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ABSTRACT
By taking into account the effect of a toroidal magnetic field and its corresponding heating, we
determine the thickness of advection-dominated accretion flows. We consider an axisymmetric,
rotating, steady viscous–resistive, magnetized accretion flow under an advection-dominated
stage. The dominant mechanisms of energy dissipation are assumed to be turbulence viscosity
and magnetic diffusivity. We adopt a self-similar assumption in the radial direction to obtain
the dynamical quantities, i.e. radial, azimuthal, sound and Alfvén velocities. Our results show
that the vertical component of magnetic force acts in the opposite direction to gravity and
compresses the disc; thus, compared with the non-magnetic case, in general the disc half-
thickness, �θ , is significantly reduced. On the other hand, two parameters that appear due to
the action of the magnetic field and reaction of the flow affect the disc thickness. The first one,
β0, which shows the magnetic field strength at the equatorial plane, decreases �θ . The other
one, η0, is the magnetic resistivity parameter and when it increases �θ also increases.
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1 IN T RO D U C T I O N

Accretion on to black holes is known as a powerful source of energy
in the Universe. Accreting gas with sufficiently high angular mo-
mentum tends to form a disclike structure around the central object.
In accreting processes, viscosity causes angular momentum trans-
port outward and it also releases gravitational energy. According to
the standard accretion disc model, the released energy is converted
into radiation and escapes from the disc in the same place as its
generation. The modern standard theory was formulated in Shakura
(1972), Novikov & Thorne (1973) and Shakura & Sunyaev (1973).
It provided remarkably successful contributions to understanding
quasars, X-ray binaries and active galactic nuclei. One of the basic
assumptions of this model is that the vertical thickness of the disc
H is much smaller than the corresponding radius r in cylindrical
coordinates (H � r). Although the disc is geometrically thin, it is
optically thick due to absorption and radiation in its entirety moves
outward in the vertical direction.

On the other hand, the energy released through viscosity may be
trapped within accreting gas and then transported (advected) in the
radial direction towards the central object or stored in the flow as
entropy (Narayan & Yi 1995b). In this case, the gas tends to have
higher temperature, which leads to a vertical thickening of the disc
(H ∼ R). In this situation, therefore, the accretion flow is called a
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radiatively inefficient accretion flow (RIAF) and depending on the
mass accretion rate and optical depth of flow is divided into two
types, namely the slim disc and the advection-dominated accretion
flow (ADAF). The slim accretion disc model, where flow is optically
thick because of having a large mass accretion rate, is introduced by
Abramowicz et al. (1988). In the other type, ADAF, the accreting
flow becomes optically thin in the limit of low mass accretion rate.

For both branches of hot accretion flows, the solution proposed by
Narayan & Yi (1994) is applicable. Using a self-similar technique,
they assumed all variables to have power-law dependence on r and
then started to integrate the flow equations in the vertical direction.
However, vertical integration is valid for the thin disc approximation
only. Thus Narayan & Yi (1995a) tried to obtain a new solution in
spherical coordinates to approach a more exact model. At that time,
the flow was considered completely thick and occupied the whole
region between the two poles. In both solutions the thickness value
of the flow is not entirely clear.

It is generally believed that magnetic fields have a fundamen-
tally important role in the physics of accretion discs. For example,
magnetorotational instability (MRI) is known as a sure generator of
turbulence in a Keplerian disc, where angular momentum decreases
outwards (Balbus & Howly 1991). Indeed, the crucial role of the
magnetic field in a hot flow is expected because of the high tem-
perature of accreting gas in ADAFs (109–1012 K). In this case, the
flow is ionized and may be influenced strongly in the presence of
a magnetic field. For the first time, Lynden-Bell (1969) considered
the role of the magnetic field in the context of active galactic nuclei

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at Shanghai A
stronom

ical O
bservatory on January 10, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

mailto:m_samadi_m@yahoo.com ignorespaces (MS); ignorespaces abbassi@ipm.ir ignorespaces (SA)
http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


The effect of toroidal magnetic field on thickness 3125

and found how it might be responsible for angular momentum trans-
port and the origin of anomalous disc viscosity. Bisnovatyi-Kogan
& Blinnikov (1976) demonstrated that an explanation for the hard
X-ray and gamma radiation from Cyg X-1 would require the pres-
ence of a magnetic field in the accretion disc. Some effort has
been made to solve the magnetohydrodynamics (MHD) equations
of magnetized ADAFs analytically. Kaburaki (2000) has presented
a set of analytical solutions for a fully advective accretion flow in a
global magnetic field. Shadmehri (2004) has extended this analysis
for a non-constant resistivity. Abbassi, Ghanbari & Ghasemnezhad
(2010) and Ghanbari, Salehi & Abbassi (2007) have presented a set
of self-similar solutions for two-dimensional (2D) viscous–resistive
ADAFs in the presence of a dipolar magnetic field of the central
object. They have shown that the presence of a magnetic field and
its associated resistivity can change the picture considerably with
regard to accretion flows.

The effects of ordered magnetic fields in accretion disc theories
are often studied in two classes. In one class, the magnetic field
is global and both poloidal and toroidal components of the ordered
field are considered. In the other class, only a toroidal field is present
in the disc. The latter case is acceptable, since the dominant motion
in an accretion disc has differential rotation, so it causes the toroidal
component of magnetic field to become the most important one.
Toroidal field is created by the action of differential rotation on
initially poloidal field lines connecting layers rotating at different
rates (Papaloizou & Terquem 1997). In this class, the magnetic field
is often assumed to have even polarity, which means being the same
on both sides of the equatorial plane, and its effect is usually seen in
the total pressure (i.e. gas plus magnetic). In this view, therefore, the
behaviour of magnetic and gas pressure are assumed to be the same
and both support the disc against the vertical component of gravity.
Therefore, if the total pressure is substituted in the α-prescription
of viscosity, an additional viscous extraction of angular momentum
passing through the disc plane becomes possible (Kato, Fukue &
Mineshige 2008). The effect of toroidal magnetic field on the disc
was studied by Fukue (1990), Akizuki & Fukue (2006), Abbassi,
Ghanbari & Najjar (2008), Abbassi et al. (2010) and Khesali &
Faghei (2009).

