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Abstract. In this paper, we investigate the entanglement dynamics and decoherence in the interacting
system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation
for the cavity field. Starting with an initial product state with the atom in a general pure state and the
field in a vacuum state, we show that the final density matrix is supported on C

2⊗C
2 space, and therefore,

the concurrence can be used as a measure of entanglement between the atom and the field. The influences
of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the
Bell-CHSH violation between the atom and the field and show that there are entangled states for which the
Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate
the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in
both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better
than any classical channel.

1 Introduction

Quantum entanglement is one of the most prominent non-
classical properties of quantum mechanics which has re-
cently attracted much attention in view of its connection
with the theory of quantum information and computation.
The rapidly increasing in quantum information process-
ing has stimulated the interest of studying the quantum
entanglement. It has been recognized that entanglement
provides a fundamental potential resource for communica-
tion and information processing [1–3] and it is, therefore,
essential to create and manipulate entangled states for
quantum information application. Entanglement is usu-
ally arising from quantum correlations between separated
subsystems which can not be created by local actions on
each subsystems. A pure quantum state of two or more
subsystems is said to be entangled if it is not a product of
states of each components. On the other hands, a bipartite
mixed state ρ is said to be entangled if it can not be ex-
pressed as a convex combination of pure product states [4],
otherwise, the state is separable or classically correlated.

Entangled states are very fragile when they are
exposed to environment. Actually, the biggest enemy of
entanglement is decoherence which is believed to be the
responsible mechanism for emergence of the classical be-
havior in quantum systems [5,6]. Since the maintenance
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and control of entangled states is essential to realization of
quantum information processing systems, the study of de-
teriorating effect of decoherence in entangled states would
be of considerable importance from theoretical as well as
experimental point of view [7–9].

Entanglement dynamics and decoherence have been
studied in the frame of various models. The interaction
of a two-level atom with a single mode of the electromag-
netic field, described by the Jaynes-Cummings model [10],
is one of the simplest and most fundamental quantum
systems. The Jaynes-Cummings model and related mod-
els with dissipation have more recently attracted inter-
est in studies of quantum entanglement [11–22]. Solano
et al. [23] have shown that multipartite entanglement can
be generated by putting several two-level atoms in a cav-
ity of high quality factor with a strong classical driving
field. The resonance interaction of a cavity mode with a
two-level atom that is driven by a coherent field have con-
sidered by Casagrande and Lulli [24]. They have shown
that the system can reach the maximum entanglement af-
ter a unitary evolution for long enough interaction times.
Lougovski et al. [25] have proposed the implementation of
a strongly driven one-atom laser, based on the off-resonant
interaction of a three-level atom in Λ configuration with a
single cavity mode and three laser fields. They have shown
that the system can be well approximated by a two-level
atom resonantly coupled to the cavity mode and driven by
a strongly effective coherent field. They have also studied
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the entanglement properties of the atom-field system on
a time scale much shorter than the cavity decay time,
where the atom-field system is almost a pure state. The
entanglement of an open tripartite system where a cavity
field mode in thermal equilibrium is off-resonantly cou-
pled with two atoms that are simultaneously driven by
a resonant coherent field have investigated in [26]. Bina
et al. [27] have studied entanglement between two strongly
driven atoms resonantly coupled to a dissipative cavity
field mode. They have shown that for this system, the
master equation is analytically solvable. In reference [28],
the authors have studied the dynamics of an open quan-
tum system where N strongly driven two-level atoms are
equally coupled on resonance to a dissipative cavity mode,
and have shown that also in this case the master equation
is analytically solvable. Very recently, Zhang and Xu [29]
have investigated entanglement dynamics and purity of a
two-level atom, driven by a classical field, and interacting
with a coherent field in a dissipative environment.

The aim of our paper is to analyze the dynamics of
the Jaynes-Cummings model in order to find relation be-
tween the entanglement of the atomic and the filed degrees
of freedom and the decoherence in the presence of dissipa-
tion for the field. The system considered here consists of
a strongly driven two-level atom resonantly coupled to a
dissipative cavity field mode [25]. We start initially with
the atom in a general pure state and the field in a vac-
uum state and show that the final density matrix is sup-
ported on C2 ⊗ C2 space, and therefore the concurrence
can be used as a measure of the degree of entanglement
between the atom and the field. The influences of the cav-
ity decay on the quantum entanglement of the system are
investigated, and find that the dissipation suppresses the
entanglement. We also examine the Bell-CHSH violation
between the atom and the field and show that there are
entangled states for which the Bell-BCSH inequality is
not violated. The decoherence induced by the cavity is
also studied and it is shown that the coherence properties
of the atom and also the field are affected by the cavity.
The possibility of writing the atom-field density matrix
as a two-qubit system enables us to use the atom-field
system as a quantum channel for teleportation. The one-
qubit teleportation and also the two-qubit entanglement
teleportation via the quantum channel constructed by the
atom-field system are also investigated and the fidelity of
the teleportation and also the entanglement of the replica
are also discussed. We show that in both cases the atom-
field entangled state can be useful to teleport an unknown
state with fidelity better than any classical channel.

