ1,λ2] = {x ∈ X : A−(x) ≥ λ1, A

+(x) ≥ λ2} and
A(λ1,λ2) = {x ∈ X : A−(x) > λ1, A

+(x) > λ2} the [λ1, λ2]-
level set of A and the (λ1, λ2)-level set of A, respectively.

Definition 4. Let A ∈ IF (R), where R is the real line. Assume
the following conditions are satisfied

• A is normal, i.e., there exists x0 ∈ R, s.t. A(x0) = 1̄,

• For arbitrary [λ1, λ2] ∈ [I]+ = [I] − {0̄}, A[λ1,λ2] is a
closed bounded interval.

Then we call A an interval-valued fuzzy number (IVFN).
We denote the set of all IVFNs by IF ∗(R).

Definition 5. [9] Let A,B ∈ IF (R) and > ∈ {+,−, ·,÷}.
We define the extended operations by (A > B)(z) =∨
z=x>y(A(x) ∧ B(y)). For each [λ1, λ2] ∈ [I]+, we write

A[λ1,λ2] >B[λ1,λ2] = {x> y : x ∈ A[λ1,λ2], y ∈ B[λ1,λ2]}.
Definition 6. A triangular IVFN is presented as A =
[A−, A+] = [(a−1 , a, a

−
2 ), (a+1 , a, a

+
2 )], where A− and A+

denote the lower and upper triangular fuzzy numbers of
A, A− ⊆ A+. Also, A is denoted by A = [A−, A+] =
[(a+1 , a

−
1 ), a, (a−2 , a

+
2 )] where a+1 ≤ a−1 ≤ a ≤ a−2 ≤ a+2

(see Figure 1 (a)). Specifically, A is called symmetric if
A = [A−, A+] = [(a − s−, a, a + s−), (a − s+, a, a + s+)].
In such a case A is shown by A = [A−, A+] = (a, s−, s+)
where 0 ≤ s− ≤ s+ (see Figure 1 (b)).

1

a+1 a−1 a a−2 a+2

A+A−

a− s+a− s− a a+ s−a+ s+

A+A−

(b)(a)

1

Fig. 1. Two typical triangular interval-valued fuzzy numbers

Proposition 1. [24] Let A = [(a+1 , a
−
1 ), a, (a−2 , a

+
2 )] and B =

[(b+1 , b
−
1 ), b, (b−2 , b

+
2 )] are two triangular IVFNs. Then

• Extended addition is obtained as

A⊕B = [(a+1 + b+1 , a
−
1 + b−1 ), a+ b, (a−2 + b−2 , a

+
2 + b+2 )]

• Extended scalar multiplication is obtained as

λA =


[(
λa+1 , λa

−
1

)
, λa,

(
λa−2 , λa

+
2

)]
, λ ∈ [0,∞);[(

λa+2 , λa
−
2

)
, λa,

(
λa−1 , λa

+
1

)]
, λ ∈ (−∞, 0).

Corollary 2. Let A = (a, s−a , s
+
a ) and B = (b, s−b , s

+
b ) be two

symmetric triangular IVFNs. Then

A⊕B = (a+ b, s−a + s−b , s
+
a + s+b ), (1)

λA = (λa, |λ|s−a , |λ|s+a ), λ ∈ R. (2)

III. A NEW DISTANCE BETWEEN INTERVAL-VALUED
FUZZY NUMBERS

Based on Definition 3.2 in [16] and the presented distances
between two fuzzy numbers in [25], we propose the following
definition of distance between IVFNs.

Definition 7. Let A,B ∈ IF ∗(R). The D∗p,f distance between
A and B is defined as

D∗p,f (A,B) = max{Dp,f (A−, B−), Dp,f (A+, B+)} (3)

in which for two fuzzy sets A◦ and B◦ (◦ ∈ {−,+})

Dp,f (A◦, B◦) = (

∫ 1

0

f(λ)dp(A◦λ, B
◦
λ)dλ)1/p, (4)

and

dp(A◦λ, B
◦
λ) = |a1(λ)− b1(λ)|p + |a2(λ)− b2(λ)|p,

A◦λ = [a1(λ), a2(λ)], B◦λ = [b1(λ), b2(λ)] (5)

whrer a1(λ), a2(λ) are the lower and upper bounds of the λ-
cut A◦ and b1(λ), b2(λ) are the lower and upper bounds of
the λ-cut B◦. Also, f(λ) is an increasing function on [0, 1]

with f(0) = 0 and
∫ 1

0
f(λ)dλ = 1

2 (see [25]).