The global magnetic field could have odd or even symmetry
about the equatorial plane. Lovelace et al. (1986) and Lovelace,
Wang & Sulkanen (1987) proposed a general theory for axisym-
metric flows around a black hole in a cylindrical (r, φ, z) coordinate
system and showed that, in the presence of a magnetic field, the
magnetic force can affect the thickness of the accretion disc. Wang,
Sulkanen & Lovelace (1990) considered a viscous–resistive accre-
tion disc in the presence of a global magnetic field. By using the
thin disc approximation, they have concluded that, in odd symmetry
about the equatorial plane, z = 0 (Bz(r, z) = −Bz(r, −z), Br(r, z) =
Br(r, −z), Bφ(r, z) = Bφ(r, −z); note that here Bφ is even sym-
metry), the vertical component of magnetic force is opposed by
gravity but in the case with even symmetry the magnetic force is a
compressive force like gravity. Nevertheless, if the magnetic field is
purely toroidal with an odd configuration, the magnetic force will
compress the disc (see Campbell & Heptinstall 1998; Liffman &
Bardou 1999, for details).

The thickness of an advection-dominated disc is not well defined.
There is just a rough approximation used in the α-prescription (i.e.
H/r = cs/vK, where cs is the sound velocity at the disc equator
and vK is the Keplerian velocity), in height-integrated cylindrical
coordinate solutions or even in the spherical solutions presented by
Narayan & Yi (1995a , hereafter NY95). Overcoming this problem,
Gu et al. (2009, hereafter GXLL09) introduced a somewhat different

way to estimate the flow thickness. They did not give the value of
f = Qadv/Qvis (here, Qadv is the advective cooling rate per unit
area and Qvis the viscous heating rate per unit area) in advance, but
instead considered accretion flows with free surfaces. The boundary
condition is set to p = 0, which is usually adopted in the literature
(e.g. Kato et al. 2008). Thus the thickness of the disc �θ makes
sense and they calculated f to see how it relates to �θ .

In this article we aim to estimate the thickness of an advection-
dominated disc in the presence of a purely toroidal magnetic field
using the GXLL09 method.

The outline of this article is as follows. In Section 2 we present the
basic magnetohydrodynamics equations, which include the induc-
tion equation with non-constant magnetic resistivity. Self-similar
equations are investigated in Section 3. In Section 4, we explain
a new view of the advection parameter. The results of the numer-
ical solution and a derivation of the disc thickness are presented
in Section 5 and, finally, discussions and conclusions are given in
Section 6.

2 BASI C EQUATI ONS

In this article, we consider a steady-state (∂/∂t = 0) axisymmetric
(∂/∂φ = 0) hot accretion flow. Spherical coordinates are used (r, θ ,
φ). The gravitational field emanates only from a central point mass
and we neglect self-gravity of the accreting flow. We also neglect
relativistic effects. The basic equations of the system are composed
of the continuity, momentum and induction equations. The equation
of continuity is

∂ρ

∂t
+ ∇ · (ρV ) = 0, (1)

the equation of momentum conservation is

ρ
DV
Dt

= −∇p − ρ∇
 + Fν + 1

c
( J × B), (2)

where D/Dt = ∂/∂t + V · ∇, and, finally, Faraday’s law of induc-
tion becomes

∂B
∂t

= ∇ × (V × B) − ∇ × (η∇ × B), (3)

where ρ, p, V and B are the density of the gas, the pres-
sure, the time-averaged flow velocity and the time-averaged mag-
netic field, respectively. These equations are supplemented by the
Maxwell equations, ∇ × B = 4π J/c, and by ∇ · B = 0. Here, η

is the magnetic diffusivity, Fν = −∇ · T ν is the viscous force,
with T ν

jk = −ρν(∂vj /∂xk + ∂vK/∂xj − (2/3)δjk∇ · V ) (in Carte-
sian coordinates), and ν is the kinematic viscosity. We assume that
only the rφ-component of the viscous stress tensor, Trφ , is impor-
tant. In spherical coordinates, continuity and the three components
of the momentum equation can be written respectively as

1

r2

∂

∂r
(r2ρvr ) + 1

r sin θ

∂

∂θ
(sin θρvθ ) = 0, (4)

vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− 1

r
(v2

θ + v2
φ)

= −GM

r2
− 1

ρ

∂p

∂r
+ 1

cρ
(JθBφ − JφBθ ), (5)

vr

r

∂(rvθ )

∂r
+ vθ

r

∂vθ

∂θ
− v2

φ

r
cot θ

= − 1

rρ

∂p

∂θ
+ 1

rcρ
(JφBr − JrBφ), (6)
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vr

r

∂(rvφ)

∂r
+ vθ

r sin θ

∂

∂θ
(sin θvφ)

= 1

ρr3

∂

∂r
(r3Trφ) + 1

cρ
(JrBθ − JθBr ), (7)

where vr, vθ and vφ are the three velocity components. Here the
induction equation is considered.

We suppose a toroidal magnetic field B = Bφφ̂ (which satis-
fies ∇ · B = 0 with the axisymmetric assumption); therefore, the
components of current density, J , become

Jr = c

4πr

1

sin θ

∂

∂θ
(sin θBφ), Jθ = − c

4πr

∂

∂r
(rBφ), Jφ = 0.