The paper is organized as follows: in Section 2, we in-
troduce the Hamiltonian of an atom interacting with a
single mode vacuum field in the presence of dissipation.
We also give the solution of the master equation in this
section. In Section 3, we study entanglement of the atom-
field system by using the concurrence, and investigate the
effect of dissipation on the concurrence. We also exam-
ine the possible violation of the Bell-CHSH inequality.
Section 4 is devoted to investigating the effect of dissi-
pation on the purity of the system and its corresponding

subsystems. The possibility of using the entanglement be-
tween the atom and the field as a resource to teleport the
one-qubit and two-qubit states is also considered in Sec-
tion 5. The paper is concluded in Section 6 with a brief
conclusion.

2 Master equation and solution

The starting point for our analysis is the following
Hamiltonian for the atom-field interaction [27]

Ĥ(t) =
�ωa

2
σ̂z + �ωf â

†â+ �Ω
(
e−iωDtσ̂† + eiωDtσ̂

)

+ �g
(
σ̂†â+ σ̂â†

)
. (1)

This Hamiltonian describes a driven two-level atom inter-
acting with a cavity field. Here g is the atom-field cou-
pling constant, Ω is the Rabi frequency associated with
the coherent driving field amplitude, ωa = (εe − εg)/� is
the atomic transition frequency, ωf denotes the field fre-
quency, and ωD is the frequency of the classical field. The
atomic “spin-flip” operators σ̂ = |g〉〈e|(σ̂† = |e〉〈g|), and
the atomic inversion operator σ̂z = |e〉〈e| − |g〉〈g| act on
the atom Hilbert space HA = C2 spanned by the excited
state |e〉 → (1, 0)T and the ground state |g〉 → (0, 1)T . The
field annihilation and creation operators â and â† satisfy
the commutation relation [â, â†] = 1 and act on the field
Hilbert space HF spanned by the photon-number states{
|n〉 = (â†)n

√
n!

|0〉
}∞

n=0
.

In the following, we consider the dissipative dynamics
for the cavity field when it is in contact with the environ-
ment, but we neglect atomic decays. The dynamics of the
atom-field density operator ρ̂′ is described by the master
equation

˙̂ρ′ = − i

�
[Ĥ, ρ̂′] + L̂f ρ̂

′, (2)

where the super-operator L̂f describes the losses inside
the cavity, and at zero temperature it is written as follows

L̂f ρ̂
′ =

k

2
[
2âρ̂′â† − â†âρ̂′ − ρ̂′â†â

]
, (3)

where k is the cavity decay rate. In the interaction picture
the master equation (2) can be written as

˙̂ρI = − i

�
[ĤI , ρ̂I ] + L̂f ρ̂I . (4)

The dissipative term remains unchanged, and the time-
independent Hamiltonian is given by ĤI = Ĥ0 + Ĥ1 with

Ĥ0 = −�δâ†â+�Ω(σ̂†+ σ̂), Ĥ1 = �g(σ̂†â+ σ̂â†), (5)

where we introduced the atom-cavity field detuning pa-
rameter δ = ωa − ωf . Employing the unitary transforma-

tion Û(t) = exp
{

i
�
Ĥ0t

}
, we arrive at the following master

equation for the density operator ρ̂(t) = Û(t)ρ̂I(t)Û †(t)

˙̂ρ = − i

�
[ÛĤ1Û

†, ρ̂] + L̂f ρ̂, (6)
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with

ÛĤ1Û
† =

�g

2
[|+〉〈+| − |−〉〈−| + e2iΩt|+〉〈−|

−e−2iΩt|−〉〈+|] âeiδt + H.C., (7)

where H.C. stands for Hermitian conjugate and the ro-
tated basis {|+〉, |−〉} is defined by |±〉 = 1√

2
(|g〉 ± |e〉).

On resonance (δ = 0), and in the strong-driving regime
for interaction between the atom and the external field,
Ω � g, and in the rotating-wave approximation, the fol-
lowing effective master equation is obtained

˙̂ρ = − i

�
[Ĥeff(t), ρ̂] + L̂f ρ̂, (8)

with the effective Hamiltonian

Ĥeff =
�g

2
(σ̂† + σ̂)(â+ â†). (9)

Hamiltonian (9) contains both the Jaynes-Cummings term
(σ̂†â+ σ̂â†) and the anti-Jaynes-Cummings term (σ̂†â† +
σ̂â) [25]. In the following we will describe the solution of
the above effective master equation.