Specifically, for p = 2, we have

d2(A◦λ, B
◦
λ) = (a1(λ)− b1(λ))2 + (a2(λ)− b2(λ))2. (6)

In the following, we put f(λ) = λ and we denote Dp,f and
D∗p,f by Dp and D∗p , respectively.

In the following theorem, we prove that D∗p,f is a metric on
the space of IVFNs. At first, we need to express the following
lemma.

Lemma 3. If a, b, c and d are real numbers, then

max{a+ b, c+ d} ≤ max{a, c}+ max{b, d} (7)

Proof: See Appendix A.

Theorem 4. D∗p,f is a metric on IF ∗(R).

Proof: See Appendix B.

Proposition 5. Let A = (a1, a, a2) and B = (b1, b, b2) be two
triangular fuzzy numbers. Then

D2
2(A,B) =

(a− b)2
2

+
1

12
[(a2 − b2)2 + (a1 − b1)2] +

1

6
(a− b)[(a2 − b2) + (a1 − b1)]. (8)

Proof: See Appendix C.

Corollary 6. Let A = (a, sa) and B = (b, sb) be two
symmetric triangular fuzzy numbers. Then

D2
2(A,B) = (a− b)2 +

1

6
(sa − sb)2. (9)



Proof: In Proposition 5, it is enough to note that A =
(a− sa, a, a+ sa) and B = (b− sb, b, b+ sb).

Theorem 7. Let A = ((a+1 , a
−
1 ), a, (a−2 , a

+
2 )) and B =

((b+1 , b
−
1 ), b, (b−2 , b

+
2 )) be two triangular IVFNs. Then

D∗
2

2 (A,B) =
(a− b)2

2
+

max{ 1

12
[(a−2 − b−2 )2 + (a−1 − b−1 )2] +

1

6
(a− b)[(a−2 − b−2 ) + (a−1 − b−1 )],

1

12
[(a+2 − b+2 )2 + (a+1 − b+1 )2] +

1

6
(a− b)[(a+2 − b+2 ) + (a+1 − b+1 )]} (10)

Proof: In view of Eq. (3) and Proposition 5 the proof is
straightforward.

Corollary 8. Let A = (a, s−a , s
+
a ) and B = (b, s−b , s

+
b ) be two

symmetric triangular IVFNs. Then

D∗
2

2 (A,B) = (a−b)2+
1

6
max{(s−a −s−b )2, (s+a −s+b )2} (11)

Proof: In Theorem 7, it is enough to note that A =
((a− s+a , a− s−a ), a, (a+ s−a , a+ s+a )) and B = ((b− s+b , b−
s−b ), b, (b+ s−b , b+ s+b )).

IV. THE PROPOSED REGRESSION MODEL

Suppose that we have a data set denoted by (yi, xi1, ..., xin)
(i = 1, ...,m;m > n), where yi, xij ∈ IF (R) (i =
1, ...,m, j = 1, · · · , n). We wish to find, in an optimal way,
the coefficients of the regression model

Y = β0 ⊕ β1x1 ⊕ ...⊕ βnxn, (12)

where Y,xi, i = 1, ...,m are IVFNs and β0, β1 · · · , βn are
crisp numbers.

To achieve this, we have to minimize the sum of squared
distances between the estimated and observed IVF response
variable , i.e.

Q(β0, β1, ..., βn) =

m∑
i=1

D∗
2

2 (β0 ⊕ β1xi1 ⊕ ...⊕ βnxin,yi).

(13)

Writing yi = (yi, s
−
yi , s

+
yi) (i = 1, ...,m) and xij =

(xij , s
−
xij
, s+xij

) (i = 1, · · · ,m, j = 1, ..., n), we have

β0 ⊕ β1xi1 ⊕ ...⊕ βnxin =

(β0 +

n∑
j=1

βjxij ,

n∑
j=1

|βj |s−xij
,

n∑
j=1

|βj |s+xij
).

Thus by Theorem 7, the sum of squared distances (13) can be
rewritten as

Q(β0, β1, ..., βn) =

m∑
i=1

(β0 +

n∑
j=1

βjxij − yi)2

+
1

6

m∑
i=1

max{(
n∑
j=1

|βj |s−xij
− s−yi)2, (

n∑
j=1

|βj |s+xij
− s+yi)2}. (14)

By minimizing the sum of squared distances, one can estimate
β0, β1, · · · , βn. To solve the above optimalization problem, we
used Mathematica 6.0 [26].

Proposition 9. For the IVF regression model (12), Let Yi =
(Yi, s

−
Yi
, s+Yi

) and yi = (yi, s
−
yi , s

+
yi), i = 1, ...,m be the

estimated and observed symmetric triangular IVF response for
the ith observation, respectively. Then, for p = 2, f(λ) = λ
and i = 1, · · · ,m, we have

D∗p,f (Yi,yi) = (Yi−yi)2+
1

6
max{(s−Yi

−s−yi)2, (s+Yi
−s+yi)2}.