NY95 assumed vθ = 0, which implies that no accretion material
can evaporate as outflow from the discs. Here, following NY95 for
simplicity, we adopt vθ = 0 because at this stage we are interested
in studying possible effects of the B field on the vertical structure
of the discs although, in a more realistic picture, vθ �= 0 should be
taken into account (Xue & Wang 2005). By substituting the current
density relation, J, the magnetic field B = Bφφ̂ and also vθ = 0,
the continuity and momentum equations (4)–(7) reduce to

1

r2

∂

∂r
(r2ρvr ) = 0, (8)

vr

∂vr

∂r
− v2

φ

r
= −GM

r2
− 1

ρ

∂p

∂r
− 1

4πρ

Bφ

r

∂

∂r
(rBφ), (9)

v2
φ cot θ = 1

ρ

∂p

∂θ
+ 1

4πρ

[
Bφ

sin θ

∂

∂θ
(sin θBφ)

]
, (10)

vr

∂(rvφ)

∂r
= 1

ρr2

∂

∂r
(r3Trφ). (11)

The rφ component of the viscous stress tensor is defined by Trφ =
ρνr∂(vφ/r)/∂r . For the viscosity, ν, we will use the α-prescription
so ν = αc2

s r/vK, where α is the constant viscosity parameter, cs

is the sound speed defined as c2
s = p/ρ, and v2

K = GM/r is the
Keplerian velocity.

The induction equation has three components; only its azimuthal
component remains, since a toroidal magnetic field configuration is
assumed. Since we assume steady flows, then ∂Bφ/∂t = 0, so we
have

1

r

∂

∂r

[
η

∂(rBφ)

∂r
− rvrBφ

]
+ 1

r2

∂

∂θ

[
η

sin θ

∂

∂θ
(sin θBφ)

]
= 0. (12)

It is clear that the above equations are nonlinear and we are not able
to solve them analytically. Therefore, it is useful to have a simple
means to investigate the properties of solutions.

Self-similar methods have been very useful in astrophysics and
are widely adopted in the astrophysical literature, since the simi-
larity assumption reduces the complexity of the partial differential
equations. This technique was applied by Narayan & Yi (1994) in
order to solve the system of height-averaged equations of a hot
accreting flow. They then investigated numerically the range of va-
lidity of their self-similar solutions. Their results show that over a
range of intermediate radii the numerical solution is close to the self-
similar form, e.g. in a typical case this range is 10rin < r < 10−2rout,
where rin is the inner edge and rout is the outer edge of the disc.

We will present self-similar solutions of these equations in the
next section.

3 SELF-SIMILAR SOLUTIONS

The main equations are a set of coupled differential equations and
thus they require a numerical solution. However, there is a powerful

technique to give an approximate solution. This powerful technique
is the self-similar method, a dimensional analysis and scaling law,
which is a common tool in astrophysical fluid mechanics. Similar to
NY95, we assume self-similarity in the radial direction so all types
of velocities are proportional to r−1/2 and for density ρ ∝ r−3/2

and therefore the gas and magnetic pressure must be (p,B2
φ) ∝

r−5/2. If we adopt the above self-similar scaling, in fact, the radial
dependences of all physical quantities are cancelled out and a set of
equations remains in which all quantities just are a function of θ .
If we put these self-similar relations in the continuity equation, no
new result is achieved, but the other equations become

v2
φ = v2

K − 1

2
v2

r − 5

2
c2

s − 1

4
c2

A, (13)

v2
φ cot θ = 1

ρ

∂
(
ρc2

s

)
∂θ

+ c2
A cot θ + 1

2ρ

∂
(
ρc2

A

)
∂θ

, (14)

vr = −3

2

αc2
s

vK
. (15)

In the above three equations, the gas pressure was replaced
by 4πρc2

s and the square Alfvén velocity, c2
A, was used in-

stead of B2
φ/4πρ. Now, in order for terms including B2

φ and
BφdBφ(= dB2

φ/2) in equation (12) to appear, we first multiply by
Bφ and then use self-similar relations, yielding

3

4

(
1

4
η + rvr

)
c2

A + ∂η

∂θ

(
v2

φ cot θ − 1

ρ

∂
(
ρc2

s

)
∂θ

)

+ η

[
∂v2

φ

∂θ
cot θ − v2

φ

sin2 θ
− ∂

∂θ

(
1

ρ

∂
(
ρc2

s

)
∂θ

)]

− η

2

(
v2

φ cot θ − 1

ρ

∂
(
ρc2

s

)
∂θ

) (
1

c2
A

∂c2
A

∂θ
− 1

ρ

∂ρ

∂θ

)
= 0. (16)

There are six unknown quantities: ρ, vr , vφ, c2
s , c

2
A and η in four

equations (13)–(16), so we need two extra equations. One of them
is a relation between pressure and density and the other is a relation
for the resistivity. We assume a polytropic relation, p = kργ , in
the vertical direction (or equvalently meridional direction), where
γ is the ratio of specific heats. This is often adopted in vertically
integrated models of geometrically slim discs (e.g. Kato et al. 2008).
We admit that the polytropic assumption is a simple way to close
the system and enable us to calculate the dynamical quantities. We
can therefore obtain

1

ρ

∂ρ

∂θ
= 1

(γ − 1)c2
s

∂c2
s

∂θ
. (17)

As mentioned above, in order to complete the problem we need to
adopt a physical assumption for the magnetic diffusivity. We assume
that the magnetic diffusivity is due to turbulence in the accretion
flow and it is reasonable to express this parameter in analogy to
the α-prescription of Shakura & Sunyaev (1973) for the turbulent
viscosity, as follows (Bisnovatyi-Kogan & Ruzmaikin 1976):

η = η0r
c2

s

vK
. (18)