In order to solve the master equation (8), we follow
the method introduced in [25,27]. Let us first introduce
the following decomposition for the density operator ρ̂(t)
of the whole system

ρ̂(t) =
2∑

i,j=1

〈i|ρ̂(t)|j〉|i〉〈j| =
2∑

i,j=1

ρ̂ij |i〉〈j|, (10)

where {|i〉}i=1,2 = {|+〉, |−〉} is the rotated basis of the
atom, and ρ̂ij(t) = 〈i|ρ̂(t)|j〉 are operators acting on the
field Hilbert space. With this definition, the master equa-
tion (8) is equivalent to the following set of uncoupled
equations for the field operators ρ̂ij(t)

˙̂ρ11 = − ig
2
[
â† + â, ρ̂11

]
+
k

2
(
2âρ̂11â

† − â†âρ̂11 − ρ̂11â
†â
)
,

˙̂ρ12 = − ig
2
{
â† + â, ρ̂12

}
+
k

2
(
2âρ̂12â

† − â†âρ̂12 − ρ̂12â
†â
)
,

˙̂ρ22 =
ig

2
[
â† + â, ρ̂22

]
+
k

2
(
2âρ̂22â

† − â†âρ̂22 − ρ̂22â
†â
)
,

(11)

where {, } denotes anti-commutator symbol and ˙̂ρ21(t) =
[ ˙̂ρ12(t)]†. Now following the method of reference [27], let
us first define the following functions in the phase space
associated with the field

χij(β, t) = Trf

[
ρ̂ij(t)D̂(β)

]
, D̂(β) = exp

[
βâ† − β∗â

]
.

(12)

In this representation, equations (11) take the following
form

χ̇11(β, t) =
ig

2
(β + β∗)χ11(β, t)

− k

2

(
β
∂

∂β
+ β∗ ∂

∂β∗ + |β|2
)
χ11(β, t),

χ̇12(β, t) = −ig
[
∂

∂β
− ∂

∂β∗

]
χ12(β, t)

− k

2

(
β
∂

∂β
+ β∗ ∂

∂β∗ + |β|2
)
χ12(β, t),

χ̇22(β, t) = − ig
2

(β + β∗)χ22(β, t)

− k

2

(
β
∂

∂β
+ β∗ ∂

∂β∗ + |β|2
)
χ22(β, t). (13)

We now assume that at t = 0 the atom is described by
the pure state |ψa(0)〉 = cos θ/2|+〉 + eiφ sin θ/2|−〉, with
0 ≤ θ ≤ π, 0 ≤ φ < 2π, and the cavity field is in the the
vacuum state |ψf (0)〉 = |0〉. In the representation given
by (12), the above initial state takes the following form

χ11(β, 0) = cos2 θ/2 exp
(−|β|2/2) ,

χ12(β, 0) =
1
2
e−iφ sin θ exp

(−|β|2/2) ,
χ22(β, 0) = sin2 θ/2 exp

(−|β|2/2) , (14)

and χ21(β, 0) = χ∗
12(β, 0). Now under the above initial

conditions, equations (13) can be solved by using the
method of characteristics [30], and we get

χ11(β, t) = cos2 θ/2 exp
(
−|β|2

2
− α∗(t)β + α(t)β∗

)
,

χ12(β, t) =
1
2
e−iφ sin θ f(t)

× exp
(
−|β|2

2
+ α∗(t)β + α(t)β∗

)
,

χ22(β, t) = sin2 θ/2 exp
(
−|β|2

2
+ α∗(t)β − α(t)β∗

)
,

(15)

and χ21(β, t) = χ∗
12(β, t). In the above equations we have

defined the time dependent coherent field amplitude α(t)
and the function f(t) as

α(t) = i
g

k

(
1 − e−kt/2

)
,

f(t) = exp
(
−2

(g
k

)2

kt+ 4
(g
k

)2 (
1 − e−kt/2

))
. (16)

From the above expressions we find

ρ̂11(t) = cos2 θ/2 |−α(t)〉 〈−α(t)| ,
ρ̂12(t) =

1
2

e−iφ sin θ f(t)e2|α(t)|2 |−α(t)〉 〈α(t)| ,
ρ̂22(t) = sin2 θ/2 |α(t)〉 〈α(t)| , (17)
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ρ̂(t) =

⎛

⎜
⎜
⎜⎜
⎝

x2(t) cos2 θ/2 x(t)
√

1 − x2(t) cos2 θ/2 1
2
f(t) sin θ e−iφ 0

x(t)
√

1 − x2(t) cos2 θ/2 (1 − x2(t)) cos2 θ/2

√
1−x2(t)

2x(t)
f(t) sin θ e−iφ 0

1
2
f(t) sin θ eiφ

√
1−x2(t)

2x(t)
f(t) sin θ eiφ sin2 θ/2 0

0 0 0 0

⎞

⎟
⎟
⎟⎟
⎠

(22)

and ρ̂21(t) = ρ̂†12(t). As a matter of fact, by choosing the
initial state of the atom as θ = π/2, φ = 0, the above den-
sity matrix reduces to the relation (31) of reference [25].
However our objective here is to study the effect of dissipa-
tion on the entanglement of the atom-field system and also
the possibility of using this system as a quantum channel
for efficient quantum teleportation.