(15)

Proof: By Eq. (30) and Eq. (10), the proof is straightfor-
ward.

Definition 8. For the IVF regression model (12), the mean of
distances between estimated and observed values is defined by

MD∗f,p =
1

m

m∑
i=1

D∗f,p(Yi,yi). (16)

Note that, the above index, in some sense, is similar to the
mean of squared errors in the statistical regression. So, one
can use such an index to compare the fit of different fuzzy
regression models which are obtained based on different data
sets.

In below section, we provide an applied example to ex-
plain how the proposed method is applicable to deriving the
regression model for interval-valued fuzzy observations.

V. APPLICATION TO SOIL SCIENCE

In soil science studies, sometimes, problems arise in mea-
surement of physical, chemical and/or biological soil proper-
ties. The problem results from the difficulty, time and cost of
direct measurements. Pedomodels (derived from Greek root
of pedo as soil) have become a popular topic in soil science
and environmental research. They are predictive functions of
certain soil properties based on other easily or cheaply mea-
sured properties [27]. In this article, two pedomodels including
one and two independent variables are studied to develop
the relationships between different chemical and physical soil
properties by means of interval-valued fuzzy least squares
regression technique. Based on a study in a part of Silakhor
plain (situated in a province west of Iran), a total of 24 core
samples were obtained from 0.0 to 25-cm depth [28]. The data
set is given in Table I and Table II.

1) Pedomodel of ESP-SAR: We first wish to provide a
relationship between exchangeable sodium percentage (ESP),
as the dependent variable, and sodium absorption ratio (SAR),
as an independent variable. The exchange sodium percentage,
ESP, governs the source/sink phenomenon for ionic con-
stituents, i.e., sodium, as a contaminant in sodic soils, is
calculated from the ratio of exchangeable sodium, Nax, to
cation exchangeable capacity, CEC. In soil science, cation-
exchange capacity (CEC) is the maximum quantity of total
cations, of any class, that a soil is capable of holding, at a given
pH value, available for exchange with the soil solution. CEC is
used as a measure of fertility, nutrient retention capacity, and
the capacity to protect groundwater from cation contamination.
It is expressed as milliequivalent of hydrogen per 100 g of dry



Fig. 2. Prediction of the EPS by IVF regression model for SAR =
(1.50, 0.06, 0.14)

soil(meq+/100g), or the SI unit centi-mol per kg (cmol+/kg).
The numeric expression is coincident in both units. All these
soil parameters, measured on soil colloidal surface, are time
consuming and costly. Due to close relationship between the
distribution of cations in the exchange and solution phases,
it is preferred to estimate ESP from sodium adsorption ratio,
SAR, i.e., Na/(Ca+Mg/2)0.5, in soil solution [29], [27].

In this case, ESP is considered as cost and time variable,
therefore the need for less expensive indirect measurement
is emphasized. Measurements of SAR have been related to
ESP due to low cost, simplicity, and the possibility of relating
measurements to the quantity and quality parameters. But, due
to some impreciseness in related experimental environment,
the observations of response variable (ESP) are given in fuzzy
form. Thus, we may use a interval-valued fuzzy method for
modeling such a data set [28] (see Table I).

According to the proposed method, the estimated coeffi-
cients are obtained as β0 = 0.835 and β1 = 6.879, and the
IVF regression model is, therefore

Y = 0.835⊕ 6.879x. (17)

The above IVF regression model can be applied to predict
the ESP for a new case. For example, if for a new case, SAR =
(1.50, 0.06, 0.14) then, by Eq. (17), we predict the amount of
ESP as Y = (11.15, 0.41, 0.96). The membership functions of
Y are shown in Fig. 2.

2) Pedomodel of CEC-OM-SAND: The second model pro-
vides a relationship between cation exchange capacity (CEC),
as a function of two soil variables namely percentage of sand
content (SAND) and organic matter content (OM) (Table II). In
the soil, organic matter can enhance the CEC, while the sand
content has negative effect on the cation exchange capacity
[28].

According to the proposed method, the estimated coeffi-
cients are obtained as β0 = 21.97, β1 = 2.57 and β2 = −0.23,
and the IVF regression model is, therefore

Y = 21.97⊕ 2.57x1 ⊕ (−0.23)x2. (18)

The above IVF regression model can be used to predict
the CEC of a new case. For example, if for a new case,
SAND = (35, 1.48, 3.65), OM = (1.38, 0.54, 0.93), then by
Eq. (18), we predict the CEC as Y = (17.57, 1.73, 3.22). The
membership functions of Y are shown in Fig. 3.