Now the system is completed and can be solved numerically with
proper boundary conditions. We assume that the structure of the disc
is symmetric about the equatorial plane, and thus we have

at θ = π

2
:

∂c2
s

∂θ
= 0,

∂c2
A

∂θ
= 0.
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We set ρ(θ = π/2) = 1 in order to obtain a unique solution by
imposing a characteristic scale density at θ = π/2. We need to adopt
proper values for c2

s and c2
A in the equatorial plane. We expect that the

disc temperature is maximum in the equator of the disc and therefore
c2

s (θ = π/2) = c2
s0 must be maximum there; it will decrease towards

the disc surface. By integrating ∂c2
s /∂θ with respect to θ , c2

s will
decrease to reach zero at angle θ s for a given c2

s0. We have different
θ s for different c2

s0. Thus, as we expect hotter discs, bigger values
of c2

s0 are thick vertically. We need to fix c2
A at our inner boundary,

θ = π/2. Now we may use the familiar relation between gas pres-
sure and magnetic pressure, i.e.

β = 2
pm

pg
= 2

B2
φ/8π

p
= c2

A

c2
s

. (19)

We must emphasize that in this study β is a function of θ , since
c2

A and c2
s are a function of θ , while usually β is assumed constant

with respect to θ (Akizuki & Fukue 2006; Abbassi et al. 2008). In
the Appendix, we show that B2

φ is minimum at θ = π/2. Since c2
s ,

B2
φ and automatically c2

A have opposite behaviour to θ , c2
A increases

from the equator towards the surface. Using the definition of β, we
are able to choose reasonable boundary conditions for c2

A and c2
s .

If we consider equation (13) in θ = π/2 using the definition of β,
(19) and equation (15), we have

v2
φ0 = v2

K − 9α2

8v2
K

c4
s0 −

(
5

2
+ β0

4

)
c2

s0, (20)

where β0 = β(θ = π/2) and zero index in the other quantities im-
plies their value in the equatorial plane. It can be deduced that the
admissible maximum value of v2

φ0 is v2
K. On the other hand, because

v2
φ0 must be positive, the right-hand side of equation (20) must also

be positive. Hence we can determine an acceptable interval value
of c2

s0 for given β0, e.g. 0 < c2
s0 < 0.38v2

K for the case α = 0.1,
β0 = 0.3, therefore c2

A0 = 0.3c2
s0 is determined; however, as we see,

the initial values of both velocities are still arbitrary with just an
upper limitation. Now, with the proper boundary conditions, we are
able to solve the main equations to deduce the vertical behaviour
of the velocities and we can then determine how the magnetic field
affects the disc thickness.

4 A DV E C T I O N PA R A M E T E R

In the previous section, without applying an energy equation, we
determined velocities and pressures. In order to complete the equa-
tion it needs to have an energy equation. In this section we will focus
on the energy transport equation. In principle, the general energy
equation should be solved and then the advection parameter is ob-
tained as a variable, as done by Manmoto, Mineshige & Kusunose
(1997) for ADAFs and by Abramowicz et al. (1988) and Watarai
et al. (2000) for slim discs. Following Narayan & Yi (1994), we
adopt an advection form for the energy equation (Qadv = Q+ −
Q− = fQ+), where Q+, Q− and Qadv are the heating rate per unit
area, the cooling rate per unit area and the advecting cooling rate
per unit area, respectively. Here we introduce the advecting heating
rate per unit volume as

qadv = ρT
Ds

Dt
= ρ

De

Dt
− p

ρ

Dρ

Dt
. (21)

Because we adopt steady-state, axisymmetric flows with vθ = 0,
we have D/Dt = V · ∇ = vr∂/∂r . Thus, qadv becomes

qadv = ρvr

γ − 1

∂c2
s

∂r
− c2

s vr

∂ρ

∂r
. (22)

On the other hand, we know qadv = q+ − q−, where q+ =
qvis + qB is the dissipation rate per unit value. qvis =ηr2(d�/dr)2 and
qB = J2/σ are the generated energy due to viscosity and magnetic
resistivity, respectively, where σ is the conductivity of plasma. Here,
instead, we use diffusivity, η = c2/4πσ . Further, in the self-similar
formalism, the above quantities are simplified as

qvis = 9α

4

pv2
φ

rvK
, (23)

qB = η

4π
|∇ × B|2 = η

4πr2

[(
1

sin θ

∂

∂θ
(sin θBφ)

)2

+ B2
φ

16

]
. (24)

Also, q− = qrad implies energy loss through radiative cooling and
we can write

qadv = q+ − q− = f ′q+, (25)

where f ′ is the advection parameter, which that shows what fraction
of generated energy has remained in the disc at a definite polar
angle; hence,

qadv = − 5 − 3γ

2(γ − 1)

pvr

r
. (26)

The advection parameter f shows the whole energy trapping the
entire disc thickness: it is expressed as f = Qadv/(Qvis + QB), where
the latter three quantities can be achieved by vertical integration
over qvis, qadv and qB:

Qadv =
∫ π−θs

θs

qadvr sin θ dθ, (27)

Qvis =
∫ π−θs

θs

qvisr sin θ dθ, (28)

QB =
∫ π−θs

θs

qBr sin θ dθ. (29)

In our system, we have seven physical quantities varying with
polar angle: vr, vφ , p, ρ, cs, Bφ and η. To solve an equation in these
quantities, we need the seven equations (13)–(19). Using proper
boundary conditions, which are introduced in the previous section,
and integrating with respect to θ , we can obtain the vertical distri-
bution of the above seven quantities numerically.

