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Abstract. The next-to-next-to-leading order (NNLO) quantum chromodynamics (QCD) correc-
tion to the first three moments of the four event-shape variables in electron–positron annihilation,
the thrust, heavy jet mass, wide, and total jet broadening, is computed. It is observed that the NNLO
correction gives a better agreement between the theory and the experimental data. Also, by using
the above observables, the strong coupling constant (αs) is determined and how much its value is
affected by the NNLO correction is demonstrated. By combining the results for all variables at
different centre-of-mass energies αs(MZ0) = 0.1248 ± 0.0009 (exp.)+0.0283

−0.0144 (theo.) is obtained.
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1. Introduction

Quantum chromodynamics (QCD) is generally accepted to be the correct theory for
describing the strong interaction between quarks and gluons [1]. If the quark masses and
their mixing angles are fixed, then the only free parameter of this theory is the strong cou-
pling constant (αs). Therefore, it is of paramount importance to measure this parameter
to the best possible precision. One way to determine αs is by calculating the moment of
event-shape variables. The nth moment of an event-shape observable y is defined as

〈yn〉 = 1

σhad

∫ ymax

0
yn dσ

dy
dy, (1)

where ymax is the kinematically allowed upper limit of the observable [2]. The most com-
mon observables are: thrust T [3,4] (where moments of y = (1 − T ) is taken), the heavy
jet mass ρ = M2

H/S [5], the wide and total jet broadenings, Bw and BT [6,7].
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While the NNLO correction should offer a better value for αs (to the inclusion of addi-
tional radiation at parton level), it is worthwhile to study this correction not only to the
first but also to higher moments of these observables. Besides the experimental uncer-
tainty, one need to take into account the theoretical uncertainty on such a fundamental
quantity.

2. NNLO correction to event-shape moments

The perturbative contribution to 〈yn〉 upto NNLO can be given in terms of three
dimensionless coefficients Āy,n , B̄y,n and C̄y,n as

〈yn〉(s, μ2) =
(

αs(μ)

2π

)
Āy,n +

(
αs(μ)

2π

)2 (
B̄y,n + Āy,nβ0 log

μ2

s

)

+
(

αs(μ)

2π

)3 (
C̄y,n + 2B̄y,nβ0 log

μ2

s

+ Āy,n

(
β2

0 log2 μ2

2
+ β1 log

μ2

s

))
+ O(α4

s ), (2)

where s denotes the centre-of-mass energy squared and μ is the QCD renormalization
scale [8]. The NLO expression is obtained by suppressing all terms at order αa

s . The first
two coefficients of the QCD β-function are

β0 = 11CA − 4TR NF

6

and

β1 = 17C2
A − 10CATR NF − 6CF TR NF

6
,

with CA = N , CF = ((N 2 − 1)/N ), TR = 1
2 for N = 3 colours and NF quark flavours.

The perturbative coefficients in eq. (2) are independent of the centre-of-mass energy.
They are obtained by integrating parton-level distributions, which were calculated
recently to the NNLO level [9–12].

In figure 1, we show the energy dependence of the first moments of all event-shape
variables at NLO and NNLO. The theory predictions are compared to PYTHIA Monte
Carlo. Comparing NLO and NNLO predictions, we observe that the NNLO contribution
comes closer to the Monte Carlo data for 1 − T and BT, while negligible improvement
over NLO is observed for other observables.

The higher moments of the four event shapes are displayed in figures 2 (1 − T ), 3 (ρ),
4 (BT) and 5 (Bw). Compared again to the Monte Carlo data, the qualitative behaviour
of the higher moments of the different shape variable is similar to what was observed for
the first moments. Although, for 1 − T and BT, higher moments cause an increase in
NNLO correction (almost 10% and 30% respectively), for ρ it is the reverse and for Bw,
it is negligible. All figures and data are consistent with the data from OPAL and JADE
experiments [13] and also with NLO and NNLO corrections in ref. [12].
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(a) (b)

(c) (d)

Figure 1. First moment of four event-shape variables: (a) 1 − T , (b) ρ, (c) BT,
(d) Bw.

3. Determination of the strong coupling constant

3.1 Theoretical uncertainties

Comparing the different sources of error in the extraction of αs from hadronic data,
one finds that the purely experimental error is negligible compared to the theoretical
uncertainty. There are two sources of theoretical uncertainty: the theoretical description of
the parton-to-hadron transition (hadronization uncertainty) and the uncertainty stemming
from the truncation of the perturbative series at a certain order, as estimated by the scale
variation (perturbative or scale uncertainty). Although the accuracy of the hadronization
uncertainty is debatable and perhaps often underestimated, it is conventional to consider
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Figure 2. Perturbative corrections to the higher moments of 1 − T .

the scale uncertainty as the dominant theoretical error on the precise determination of αs

[8]. The scale uncertainty is obtained by repeating the fit for different values of the renor-
malization scale in the interval 0.5

√
s ≤ μ ≤ 2

√
s. In tables 1–4 theoretical errors are

also added to make the value of αs more precise.