Fig. 3. Prediction of the CEC using IVF regression model (Eq. 18) for
SAND = (35, 1.48, 3.65) and OM = (1.38, 0.54, 0.93)

VI. EVALUATION BY OTHER DISTANCES

In the following, we introduce two distances between
interval-valued fuzzy numbers based on Hausdorff metric, for
evaluating the goodness of fit of the IVF regression model.
Let u = [u1, u2] and v = [v1, v2] be two closed intervals. The
Hausdorff metric between u and v is defined by [30]

dH(u, v) = max{|u1 − v1|, |u2 − v2|}. (19)

Definition 9. [16] Let A,B ∈ IF ∗(R). The D∗p distance
between A and B is defined as

D∗p(A,B) = max{Dp(A
−, B−), Dp(A

+, B+)} (20)

where for fuzzy sets A◦ and B◦

Dp(A
◦, B◦) = (

∫ 1

0

dpH(A◦λ, B
◦
λ)dλ)1/p. (21)

Since A◦ and B◦ are fuzzy numbers, so for each λ ∈
(0, 1], A◦λ and B◦λ are bounded closed intervals, i.e. A◦λ =
[a1(λ), a2(λ)], B◦λ = [b1(λ), b2(λ)]. Therefore, from Eq. (19),
we have

dH(A◦λ, B
◦
λ) = max{|a1(λ)− b1(λ)|, |a2(λ)− b2(λ)|}, (22)

where ◦ ∈ {−,+}.
Theorem 10. [16] D∗p is a metric on IF ∗(R).

Proposition 11. For the IVF regression model (12), Let
Yi = (Yi, s

−
Yi
, s+Yi

) and yi = (yi, s
−
yi , s

+
yi), i = 1, ...,m be the

estimated and observed triangular IVF response for the ith
observation, respectively. Then, for i = 1, · · · ,m, D∗p(Yi,yi)
is obtained as

D∗p(Yi,yi) = max{Dp(Y
−
i ,y

−
i ), Dp(Y

+
i ,y

+
i )}, (23)

where

Dp(Y
−
i ,y

−
i ) = (

∫ 1

0

max{|(Yi − yi)− (1− λ)(s−Yi
− s−yi)|p,

|(Yi − yi) + (1− λ)(s−Yi
− s−yi)|p}dλ)1/p,

Dp(Y
+
i ,y

+
i ) = (

∫ 1

0

max{|(Yi − yi)− (1− λ)(s+Yi
− s+yi)|p,

|(Yi − yi) + (1− λ)(s+Yi
− s+yi)|p}dλ)1/p.

Proof: Proof. By Eq. (30) and Eq. (22), the result is
obviously held.



Definition 10. For the IVF regression model (12), the mean
distance between the estimated and the observed values is
defined by

MD∗p =
1

m

m∑
i=1

D∗p(Yi,yi). (24)

Definition 11. [16] Let A,B ∈ IF ∗(R). The D∗∞ distance
between A and B is defined as

D∗∞(A,B) = max{D∞(A−, B−), D∞(A+, B+)} (25)

where for fuzzy sets A◦ and B◦

D∞(A◦, B◦) = sup
λ∈[0,1]

dH(A◦λ, B
◦
λ), (26)

for ◦ ∈ {−,+} and dH(A◦λ, B
◦
λ) can be obtained by Eq. (22).

Theorem 12. [16] D∗∞ is a metric on IF ∗(R).

Proposition 13. For the IVF regression model (12), Let
Yi = (Yi, s

−
Yi
, s+Yi

) and yi = (yi, s
−
yi , s

+
yi), i = 1, ...,m be

the estimated and observed triangular IVF response for the ith
observation, respectively. Then, for i = 1, · · · ,m, D∗∞(Yi,yi)
is obtained as

D∗∞(Yi,yi) = max{D∞(Y−i ,y
−
i ), D∞(Y+

i ,y
+
i )}, (27)

where

D∞(Y−i ,y
−
i ) = sup

λ∈[0,1]
max{|(Yi − yi)− (1− λ)(s−Yi

− s−yi)|,

|(Yi − yi) + (1− λ)(s−Yi
− s−yi)|},

D∞(Y+
i ,y

+
i ) = sup

λ∈[0,1]
max{|(Yi − yi)− (1− λ)(s+Yi

− s+yi)|,

|(Yi − yi) + (1− λ)(s+Yi
− s+yi)|}.

Proof: Proof. By Eq. (30) and Eq. (22), the result is
obviously held.

Definition 12. For the IVF regression model (12), the mean
distance between the estimated and the observed values is
defined by

MD∗∞ =
1

m

m∑
i=1

D∗∞(Yi,yi). (28)

By the two indices in (24) and (28), the goodness of fit of
the obtained models were examined.