5 R ESULTS

5.1 Vertical structure

5.1.1 Notification regarding non-magnetic solutions

In this section we will study the variation of dynamical quantities
with the polar angle θ for a reasonable value of the squared sound
velocity at the equatorial plane, c2

s0 (or equivalently the gas temper-
ature). Before that, however, we are interested in reviewing some
details of the non-magnetic case. According to the original work of
GXLL09, one boundary condition is required for solving equations,
which was set to be cs = 0 at the surface of disc, θ = θ s. We are then
able to find a solution for almost all given disc half-opening an-
gles, �θ [= π/2 − θs], but some of those approaching nearly spher-
ical configurations are not acceptable because of the limitation on
the advection parameter, f, which must be less than unity. Let us
consider equation (10) of GXLL09 and deduce v2

φ from it. Ne-
glecting radial velocity in comparison with other velocities, we can
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conclude an approximate range for the value of the squared rota-
tional velocity:

v2
φ ≈ v2

K − 5

2
c2

s .

From this equation we can determine an upper limit for c2
s : c2

smax ≈
0.4v2

K, which corresponds to v2
φ ≈ 0. Thus there is an upper limit

for gas pressure according to p = ρc2
s , so the maximum pressure

at θ = π/2 becomes pmax ≈ 0.4ρ0v
2
K. With an acceptable initial

value of c2
s0 between 0 and 0.4v2

K, we can start integrating from
the equatorial plane instead of the surface of the disc (which was
used by GXLL09); we can then conclude that the maximum disc
half-thickness belongs to a maximum value of c2

s0. In this article,
we follow this approach and, as we will see in the next subsection,
starting integration from the other boundary, means the disc surface,
is not applicable in this work at all.

5.1.2 Solutions for the magnetic case

Using the main equations and their boundary conditions that were
introduced in last sections, equations (13)–(19), we can numerically
derive the θ -direction of the distribution of physical quantities for a
given radius. In our calculation we set γ = 3/2, α = 0.1, η0 = 0.1
and c2

s0 = 0.1v2
K and the behaviour of the solution is investigated for

different values of β0( = 2pm/pg) (zero index means at θ = π/2).
For comparison, we have presented the non-magnetic quantities as
black lines in Figs 1, 2 and 3. As Figs 1–3 illustrate, the thickness
of the disc decreases on increasing β0. They show that when the
magnetic field strength increases by adding β0, the half-thickness
of the discs will decrease considerably when we use identical initial

Figure 1. Self-similar solutions corresponding to γ = 3/2, α = 0.1,
η0 = 0.1 and several values of β0. The black line shows the solution in
the non-magnetic situation: dashed, dotted and dot–dashed lines refer to
β0 = 0.3, 0.6, 0.9, while the solid line shows the corresponding quantity in
the absence of magnetic field. In this figure, vK is the Keplerian velocity.

Figure 2. Self-similar solutions corresponding to γ = 3/2, α = 0.1,
η0 = 0.1 and several values of η0. The dashed, dotted and dot–dashed
lines refer to β0 = 0.3, 0.6, 0.9, and the solid line shows the corresponding
quantity in the absence of magnetic field. In this figure, the fiducial pressure
p0 is determined by p0 = ρ0v

2
K.

Figure 3. Variation of two forms of the dissipated energy (qvis, qB) per unit
volume of plasma, with γ = 3/2, α = 0.1, η0 = 0.1 and several values of
β0. The dashed, dotted and dot–dashed lines refer to β0 = 0.3, 0.6, 0.9 and
the solid line shows the energy dissipated by viscosity in the non-magnetic
flow. In this figure, the fiducial dissipated energy is q0 = p0v

2
K/r , where

p0 = ρ0v
2
K.

conditions (the same sound speed at θ = π/2 and consequently the
same temperature at the mid-plane). We therefore conclude that the
non-magnetized disc has the maximum thickness. The top panels
of Fig. 1 show the variations of cs and cA for some values of β0.
Obviously, they have opposite behaviour to θ , as mentioned in
section 3. The top left panel of Fig. 1 displays the sound velocity,
which does not change significantly near the mid-plane but at the
edge of the disc it decreases with increasing β0 until attaining zero
in the non-magnetic flow. From the top right panel of Fig. 1, we
see that the Alfvén velocity cA(θ ), is minimum at θ = π/2 and is
increasing slowly except near the surface. As this plot clearly shows,
β0 effects act mainly near the edge.

In this case, the disc surface layers are non-turbulent and thus
highly conducting (or non-diffusive) because the MRI is suppressed
high in this situation where the magnetic and radiation pressures are
larger than the thermal pressure (Lovelace, Rothstein & Bisnovatyi-
Kogan 2009). The physics of the boundary layer of the disc and its
corresponding physical phenomena are not the focus of this article
and should be checked in future investigations. The bottom left
panel shows the variation of the radial velocity, vr(θ ), with respect
to the polar angle θ for the same given parameters. As we expect,
for ADAFs the radial velocity is sub-Keplerian and absolute values
of the radial velocity decrease with the vertical thickness of the
disc, reaching zero at the surface of the disc. When the magnetic
parameter, β0, becomes larger, the absolute value of vr decreases
for a given polar angle θ and the magnitude of this reduction is
more significant near the edge of the disc. It emphasizes that the
maximum magnitude of radial velocity is in the equatorial region
and towards the surface it tends to become zero.