3.2 Comparison of NNLO correction with NLO

To further clarify the situation, we compare the NNLO correction to NLO correction. The
reason for doing this is to see if the value of αs is affected by increasing the order of our

Figure 3. Perturbative corrections to the higher moments of the normalized heavy jet
mass ρ.
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Figure 4. Perturbative corrections to the higher moments of the total jet broaden-
ing BT.

calculation. In the case of pure fixed-order predictions, the main source of arbitrariness in
the prediction is the choice of the renormalization scale χμ. The residual dependence of
the fitted value of αs(M2

Z ) on the renormalization scale is shown in figure 6. A dramatic
reduction of the scale dependence is observed when going from NLO to NNLO.

Next we fit the QCD predictions (NLO and NLO corrections) for hadronization to the
data for a given observable and moment n = 1, 2, 3 individually with αs(MZ0) as the only
free parameter. The results for αs(MZ0) are summarized in figure 7. For higher moments,

Figure 5. Perturbative corrections to the higher moments of the wide jet broaden-
ing Bw.
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Table 1. Values of αs measured from fit to the first and higher moments of thrust.

〈(1 − T )〉 〈(1 − T )2〉 〈(1 − T )3〉

αs 0.1324 ± 0.0015 +0.0289
−0.0145 0.1305 ± 0.0008 +0.0239

−0.0132 0.1339 ± 0.0006 +0.0245
−0.0148

Table 2. Values of αs measured from fit to the first and higher moments of wide jet
broadening.

〈(Bw)〉 〈(Bw)2〉 〈(Bw)3〉

αs 0.1116 ± 0.0011 +0.0143
−0.0115 0.1218 ± 0.0019 +0.0287

−0.0149 0.1189 ± 0.0007 +0.0302
−0.0142

Table 3. Values of αs measured from fit to the first and higher moments of total jet
broadening.

〈(BT)〉 〈(BT)2〉 〈(BT)3〉

αs 0.1221 ± 0.0003 +0.0229
−0.0147 0.1300 ± 0.0008 +0.0145

−0.0085 0.1366 ± 0.0009 +0.0230
−0.0134

Table 4. Values of αs measured from fit to the first and higher moments of heavy jet
mass.

〈ρ〉 〈(ρ)2〉 〈(ρ)3〉

αs 0.1018 ± 0.0007 +0.0394
−0.0170 0.1364 ± 0.0011 +0.0344

−0.0154 0.1214 ± 0.0007 +0.0545
−0.0205

we observe that the values of αs(MZ0) increase with n for the observables 〈(1 − T )n〉
and 〈(BT)n〉, while for 〈(Bw)n〉 and 〈(ρ)n〉, its value decrease. What is more, due to an
increase in the order of correction, experimental errors also drop significantly. (〈(Bw)n〉
is less sensitive to NNLO correction.)

To obtain a combined value for the strong coupling constant we take an unweighted
average of the 12 values, presented in tables 1–4. Similarly, we estimate the overall the-
oretical and experimental errors from their simple average. The result of the combina-
tion is

αs(MZ0) = 0.1248 ± 0.0009 (exp. ) +0.0283
−0.0144 (theo.) ,

which is above but still consistent with the world average (0.1184 ± 0.0027 [14]). Com-
bining only the fit results from 〈(1 − T )〉, 〈(Bw)〉, 〈(BT)〉 and 〈ρ〉 yields a value of

αs(MZ0) = 0.1170 ± 0.0009 (exp.) +0.0263
−0.0144 (theo.) .
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(a) (b)

Figure 6. Dependence of the extracted αs on the renormalization scale when fitting
(a) the thrust and (b) the total jet broadening moments with predictions at different
orders of pertubative theory.

Figure 7. Variation of αs(MZ ) in terms of first and higher moments for NLO and
NNLO corrections. Error is experimental.
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The slightly smaller error of αs reflects the fact that the lower-order moments were less
sensitive to the multijet region of the event-shape distributions.

4. Conclusions

In this paper we used NNLO QCD corrections to event-shapes moments 〈(1 − T )n〉,
〈(Bw)n〉, 〈(BT)n〉 and 〈(ρ)n〉 in e−e+ annihilation to determine the strong coupling con-
stant αs. The uncertainties of these measurements are dominated by the theoretical
uncertainty arising from the unknown higher-order contribution in the calculation. The
NNLO corrections to different event shapes are sizeable and the value of αs obtained in
NNLO is closer to the world average value.
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