3 Quantum entanglement

In what follows, we will study entanglement dynamics of
the above state. To some extent, the dynamics of entan-
glement is the time evolution of entanglement measures.
Many entanglement measures have been introduced and
analyzed in the literature, but the one most relevant to
this work is entanglement of formation, which in fact in-
tends to quantify the resources needed to create a given
entangled state [3]. Remarkably, Wootters [31] has shown
that entanglement of formation of a two-qubit state ρ̂ is
related to a quantity called concurrence as

E(ρ̂) = Ξ[C(ρ̂)] = h

(
1
2

+
1
2

√
1 − C2

)
, (18)

where h(x) = −x log2 x− (1− x) log2(1− x) is the binary
entropy function and C(ρ̂) is the concurrence of the state
ρ̂, defined by

C(ρ̂) = max
{
0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (19)

where the λi are the non-negative eigenvalues, in decreas-
ing order, of the non-Hermitian matrix ρ̂ ˜̂ρ. Here ˜̂ρ is the
matrix given by ˜̂ρ = (σy ⊗ σy) ρ̂∗ (σy ⊗ σy) where ρ̂∗ is
the complex conjugate of ρ̂ when it is expressed in a
standard basis such as {|11〉 , |12〉 , |21〉 , |22〉} and σy rep-
resents Pauli matrix in the local basis {|1〉 , |2〉}. Further-
more, the function Ξ is a monotonically increasing func-
tion of the concurrence C(ρ̂), and ranges from 0 to 1 as
C(ρ̂) goes from 0 to 1, so that one can take the concur-
rence as a measure of entanglement in its own right.

Equation (17) shows that the operators ρ̂ij(t) act on a
field subspace spanned by two vectors |α(t)〉 and |−α(t)〉.
Now it is easy to see that the determinant obtained
from the inner product of these two vectors is equal to
1 − e−4|α(t)|2 which is nonzero provided that |α(t)| �= 0.
This means that two vectors |α(t)〉 and |−α(t)〉 are linearly
independent provided that t �= 0 and g �= 0. Therefore the
final density matrix ρ̂(t) is supported at most on C2 ⊗C2

space, and thus, one can use the concurrence as a measure
of entanglement between the atom and the field. Now in
order to calculate the concurrence for the atom-field den-
sity matrix given in equation (17), we must first write the

density matrix in an orthonormal product basis. To this
aim, we use the Gram-Schmidt procedure [32] to construct
two orthonormal vectors |v1〉 and |v2〉 as

|v1〉 = |α(t)〉 , |v2〉 =
|−α(t)〉 − x(t) |α(t)〉

√
1 − x2(t)

, (20)

where

x(t) = 〈α(t)| − α(t)〉 = exp
(
−2 |α(t)|2

)
. (21)

Two vectors |v1〉 and |v2〉 span, effectively, the space of
the field and constitute the field qubit states. There-
fore, in our model, the atom-field system constitute
a two-qubit system. Now in the orthonormal basis
{|+〉|v1〉, |+〉|v2〉, |−〉|v1〉, |−〉|v2〉}, the atom-field density
matrix can be represented by

see equation (22) above.

Now we can use the concurrence as a measure of entangle-
ment between the atom and the field. For the atom-field
state defined in equation (22) we obtain

λ1 =
(1 − x2(t))

4x2(t)
(x(t) + f(t))2 sin2 θ,

λ2 =
(1 − x2(t))

4x2(t)
(x(t) − f(t))2 sin2 θ,

λ3 = λ4 = 0, (23)

and therefore the concurrence between the atom and the
field is given by

C(t) = max

{

0,

√
1 − x2(t)
x(t)

f(t) sin θ

}

. (24)

It is clear that for θ = 0 the concurrence is zero for all
times, i.e. the atom described by the initial state |+〉 =
1√
2
(|g〉+ |e〉) does not get entangled with the field. Indeed,

in this case the final state of the system is described by the
pure state ρ(t) = |ψ(t)〉〈ψ(t)|, where |ψ(t)〉 = |+〉|−α(t)〉.
This means that the initial state |+〉|0〉 of the system de-
fines a decoherence-free subspace in which the time evo-
lution of the system is unitary. Thus the state |+〉|0〉 does
not become entangled with the environment. But in the
absence of dissipation, i.e. k = 0, the unitary evolution
operator Û = exp{−iĤefft/�} of the Hamiltonian (9) can
be written as [33]

Û(ξ(t)) = |+〉〈+|D̂(−ξ(t)) + |−〉〈−|D̂(ξ(t)),
ξ(t) = igt/2 (25)
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Fig. 1. (Color online) Concurrence C(t) is plotted as a function
of kt and coupling constant g with θ = π/2.

where D̂ is the displacement operator defined in equa-
tion (12). The evolution of the initial state |+〉|0〉 by
the above unitary operator leads to the product state
|+〉|−ξ(t)〉. Motivated by this we can say that in the
decoherence-free subspace the unitary evolution of the sys-
tem is governed by the unitary operator Û(α(t)) where
α(t) is the coherent field amplitude defined in equa-
tion (16). Obviously, for k = 0 we have α(t) = ξ(t).