The rotational velocity is shown in the bottom right panel of
Fig. 1. It can be clearly seen that vφ is nearly independent of θ

and even β0 in the middle region of the disc, but near the edge it
changes rapidly. For the non-magnetic case we can see that the ro-
tational velocity behaves as a monotonic function of θ , such that it
is monotonically increasing from θ = π/2 to θ = π/2 ± �θ . How-
ever, when the magnetic field plays an important role the rotational
velocity varies differently. The magnetic field divides the disc into
the two distinct regions: one region is around the mid-plane, where
the rotational velocity changes slowly, while the other is near the
surface, where vφ is maximum at first and then decreases very fast
and finally reaches zero at the surface. With decreasing β0 the sur-
face layer, �θ s, becomes thinner so for the limit of β0 = 0 it tends
to �θ s = 0. However, this happens at the surface boundary, where
the conditions are so different from the inner region that we are not
able to have an accurate solution there. Nevertheless, a mass point
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rotates more slowly in a magnetized disc because it has experienced
an extra magnetic force. As we expected, the radial and rotation ve-
locities are both sub-Keplerian. Fig. 2 shows the gas and magnetic
pressures scaled with a fiducial pressure, p0 = ρ0v

2
K. The gas pres-

sure, as we expected, behaves the same as the absolute value of the
radial velocity. It peaks at θ = π/2 and in a weak magnetic field
is almost constant, but magnetic pressure, i.e. pm in the right panel
of Fig. 2, is minimum at the equatorial plane and becomes larger
towards the surface. It shifts up when the magnetic parameter β0

increases.
Fig. 3 shows variations of the scaled viscous and magnetic energy

dissipation in two separate panels for the same parameters (γ = 3/2,
α = 0.1, η0 = 0.1). It clearly shows that when the toroidal magnetic
field becomes stronger, viscous dissipation decreases. However,
according to the right panel of this figure, the heating process from
resistivity is greater in a stronger magnetic field. Moreover, the
maximum value of qB, which occurs at the surface of the disc, is
almost one order of magnitude less than the viscosity dissipation at
the mid-plane, meaning qBmax ≈ 0.1qvismax . Although the resistive
dissipation can not have much effect on the advection parameter, it
can cause f ′ to change significantly in the outer parts of the disc.

5.1.3 The role of resistivity

One of the prominent input parameters in our system is the magnetic
diffusivity, η0, the possible effects of which are explored in Figs 4–
6. We assume that γ = 3/2, α = 0.1 and β0 = 0.5. The solid, dashed
and dotted lines correspond to η0 = 0.05, 0.1 and 0.2 respectively.
Fig. 4 displays the sound speed cs (top, left) and rotational velocity
vφ(bottom, right), normalized by the Keplerian velocity. They are

Figure 4. Self-similar solutions corresponding to γ = 3/2, α = 0.1,
β0 = 0.1 and several values of η0. The solid, dashed and dotted lines
refer to η0 = 0.05, 0.1 and 0.2. vK is the Keplerian velocity.

Figure 5. The profiles of the gas and magnetic pressure corresponding to
γ = 3/2, α = 0.1, β0 = 0.5 and several values of η0. The solid, dashed
and dotted lines refer to η0 = 0.05, 0.1 and 0.2. In this figure, the fiducial
pressure p0 is determined by p0 = ρ0v

2
K.

Figure 6. Variation of two forms of the dissipated energy (qvis, qB) per unit
volume of plasma, corresponding to γ = 3/2, α = 0.1, β0 = 0.5 and several
values of η0. The solid, dashed and dotted lines refer to η0 = 0.05, 0.1 and
0.2. In this figure, the particular dissipated energy is q0 = p0v

2
K/r , where

p0 = ρ0v
2
K.

constant near the mid-plane but begin to change towards the surface.
Radial velocity vr is shown in the bottom left panel of Fig. 4 at
a fixed equator temperature but for different values of η0; it has a
minimum value at θ = π/2 and η0 affects the radial velocity mainly
near the edge of the disc. As is clearly shown, for higher values of
the resistivity parameter the total velocity increases in the disc. In
contrast, for a given θ an increase in η0 leads to a decrease in Alfvén
velocity cA (top, right).

Fig. 5 illustrates the effects of the resistivity parameter on the gas
and magnetic pressure. The left panel shows that for higher values
of η0 the gas pressure rises in the outer regions but the magnetic
pressure that is shown in the right of Fig. 5 diminishes. Finally in
Fig. 6 we can see how the magnetic diffusivity affects the two heat-
ing energy sources, qvis (left) and qB (right). The magnetic resistivity
affects qB explicitly, but it affects qvis implicitly throughout the dy-
namical quantities. According to this figure, viscosity dissipation is
an ascending function of η0 in the outer regions. In spite of this, qB

is proportional to η0: it falls off as η0 becomes larger and for small
values of η0 it tends to be constant along the θ direction. As we can
see, Ohmic heating is much smaller than viscous heating so we can
ignore the role of the magnetic field in the energy equation.

5.2 Thickness of the flow

In this section we will explore how the physical input parameters of
the system affect the thickness of the flow. At first, we will review the
approach that is usually used for α discs and then explain the special
method applied by GXLL09, with more details for the magnetized
case.

5.2.1 The usual way for estimating of the flow thickness

At first we consider the usual approximation for the thickness of
flow, which is based on the α-prescription, meaning that ν = αcsH
where H = cs/�K or H/r = cs/vK and H is the half-thickness of
the disc. This is the result of hydrostatic equilibrium; it means the
gravitational force and the pressure force are balanced with each
other in the vertical direction:

1

ρ

∂p

∂z
+ ∂ψ

∂z
= 0, (30)

where ψ is the gravitational potential in cylindrical coordinates
and can be written as ψ = −GM/(r2 + z2)1/2. Now, using some
approximations we can estimate the half-thickness of disc in this
way: ∂p/∂z ≈ −p0/H, ρ ≈ ρ0 (the zero index shows the value
of a quantity at the equatorial plane), ∂ψ/∂z ≈ GMH/r3 = �2

KH
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and the sound velocity is cs0 = (p0/ρ0)1/2. As we mentioned in
Section 5.1.1, the squared sound velocity cannot exceed more than
0.4v2

K, so H/r ≤ √
0.4 = 0.63 in the non-magnetic flow.