A. Evaluation of the pedomodels by the MD∗f,p and MD∗∞

For p = 2, the indices MD∗p and MD∗∞ between the
observed values and the estimated values for two soil models
are shown in Table I and Table II. As we see, the MD∗p and
MD∗∞ for the proposed model of ESP-SAR are 1.55 and 1.57,
respectively, which are very close to 1.54, i.e. the MD∗f,p.
Also, the MD∗p and MD∗∞ for the proposed model of CEC-
OM-SAND are 1.92 and 2.53, respectively, which are very
close to 1.41, i.e. the MD∗f,p.

VII. CONCLUSION

In this work, we proposed a new approach to IVF regres-
sion analysis, based on least-squares method, for IVF input-
IVF output data. The applicability of the proposed approach
was investigated by using a real data set in soil science. By
two indices, based on some distances between IVF numbers,
the goodness of fit of the obtained models were examined. The
extension of the proposed model to IVF input-IVF output data
when they are nonsymmetric, is a potential topic for future
work.

APPENDIX A
PROOF OF LEMMA 3

We have 24 possible permutations of a, b, c and d. We prove
inequality (7) for two cases.
• Let a ≤ b ≤ c ≤ d. Then a + b ≤ c + d, and therefore
max{a+b, c+d} = c+d,max{a, c} = c and max{b, d} = d.
• Let b ≤ c ≤ d ≤ a. Then max{a, c} = a and max{b, d} =
d. If max{a+ b, c+ d} = c+ d, then

c ≤ a⇒ c+ d ≤ a+ d

i.e. max{a+ b, c+ d} ≤ max{a, c}+ max{b, d}.
If max{a+ b, c+ d} = a+ b, then

b ≤ d⇒ a+ b ≤ a+ d

i.e. max{a+ b, c+ d} ≤ max{a, c}+ max{b, d}.
The proof for the remaining 22 permutations is similar.

APPENDIX B
PROOF OF THEOREM 4

Suppose A,B,C ∈ IF ∗(R).
• It is obvious that D∗p,f (A,B) ≥ 0.
• If A = B, then D∗p,f (A,B) = 0. Conversely, if
D∗p,f (A,B) = 0, then Dp,f (A−, B−) = Dp,f (A+, B+) = 0.
Therefore, ∀x ∈ R,A−(x) = B−(x) and A+(x) = B+(x),
and so A = B.
• The symmetry property i.e. D∗p,f (A,B) = D∗p,f (B,A) is
clearly held.
• Triangular inequality Since Dp,f (A−, B−) and
Dp,f (A+, B+) are metrics on the space of F (R) ([31],
[25]), if A−, B−, C−, A+, B+, C+ are fuzzy numbers, then

Dp,f (A−, B−) ≤ Dp,f (A−, C−) +Dp,f (C−, B−),

Dp,f (A+, B+) ≤ Dp,f (A+, C+) +Dp,f (C+, B+).

Therefore, we have

max{Dp,f (A−, B−), Dp,f (A+, B+)} ≤
max{Dp,f (A−, C−) +Dp,f (C−, B−),

Dp,f (A+, C+) +Dp,f (C+, B+)}. (29)

By using relation (29) and Lemma 3, we have

D∗p,f (A,B) = max{Dp,f (A−, B−), Dp,f (A+, B+)}
≤ max{Dp,f (A−, C−) +Dp,f (C−, B−),

Dp,f (A+, C+) +Dp,f (C+, B+)}
≤ max{Dp,f (A−, C−), Dp,f (A+, C+)}+

max{Dp,f (C−, B−), Dp,f (C+, B+)}
= D∗p,f (A,C) +D∗p,f (C,B).



APPENDIX C
PROOF OF PROPOSITION 5

The λ−level sets of triangular fuzzy numbers A and B can
be expressed as

Aλ = [a1 + λ(a− a1), a2 − λ(a2 − a)],

Bλ = [b1 + λ(b− b1), b2 − λ(b2 − b)]. (30)

According to Eq. (5), we have

D2
2(A,B) =

∫ 1

0

λ[(a1 − b1) + λ((a− a1)− (b− b1))]2dλ

+

∫ 1

0

λ[(a2 − b2)− λ((a2 − a)− (b2 − b))]2dλ

=
(a− b)2

2
+

1

12
[(a2 − b2)2 + (a1 − b1)2] +

1

6
(a− b)[(a2 − b2) + (a1 − b1)],

and the proof is complete.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–
353, 1965.

[2] K. Atanassov, Intuitionistic Fuzzy Sets, Theory and Applications. New
York: Physica-Verlag, 1999.