In order to show the effect of dissipation rate k and
coupling constant g on the entanglement of the system, we
plot the concurrence as a function of kt and the coupling
constant g in Figure 1. It shows that the entanglement of
the system increases with increase of the coupling constant
g, and decreases with increase of the dissipation rate k.
Furthermore, the asymptotic long time density matrix is
separable and has the following form

ρ̂(∞) = cos2 θ/2|+〉〈+| ⊗ | − α(t)〉〈−α(t)|
+ sin2 θ/2|−〉〈−| ⊗ |α(t)〉〈α(t)|. (26)

Now in the following, we attempt to discuss nonlocality of
the atom and the field. The most commonly discussed Bell
inequality is the Clauser-Horne-Shimony-Holt (CHSH) in-
equality [34]. The Bell-CHSH operator formulated for two-
qubit systems has the following form [34]

B = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ, (27)

where a, a′,b,b′ are unite vectors in R3 and {σi}3
i=1 are

the standard Pauli matrices. The Bell-CHSH inequality
states that within any local model the expectation value
〈B〉ρ̂ ≡ Tr(ρ̂B) of the Bell-CHSH operator has to be
bounded by 2, i.e.

|〈B〉ρ̂| ≤ 2. (28)

Horodecki et al. have presented an effective criterion for
violating the Bell-CHSH inequality by an arbitrary mixed
two-qubit state [35]. They have shown that the maxi-
mum amount of Bell violation of a two-qubit state ρ̂,
i.e. 〈Bmax〉ρ̂ = maxB|〈B〉ρ̂|, is given by 2

√
μ+ μ̃ where

μ, μ̃ are two greater eigenvalues of the matrix T †
ρ̂Tρ̂. Here
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Fig. 2. (Color online) Concurrence C(t) (upper panel) and
the maximal violation measure 〈Bmax〉ρ̂(t) (lower panel) are
plotted as a function of kt with θ = π/2 and g = 1. The
horizontal line in the lower figure shows the minimum violation.

the matrix Tρ̂ is a 3 × 3 matrix whose elements are
[Tρ̂]ij = Tr(ρ̂σi ⊗ σj), and is responsible for correlations.
It follows, therefore, from this maximal violation measure
that a state shows Bell violation when 〈Bmax〉ρ̂ > 2 and
the maximal violation when 〈Bmax〉ρ̂ = 2

√
2.

Now, it is not difficult to see that for the atom-field
density operator ρ̂(t) given by equation (22), the maximal
violation measure can be written as

〈Bmax〉ρ̂(t) = 2

√

1 +
(
f2(t)
x2(t)

− x2(t)
)

sin2 θ. (29)

In Figure 2 we plot the concurrence C(t) (upper panel)
and the maximal violation measure 〈Bmax〉ρ̂(t) (lower
panel) as a function of ktwith θ = π/2 and g = 1. The hor-
izontal line in the lower figure shows the boundary value
2 in equation (28), i.e. the minimum violation. There we
can clearly see that there are entangled states for which
the Bell-BCSH inequality is not violated. It is worth not-
ing that although the atom-field entanglement disappears
asymptotically, but the nonlocality defined by the Bell-
CHSH inequality disappears at a finite time.

4 Decoherence

In quantum information processing, decoherence is an-
other essential problem that deserves some attention.
Generally, decoherence is used to estimate the deviation
from an ideal state and can be considered as a symbol to
express the reduction of purity and, therefore, one can use
the linear entropy S( ρ̂) = 1 − Tr [ ρ̂2 ] as a measure of
decoherence. The linear entropy has the limiting values 0
and 1 − 1/N , respectively, for pure and maximally mixed
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states, where N is the dimension of the space that the
density matrix ρ̂ is supported on. The linear entropy of
the atom-field system is given by

S( ρ̂) = 1 − Tr [ ρ̂2 ] =
1
2

(
1 − f2(t)

x2(t)

)
sin2 θ. (30)

On the other hand, the reduced density matrix of the atom
can be obtained by tracing out over the field degrees of
freedom where we get

ρ̂a(t) = Trf [ ρ̂(t) ]

=
(

cos2 θ/2 1
2 e−iφ sin θ f(t)

1
2 eiφ sin θ f(t) sin2 θ/2

)
. (31)