In the presence of a toroidal magnetic field, the magnetic force is
added to the vertical component of the motion equation:

∂p

∂z
+ Bφ

4π

∂Bφ

∂z
+ ρ

∂ψ

∂z
= 0. (31)

We can use the magnetic pressure, pm = B2
φ/8π, which is usually

(e.g. Narayan & Yi 1995b) assumed to be proportional to the gas
pressure p, i.e. pm = βp, so with the previous assumptions one
can easily achieve H/r = (1 + β)1/2cs/vK. Therefore the half-
thickness of the disc increases when we add the influence of the
magnetic field on the structure of the accretion flow. We will show
that this conclusion is not valid if we take into account the induction
equation. In the following subsection, we study several details that
can affect the thickness of the disc in the presence of a magnetic
field. For simplicity, as we noted in the Introduction, in this study a
toroidal configuration for the magnetic field is assumed.

5.2.2 The thickness of the magnetized flow

As we noted in the Introduction, the aim of this article is to revisit
the vertical structure of hot accretion flows when the magnetic field
has an important role. Also, we expand the equations in spherical
coordinates. So the study of the vertical structure in magnetized
cases is quite complicated and different from the non-magnetized
case, since the induction equation should be taken into account.

As mentioned in Section 5.1.1, the solution shows that the sound
velocity decreases from the mid-plane towards the surface and be-
comes zero at the surface of a non-magnetized disc. However, in
the presence of a magnetic field, we first need to consider equa-
tion (13):

v2
φ = v2

K − 1

2
v2

r − 5

2
c2

s − 1

4
c2

A, (32)

so the rotational velocity depends not only on cs but also on cA.
Here, the Alfvén velocity has a crucial role in determination of the
disc thickness. As we saw in the previous section in Figs 1 and 4,
the sound and Alfvén velocities have different behaviours; therefore
vφ can have a non-monotonic behaviour from the equatorial plane
towards the edge of the flow. At first, it increases because of decreas-
ing c2

s , but c2
A is still too small to affect v2

φ considerably. Somewhere
between the mid-plane and the surface, c2

A becomes large enough
(comparable with c2

s ) and makes the rotational velocity start to re-
duce until it is zero at the disc surface. Thus, we must consider the
influences associated with the Alfvén velocity’s behaviour.

Although there are strict limitations on what can be discussed
regarding the numerical solutions, we can consider a special point
to help us to determine the general behaviour of the solution. The
symmetry assumption about the equatorial plane hints that this point
is θ = π/2. There are two possible symmetry configurations for the
toroidal magnetic field with respect to the equatorial plane, even
and odd symmetry. Nevertheless, both of them lead to the same
result, because B2

φ is important here and it is an even function and
also minimum for both symmetries.

The behaviour of the magnetic field inside the disc depends on
∂2B2

φ/∂θ2 = �B2
φ at the equatorial plane. From the induction equa-

tion (see Appendix), we can obtain

∂2B2
φ

∂θ2

∣∣∣∣∣
90◦

=
(

13

8
+ 9α

4η0

)
B2

φ0 > 0. (33)

Figure 7. The disc’s half-opening angle, �θ , as a function of the magnetic
field strength parameter at the equatorial plane, β0, for γ = 3/2, α = 0.1,
η0 = 0.1 and various values of the equatorial square sound velocity; the solid,
dashed, dotted and dot–dashed lines represent c2

s0/v
2
K = 0.05, 0.10, 0.15

and 0.20.

Figure 8. The disc half-opening angle, �θ , as a function of the resistivity
parameter, η0, for γ = 3/2, α = 0.1, β0 = 0.5 and various values of the
equatorial square sound velocity; the solid, dashed, dotted and dot–dashed
lines represent c2

s0/v
2
K = 0.05, 0.10, 0.15 and 0.20.

The above relation indicates that B2
φ is minimum at the mid-plane.

On the other hand, if �B2
φ becomes larger, B2

φ will increase more
rapidly and make the disc thiner. According to the last relation, �B2

φ

is directly proportional to B2
φ0 = 8πβ0c

2
s0 and depends directly on

α but inversely on η0.
Having an inverse relationship between the disc thickness and

�B2
φ , an increase in β0 or α leads to a decrease in the disc thickness,

but it increases with increasing η0.
We can see the effects of β0 and η0 in Figs 7 and 8. As we expect

before, Fig. 7 shows that by increasing the β0 parameter, the disc
thickness decreases and this effect is stronger for a high temperature
of the flow. However, we can say that the magnetic force in the
vertical direction compresses the disc. Liffman & Bardou (1999)
and Campbell & Heptinstall (1998) also noted compression of disc
in the height direction through the effect of a toroidal magnetic
field. From Fig. 8, it is seen that the magnetic resistivity has a direct
effect on the thickness of the flow: when it is increased, the disc
thickness also increases.

5.3 Advective parameter

As we mentioned before, in this work, to determine the advective pa-
rameter we first solve the system of differential equations and, after
finding dynamical quantities in the fluid, we can specify f accord-
ing to equations (27), (28) and (29) and the relation f = Qadv/(Qvis

+ QB). It is seen that in trhe case of a magnetic field that tends
to compress the fluid, much more advecting energy can be saved
in a disc with lower thickness, in comparison with non-magnetic
flow. For example, we can see (for γ = 4/3) that f = 0.1 in a
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Figure 9. Variation of the advection factor, f, with the disc half-opening
angle, �θ , for γ = 3/2, α = 0.1, η0 = 0.1 and various value of β0.