[3] B. Gorzafczany, “Approximate inference with interval-valued fuzzy
sets-an outline,” in Proc. of the Polish Symp. on Interval and Fuzzy
Math, Poznan, Poland, 1983, pp. 89–95.

[4] I. B. Turksen, “Interval valued fuzzy sets based on normal forms,”
Fuzzy Sets and Systems, vol. 20, no. 2, pp. 191–210, 1986.

[5] G. J. Wang and Y. Y. He, “Intuitionistic fuzzy sets and l-fuzzy sets,”
Fuzzy Sets and Systems, vol. 110, no. 2, pp. 271–274, 2000.

[6] G. Deschrijver and E. E. Kerre, “On the relationship between some
extensions of fuzzy set theory,” Fuzzy Sets and Systems, vol. 133,
no. 2, pp. 227–235, 2003.

[7] ——, “On the position of intuitionistic fuzzy set theory in the
framework of theories modelling imprecision,” Information Sciences,
vol. 177, no. 8, pp. 1860–1866, 2007.

[8] M. B. Gorzalczany, “A method of inference in approximate reasoning
based on interval-valued fuzzy sets,” Fuzzy Sets and Seystems, vol. 21,
pp. 1–17, 1987.

[9] G. Wang and X. Li, “The applications of interval-valued fuzzy
numbers and interval-distribution numbers,” Fuzzy Sets and Systems,
vol. 98, no. 3, pp. 331–335, 1998.

[10] ——, “Correlation and information energy of interval-valued fuzzy
numbers,” Fuzzy Sets and Systems, vol. 103, no. 1, pp. 169–175, 1999.

[11] D. H. Hong and S. Lee, “Some algebraic properties and a distance
measure for interval-valued fuzzy numbers,” Information Sciences, vol.
148, no. 1–4, pp. 1–10, 2002.

[12] P. Grzegorzewski, “Distances between intuitionistic fuzzy sets and/or
interval-valued fuzzy sets based on the hausdorff metric,” Fuzzy Sets
and Systems, vol. 148, no. 2, pp. 319–328, 2004.

[13] Y. M. Wang, J. B. Yang, D. L. Xu, and K. S. Chin, “On the
combination and normalization of interval-valued belief structures,”
Information Sciences, vol. 177, pp. 189–200, 2007.

[14] G. Deschrijver, “Arithmetic operators in interval-valued fuzzy set
theory,” Information Sciences, vol. 177, no. 14, pp. 2906–2924, 2007.

[15] J. H. Chen and S. M. Chen, “A new method to measure the
similarity between interval-valued fuzzy numbers,” in Proc. of the
Sixth International Conference on Machine Learning and Cybernetics,
Hong Kong, vol. 3, 2007, pp. 1403–1408.

[16] L. Chen, “Distances between interval-valued fuzzy sets,” in Proc. of
the 28th IEEE North American Fuzzy Information Processing Society
Annual Conference (NAFIPS2009), Cincinnati, Ohio, USA, 2009, pp.
1–3.

[17] J. Chachi and S. M. Taheri, “A unified approach to similarity measures
between intuitionistic fuzzy sets,” International Journal of Intelligent
Systems, 2013.

[18] L. H. Chen and L. Y. Ouyang, “Fuzzy inventory model for deteriorating
items with permissible delay in payment,” Applied Mathematics and
Computation, vol. 182, no. 1, pp. 711 – 726, 2006.

[19] C. C. Yao and P. T. Yu, “Fuzzy regression based on asymmetric
support vector machines,” Applied Mathematics and Computation, vol.
182, no. 1, pp. 175 – 193, 2006.

[20] A. A. Ramli, J. Watada, and W. Pedrycz, “Real-time fuzzy regression
analysis: A convex hull approach,” European Journal of Operational
Research, vol. 210, no. 3, pp. 606 – 617, 2011.

[21] M. Kelkinnama and S. M. Taheri, “Fuzzy least-absolutes regression
using shape preserving operations,” Information Sciences, vol. 214, pp.
105 – 120, 2012.

[22] O. Kocadagli, “A novel nonlinear programming approach for estimating
capm beta of an asset using fuzzy regression,” Expert Systems with
Applications, vol. 40, no. 3, pp. 858–865, 2013.

[23] L. Zhixin and J. Hongmei, “Effectiveness and relevancy measures
under modal cardinality for interval-valued fuzzy sets,” in Proc. of the
3rd IEEE International Conference on Advanced Computer Theory and
Engineering (ICACTE), Chengdu, China, vol. 1, 2010, pp. 400–402.