The linear entropy of the atom is given by

S( ρ̂a) = 1 − Tr [ ρ̂2
a ] =

1
2

(1 − f2(t)) sin2 θ. (32)

Similarly, we can obtain the reduced density matrix of the
field by tracing out over the atom degrees of freedom and
get

ρ̂f (t) = Tra[ ρ̂(t) ]

=

⎛

⎝
x2(t) cos2 θ/2 + sin2 θ/2 x(t)

√
1 − x2(t) cos2 θ/2

x(t)
√

1 − x2(t) cos2 θ/2 (1 − x2(t)) cos2 θ/2

⎞

⎠ ,

(33)

where, clearly, shows that the field reduced density matrix
does not depend on the decoherence function f(t). This
matrix can be used to calculate the linear entropy of the
field as

S( ρ̂f ) = 1 − Tr [ ρ̂2
f ] =

1
2

(1 − x2(t)) sin2 θ. (34)

It is clear that all of the three linear entropies obtained
above are proportional to sin θ, and therefore when θ = 0
the atom-field system and its corresponding subsystems
have zero entropies. As we mentioned already this is
because of the fact that in this particular case the time
evolution of the system is unitary and the state remains
separable as well as pure. In Figure 3 we plot the linear en-
tropy of the atom-field system and its two reduced subsys-
tems. It is clear that all three linear entropy have asymp-
totic values near 1/2. Although this asymptotic value for
the atom subsystem is the maximum value that the atom
can gain, i.e. 1/2, but for the field subsystem it is equal
to (1− e−4)/2. Peixoto de Faria and Nemes [11] have em-
ployed the Jaynes-Cummings model in the dispersive ap-
proximation for a dissipative cavity at zero temperature
and showed that the cavity has practically no influence
on the coherence properties of the field from the qualita-
tively point of view, but the atom’s coherence properties
are strongly influenced by dissipation both qualitatively
and quantitatively, although it is not directly coupled to
the cavity. But our results show that the coherence prop-
erties of the field are also affected by the cavity.
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Fig. 3. (Color online) Linear entropy of atom-field (solid line),
atom (dotted line) and field (dashed line) are plotted as a func-
tion of kt with θ = π/2 and g = 1.

5 Teleportation

An important aspect of quantum nonseparability is the
quantum teleportation, discovered by Bennett et al. [2].
Bennett et al have shown that two spin- 1

2 particles, sepa-
rated in space and entangled in a singlet state, can be used
for teleportation. Popescu [36] noticed that the pairs in a
mixed state could still be useful for (imperfect) teleporta-
tion, but they reduce the fidelity of teleportation. It has
been shown [36–38] that the purely classical channel can
give at most fidelity F = 2

3 . The possibility of using the
entanglement between the atom and the field as a resource
for the standard teleportation protocol P0 is considered in
the next subsection.

5-1 One qubit teleportation

The standard teleportation P0 [2] involves two particle
sources producing pairs in a given mixed state ρ̂ch which
forms the quantum channel. This quantum channel is
equivalent to a generalized depolarizing channel Λρ̂ch,P0 ,
with probabilities given by the maximally entangled com-
ponents of the resources [39,40]. Now we look at the stan-
dard protocol P0, using the atom-field state ρ̂(t), i.e. a
two-qubit mixed state, as resource. We consider as an in-
put state a one-qubit system in an unknown pure state
|ψin〉 = cosϑ/2|+〉 + eiϕ sinϑ/2|−〉 with 0 ≤ ϑ ≤ π, 0 ≤
ϕ < 2π. The density matrix related to |ψin〉 is in the form

ρ̂in =

⎛

⎝
cos2 ϑ/2 1

2e
−iϕ sinϑ

1
2e

iϕ sinϑ sin2 ϑ/2

⎞

⎠ . (35)

The output state ρ̂out can be obtained by applying a
joint measurement and local unitary transformation on
the input state ρ̂in [39]

ρ̂out = Λρ̂ch,P0(ρ̂in) =
3∑

i=0

piσ
iρ̂inσ

i, (36)

where pi = Tr(Eiρ̂ch) such that
∑

i pi = 1. Here
Ei = |Ψ i

Bell〉〈Ψ i
Bell| where |Ψ i

Bell〉 are the four maxi-
mally entangled Bell states associated with the Pauli
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ρ̂out =

⎛

⎝
(p0 + p3) cos2 ϑ/2 + 2p1 sin2 ϑ/2 1

2
(p0 − p3) e−iϕ sin ϑ

1
2

(p0 − p3) eiϕ sin ϑ (p0 + p3) sin2 ϑ/2 + 2p1 cos2 ϑ/2

⎞

⎠

matrices σi, i.e. Ei = (σi ⊗ σ0)E0(σi ⊗ σ0), where
σ0 = I, σ1 = σx, σ2 = σy and σ3 = σz . Further-
more for optimal utilization of a given entangled state
as resource, one must choose local basis states such
that p0 is maximum, i.e. p0 = max{pi}. We there-
fore find that |Ψ0