[24] S. J. Chen and S. M. Chen, “Fuzzy risk analysis based on measures
of similarity between interval-valued fuzzy numbers,” Computers and
Mathematics with Applications, vol. 55, no. 8, pp. 1670–1685, 2008.

[25] R. Xu and C. Li, “Multidimensional least-squares fitting with a fuzzy
model,” Fuzzy Sets and Systems, vol. 119, no. 2, pp. 215–223, 2001.

[26] R. Grzymkowski, A. Kapusta, T. Kuboszek, and D. Slota, Mathematica
6. Jacka Skalmierskiego, 2008.

[27] A. L. Page et al., Methods of soil analysis. Part 2. Chemical and
microbiological properties. American Society of Agronomy, Soil
Science Society of America, 1982.

[28] J. Mohammadi and S. M. Taheri, “Pedomodels fitting with fuzzy least
squares regression,” Iranian Journal of Fuzzy Systems, vol. 1, no. 2,
pp. 45–61, 2004.

[29] R. W. Miller, R. L. Donahue et al., Soils: an introduction to soils and
plant growth. Prentice-Hall International Inc., 1990, no. Ed. 6.

[30] R. Moore, Methods and Applications of Interval Analysis. Philadelphia:
SIAM, 1979.

[31] R. Xu, “A linear regression model in fuzzy environment,” Advance
Modelling Simulation, vol. 27, pp. 31–40, 1991.



TABLE I. OBSERVED AND PREDICTED INTERVAL-VALUED FUZZY VALUES OF SAR AND ESP AND THEIR DISTANCES

SAR ESP Predicted ESP
No. (x, s−x , s

+
x ) (y, s−y , s

+
y ) (Y, s−Y , s

+
Y ) D∗f,p D∗p D∗∞

1 (0.78,0.05,0.08) (3.08,0.43,0.57) (6.20,0.35,0.58) 3.12 3.16 3.20
2 (0.64,0.14,0.15) (2.86,0.16,0.34) (5.24,0.98,1.04) 2.40 2.80 3.20
3 (0.62,0.06,0.14) (6.25,0.18,0.27) (5.10,0.38,0.96) 1.18 1.51 1.85
4 (0.49,0.04,0.06) (4.11,0.16,0.26) (4.21,0.29,0.40) 0.11 0.17 0.24
5 (1.10,0.07,0.08) (1.04,0.32,0.41) (8.40,0.50,0.54) 7.36 7.45 7.54
6 (0.61,0.08,0.08) (2.71,0.37,0.57) (5.03,0.55,0.57) 2.32 2.41 2.51
7 (0.74,0.07,0.09) (4.45,0.53,0.60) (5.93,0.51,0.61) 1.48 1.48 1.49
8 (1.15,0.07,0.15) (6.92,0.18,0.59) (8.75,0.47,1.07) 1.84 2.07 2.30
9 (1.08,0.12,0.13) (7.41,0.37,0.60) (8.26,0.84,0.93) 0.88 1.10 1.32

10 (0.38,0.07,0.13) (9.08,0.32,0.51) (3.45,0.51,0.87) 5.63 5.81 5.99
11 (0.61,0.05,0.06) (6.56,0.18,0.32) (5.03,0.33,0.43) 1.53 1.60 1.67
12 (0.98,0.10,0.10) (5.05,0.33,0.61) (7.58,0.66,0.68) 2.53 2.70 2.86
13 (0.71,0.04,0.07) (5.23,0.16,0.58) (5.72,0.30,0.45) 0.49 0.56 0.63
14 (0.50,0.05,0.07) (5.16,0.47,0.51) (4.27,0.35,0.47) 0.89 0.95 1.00
15 (0.77,0.12,0.13) (11.10,0.19,0.22) (6.13,0.85,0.92) 4.98 5.32 5.67
16 (0.99,0.11,0.13) (4.47,0.23,0.34) (7.65,0.77,0.88) 3.18 3.45 3.71
17 (3.56,0.10,0.12) (28.84,0.24,0.41) (25.33,0.71,0.84) 3.52 3.76 3.99
18 (0.86,0.12,0.15) (9.43,0.40,0.52) (6.75,0.82,1.05) 2.69 2.95 3.21
19 (0.61,0.07,0.13) (4.50,0.24,0.55) (5.03,0.48,0.92) 0.55 0.72 0.89
20 (0.64,0.05,0.05) (9.30,0.50,0.51) (5.24,0.32,0.36) 4.06 4.15 4.24
21 (0.71,0.15,0.15) (9.48,0.41,0.57) (5.72,1.01,1.06) 3.77 4.07 4.37
22 (0.61,0.10,0.12) (3.65,0.22,0.38) (5.03,0.67,0.81) 1.39 1.61 1.83
23 (0.63,0.04,0.13) (10.14,0.46,0.49) (5.17,0.30,0.91) 4.97 5.18 5.39
24 (1.13,0.06,0.11) (3.00,0.33,0.57) (8.61,0.39,0.74) 5.61 5.70 5.78

Mean of distances 1.54 1.55 1.57

TABLE II. OBSERVED AND PREDICTED INTERVAL-VALUED FUZZY VALUES OF SAND, OM AND CEC AND THEIR DISTANCES

OM SAND CEC Predicted CEC
No. (x1, s

−
x1
, s+x1

) (x2, s
−
x2
, s+x2

) (y, s−y , s
+
y ) (Y, s−Y , s

+
Y ) D∗f,p D∗p D∗∞

1 (0.88,0.03,0.11) (35,1.72,3.55) (16.5,0.89,2.19) (16.28,0.46,1.10) 0.50 0.83 1.31
2 (1.13,0.09,0.15) (37,0.51,5.25) (18.6,1.80,2.17) (16.47,0.35,1.56) 2.21 2.88 3.57
3 (1.31,0.11,0.16) (27,0.84,3.39) (19.3,0.76,2.38) (19.21,0.48,1.18) 0.50 0.77 1.29
4 (1.98,0.16,0.25) (29,2.32,4.23) (20.3,1.03,2.79) (20.47,0.95,1.61) 0.51 0.83 1.34
5 (1.02,0.07,0.14) (38,2.46,3.92) (17.3,0.25,2.56) (15.96,0.73,1.24) 1.44 2.03 2.66
6 (1.29,0.04,0.18) (32,0.27,3.72) (20.4,1.56,2.96) (18.02,0.16,1.31) 2.47 3.24 4.03
7 (1.52,0.13,0.17) (29,1.09,3.47) (19.3,1.40,2.59) (19.29,0.58,1.23) 0.56 0.80 1.37
8 (1.33,0.06,0.16) (18,0.29,2.08) (21.9,1.62,2.82) (21.30,0.23,0.89) 0.99 1.66 2.53
9 (1.71,0.05,0.24) (40,3.44,5.36) (15.9,1.53,1.64) (17.28,0.90,1.83) 1.40 1.70 2.01
10 (2.00,0.07,0.24) (28,0.29,2.84) (18.3,1.55,1.88) (20.75,0.24,1.25) 2.51 3.13 3.76
11 (1.68,0.15,0.17) (13,0.48,1.92) (22.6,1.62,2.98) (23.34,0.49,0.88) 1.13 1.89 2.84
12 (2.15,0.18,0.30) (19,0.27,1.90) (23.7,2.28,2.88) (23.18,0.54,1.21) 0.88 1.48 2.26
13 (3.52,0.21,0.40) (31,1.64,4.13) (24.4,0.34,2.96) (23.98,0.92,1.96) 0.58 0.96 1.41
14 (2.33,0.20,0.33) (31,1.88,4.08) (21.8,1.49,3.05) (20.92,0.93,1.77) 1.02 1.56 2.16
15 (1.71,0.16,0.19) (17,1.20,2.24) (23.8,1.45,2.61) (22.51,0.68,0.99) 1.45 2.15 2.91
16 (1.14,0.03,0.11) (14,0.04,1.94) (20.8,1.92,2.31) (21.72,0.10,0.74) 1.18 1.91 2.74
17 (0.99,0.09,0.10) (19,1.08,1.96) (17.5,0.02,2.58) (20.20,0.48,0.71) 2.81 3.67 4.57
18 (1.14,0.02,0.16) (28,0.33,3.02) (17.8,1.12,2.50) (18.54,0.13,1.11) 0.93 1.49 2.13
19 (1.46,0.09,0.20) (26,2.21,2.66) (20.2,0.73,2.13) (19.82,0.74,1.12) 0.56 0.93 1.39
20 (1.81,0.06,0.23) (32,1.47,3.76) (20.0,1.13,2.63) (19.36,0.49,1.44) 0.80 1.28 1.83
21 (1.38,0.07,0.14) (10,0.50,1.39) (22.8,1.39,2.28) (23.25,0.30,0.68) 0.79 1.33 2.05
22 (0.84,0.07,0.11) (38,2.91,4.18) (19.1,1.60,2.12) (15.50,0.84,1.24) 3.62 4.05 4.48
23 (1.48,0.07,0.16) (49,0.96,6.47) (12.1,1.09,1.73) (14.65,0.40,1.89) 2.57 2.90 3.24
24 (1.08,0.04,0.16) (42,1.14,5.52) (12.8,0.88,1.90) (15.21,0.37,1.65) 2.42 2.67 2.93

Mean of distances 1.41 1.92 2.53