Bell〉 = 1√
2

(|+〉|v2〉 + |−〉|v1〉), |Ψ1
Bell〉 =

1√
2

(|+〉|v1〉 + |−〉|v2〉), |Ψ2
Bell〉 = 1√

2
(|+〉|v1〉 − |−〉|v2〉),

|Ψ3
Bell〉 = 1√

2
(|+〉|v2〉 − |−〉|v1〉), and

p0 =
1
2

(

1 − x2(t) cos2 θ/2 +
f(t)

√
1 − x2(t)
x(t)

sin θ cosφ

)

,

p1 = p2 =
1
2
x2(t) cos2 θ/2,

p3 =
1
2

(

1 − x2(t) cos2 θ/2 − f(t)
√

1 − x2(t)
x(t)

sin θ cosφ

)

.

(37)

Therefore according to equation (36), for the output we
get

see equation above.

To characterize the quality of the teleported state ρ̂out, it
is often quite useful to look at the fidelity between ρ̂in and

ρ̂out defined as F (ρ̂in, ρ̂out) =
[
Tr

(√√
ρ̂inρ̂out

√
ρ̂in

)]2
,

[41,42]. For our system that the input state is pure, the
fidelity F (ρ̂in, ρ̂out) can be easily calculated as

F (ρ̂in, ρ̂out) = 〈ψin|ρ̂out|ψin〉 = (p0 + p3)+ (p1− p3) sin2 ϑ.
(38)

The average fidelity is another useful concept for charac-
terizing the quality of teleportation and can be obtained
by averaging the fidelity F (ρ̂in, ρ̂out) over all possible in-
put states

F (Λρ̂ch,P0) =
1
4π

∫ 2π

0

dϕ
∫ π

0

F (ρ̂in, ρ̂out) sinϑdϑ. (39)

For our system we get

F (Λρ̂ch,P0) =
2
3

+
1
3

(
f(t)

√
1 − x2(t)
x(t)

sin θ cosφ

− x2(t) cos2 θ/2

)

. (40)

We, therefore, see that the atom-field entangled state ρ̂(t)
can be useful to transmit |ψin〉 with fidelity better than
any classical communication protocol, i.e. fidelity better
that 2/3, if we require that the second term in the above
equation be strictly positive.
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Fig. 4. (Color online) Optimal fidelity is plotted as a function
of kt with θ = π/2, φ = 0 and g = 1. The horizontal line shows
the classical capacity 2/3.

Horodecki et al. have presented a beautiful formula
relating the optimal fidelity of teleportation and the max-
imal entangled fraction [43]. They have shown that for a
given bipartite state acting on Cd⊗Cd, the optimal fidelity
of teleportation is given by

Fmax(Λρ̂ch,P0) =
fmax(Λρ̂ch) d+ 1

d+ 1
, (41)

where fmax(Λρ̂ch) is the maximal entangled fraction of the
channel. Simple calculation shows that in our model, i.e.
d = 2 and fmax(Λρ̂ch) = max {p0, p1, p2, p3} = p0, equa-
tion (41) gives the same result as equation (40). In Figure 4
we plot the optimal fidelity of teleportation as a function
of kt with θ = π/2, φ = 0 and g = 1. The horizontal line
shows the best classical fidelity 2/3.

5-2 Entanglement teleportation

We now consider the atom-field state as a quantum chan-
nel for entanglement teleportation of a two-qubit state.
We will consider Lee and Kim’s [44] two-qubit teleporta-
tion protocol, and use two copies of the above atom-field
state as resource. In this protocol, the joint measurement
is decomposable into two independent Bell measurements
and the unitary operation into local one-qubit Pauli rota-
tions. Accordingly, for the output state we get

ρ̂out = Λρ̂ch,P1(ρ̂in) =
3∑

i,j=0

pij(σi ⊗ σj)ρ̂in(σi ⊗ σj), (42)

where pij = Tr(Eiρ̂ch)Tr(Ej ρ̂ch) = pipj . Here Ei are
projection on the Bell states, defined in the last section.
We consider as input a two-qubit state in the following
pure state |ψin〉 = cosϑ/2| + −〉 + eiϕ sinϑ/2| − +〉 with
0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π. The density matrix related to
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ρ̂out =

⎛

⎜
⎜
⎝

2p1(p0 + p3) 0 0 0
0 (p0 + p3)

2a + 4p2
1b (p0 − p3)

2c 0
0 (p0 − p3)

2c∗ (p0 + p3)
2b + 4p2

1a 0
0 0 0 2p1(p0 + p3)

⎞

⎟
⎟
⎠

|ψin〉 is in the form

ρ̂in =

⎛

⎜
⎝

0 0 0 0
0 a c 0
0 c∗ b 0
0 0 0 0

⎞

⎟
⎠ ,

where we have defined a = cos2 ϑ/2, b = sin2 ϑ/2 and
c = 1

2e
−iϕ sinϑ. The concurrence of this state is C(ρ̂in) =

sinϑ. For the output we get
see equation above.

Now in order to calculate the concurrence of ρ̂out, we first
calculate the eigenvalues of the operator ρ̂out

˜̂ρout as

λ1 =
(
(p0 + p3)

2
a+ 4p2

1b
)(

(p0 + p3)
2
b+ 4p2

1a
)

+ (p0 − p3)
4 |c|2 + 2 (p0 − p3)

2 |c|

×
√(

(p0 + p3)
2
a+ 4p2

1b
)(

(p0 + p3)
2
b+ 4p2

1a
)
,

λ2 = λ3 = 4 (p0 + p3)
2
p2
1,

λ4 =
(
(p0 + p3)

2 a+ 4p2
1b
)(

(p0 + p3)
2 b+ 4p2

1a
)

+ (p0 − p3)
4 |c|2 − 2 (p0 − p3)

2 |c|

×
√(

(p0 + p3)
2 a+ 4p2

1b
)(

(p0 + p3)
2 b+ 4p2

1a
)
.

(43)

Then by using equation (19), we obtain the concurrence
of the teleported state ρ̂out as

C(ρ̂out) = max
{

0, (p0 − p3)
2 sinϑ− 4 (p0 + p3) p1

}

= max
{

0,
(1 − x2)f2

x2
sin2 θ cos2 φ sinϑ

−2x2
(
1 − x2 cos2 θ/2

)
cos2 θ/2

}
. (44)

In Figure 5 we plot the concurrence of the output state
as a function of kt and θ. It is clear from the figure that
teleportation of a maximally Bell state (concurrence 1)
via this channel, give an output state with concurrence
less than 0.1. We can also calculate the fidelity of ρ̂in and
ρ̂out as

F (ρ̂in, ρ̂out) = (p0 + p3)2 + 2(p2
1 − p0p3) sin2 ϑ. (45)

Now using equation (41) with d = 4 and fmax(Λρ̂ch) = p2
0,

the optimal teleportation fidelity achievable is given by

F (Λρ̂ch,P1) =
2
5
+

1
5

(
f2(1 − x2)

x2
sin2 θ cos2 φ+ x4 cos4 θ/2

+ 2(1 − x2 cos2 θ/2)
f
√

1 − x2

x
sin θ cosφ− 2x2 cos2 θ/2

)

.

(46)
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Fig. 5. (Color online) Concurrence of the output state is plot-
ted as a function of kt and θ, with g = 1, φ = 0 and ϑ = π/2.
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Fig. 6. (Color online) Optimal fidelity is plotted as a function
of kt with θ = π/2, φ = 0 and g = 1. The horizontal line shows
the classical fidelity 2/5.

In Figure 6 we plot optimal fidelity of teleportation as
a function of kt with θ = π/2, φ = 0 and g = 1. The
horizontal line shows the classical fidelity 2/5.

6 Conclusion

We have investigated the quantum entanglement and de-
coherence in the interacting system of a two-level atom
and a single mode vacuum field in the presence of field dis-
sipation. Starting from the cavity field in a vacuum state
and the atom in a general pure state, it is shown that the
final density matrix has support on C2⊗C2 space, i.e. the
atom-field system constitute a two-qubit system. We have,
therefore, used the concurrence as a relevant measure of
entanglement between the atom and the field. The effect
of the atomic initial pure state on the entanglement of the
system is studied and it is shown that when the atom is
initially in the state |+〉 = 1√

2
(|g〉+ |e〉), the atom-field en-

tanglement is zero for all times. In this case we have shown
that the evolution of the system is unitary and therefore,
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the system initial state |+〉|0〉 defines a decoherence-free
subspace. The influence of the cavity decay on the quan-
tum entanglement of the system has also been discussed
and we have found that the dissipation suppresses the en-
tanglement. We have also examined the Bell-CHSH vio-
lation between the atom and the field and have shown
that there are entangled states for which the Bell-BCSH
inequality is not violated. The decoherence induced by the
cavity decay is also studied and it is shown that the coher-
ence properties of the atom and also the field are affected
by cavity decay. The one-qubit teleportation via the quan-
tum channel constructed by the atom-field system is also
investigated. We have shown that the atom-field entangled
state can be useful to transmit a generic one-qubit state
|ψin〉 with fidelity better than any classical communication
protocol, i.e. fidelity better that 2/3. We have also studied
the two-qubit entanglement teleportation via two copies
of the atom-field system. The fidelity of the teleportation
and also the entanglement of the replica are also discussed
and it is shown that the atom-field entangled state is still
superior to classical channel in performing the two-qubit
teleportation.
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