Figure 10. Variation of the advection factor, f, with the disc half-opening
angle, �θ , for γ = 3/2, α = 0.1, β0 = 0.1 and various value of η0.

non-magnetic flow with �θ = 0.4π = 72◦, while the same
f , (f = 0.1) is achieved in a thinner magnetized flow with �θ =
0.33π = 59.4◦ and β0 = 0.1. It helps somewhat that the previous
suggestion of slim discs that are neither thin nor thick retains its
validity.

In Fig. 9, f is plotted as a function of β0 for a fixed value of cs0.
It shows that much more energy can be advected in the stronger
magnetic field that exists in a thinner disc; in a hotter disc (i.e. with
greater sound velocity), advection will be intensified.

The profile of the energy advection factor, f, for various values
of magnetic resistivity parameter η0 is presented as a function of
the disc half-opening angle in Fig. 10. It demonstrates that energy
advection decreases inversely with η0 for fixed disc thickness.

5.4 Bernoulli parameter

In stationary, inviscid flows with no energy sources or losses, the
quantity (Abramowicz, Lasota & Igumenshchev 2000)

Be0 = W + 1

2
V 2 + 
 (34)

is constant along each individual streamline but, in general, is dif-
ferent for different streamlines. This quantity is called the Bernoulli
constant. Here, W is the specific enthalpy, V is the velocity (all three
components included) and 
 is the gravitational potential:

Be0 = 1

2

(
v2

r + v2
φ

) − GM

r
+ γ

γ − 1

p

ρ
. (35)

Obviously, a particular streamline may end up at infinity only if
Be0 > 0 along it. The existence of streamlines with Be0 > 0 is there-
fore a necessary condition for outflows in stationary inviscid flows
with no energy sources or losses and Be0 < 0 for all streamlines is a
sufficient condition for the absence of outflows. However, Be0 > 0
is not a sufficient condition for outflows. In all viscous flows, Be0 is
not constant along individual streamlines. For self-similar solutions,

Figure 11. Bernoulli parameter with respect to θ for different value of β0.
The black line corresponds to β0 = 0, the dashed line to β0 = 0.3, the dotted
line is for β0 = 0.6 and the dot–dashed line is for β0 = 0.9 (c2

s0 = 0.1v2
K is

the boundary condition at θ = π/2 and γ = 3/2).

Be0 is a function of r−1 so it cannot be a constant value at all. Hence,
the so-called ‘Bernoulli parameter’ is introduced: B̃e0 = Be0/V

2
K.

In the presence of a magnetic field, an extra term needs to be
added to the Bernoulli function (Fukue 1990). Since the Bernoulli
equation is based on energy conservation along each streamline, in
the magnetic case the total energy of the fluid is included in the
magnetic energy in addition to the other previous forms of energies
in equation (35). Thus, the Bernoulli function of magnetized flow
becomes

Be(r, θ ) = 1

2

(
v2

r + v2
φ

) − GM

r
+ γ

γ − 1

p

ρ
+ B2

φ

4πρ
. (36)

For the self-similar model it is simplified as Be(r, θ ) = Be(θ )v2
K:

Be(θ ) = 1

2

[
v2

r (θ ) + v2
φ(θ )

] − 1 + γ

γ − 1
c2

s (θ ) + c2
A(θ ). (37)

As we see from Fig. 11, without magnetic field the Bernoulli
function in ADAFs with low viscosity is negative, but in the presence
of magnetic field it can achieve a positive value close to the surface.
This means that GXLL09 solutions without magnetic field cannot
describe the existence of wind and outflow.

6 D I S C U S S I O N A N D C O N C L U S I O N

The vertical structure of a hot accretion flow is still an open problem.
Hence in this article, following the work of GXLL09, we have
considered a two-dimensional axisymmetric advection-dominated
accretion flow in spherical coordinates with a toroidal magnetic
field. We have concentrated on studying possible effects of the
magnetic field and its corresponding resistivity on the radial and
vertical accretion structure. With a self-similar solution along the
radial direction and the proper boundary conditions using reflection
symmetry in the equatorial plane of the disc, we have constructed
the structure of the disc along the θ direction explicitly.

In this article we used the induction equation for a resistive flow in
order to complete the system of basic equations of fluid dynamics.
We assumed β[= 2 pm

pg
] to be a function of θ , while in previous

articles (Akizuki & Fukue 2006; Abbassi et al. 2008, 2010) it was
adopted as a constant. As a result, we could find new solutions for
the dynamical quantities of ADAFs in the presence of a toroidal
magnetic field, Bφ . The stationary solutions we found indicate that
even a weak toroidal field at the mid-plane can grow significantly
near the edge and cause a significant change in the surface layers.
Moreover, the main purpose of this article is to investigate how the
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vertical thickness of the disc changes in the presence of a toroidal
magnetic field, Bφ . We considered an even configuration of Bφ and
found that it has a squeezing effect on the disc structure, where the
disc thickness is reduced compared with the non-magnetic case. In
fact, the squeezing effect of Bφ counterbalances the thickening of the
disc generated by advection (Shadmehri & Khajenabi 2005). Our
conclusions are opposite to those of Wang et al. (1990) (for the odd
symmetry case) because the envisioned models are different in the
two cases. Wang et al. assume a relatively thin disc (H < r), whereas
we consider a thick disc, H ∼ R. The solution presented in this article
is in good agreement with that presented by Mosallanezhad, Abbassi
& Beiranvand (2014), for which they used the same physical method
and assumptions. Their solutions indicate that the outflow region,
where the radial velocity becomes positive at a certain inclination
angle θ0, always exists. They have shown that a stronger toroidal
magnetic field leads to a smaller inclination angle, which means a
thinner disc.

The complex behaviour of the flow depends on the input parame-
ters of the problem and is explored in detail in this article. However,
a complete analysis is needed to complete our model, including a
detailed analysis of the edge of the disc. We point out that the accre-
tion outflow solutions are unstable near the outer edge and outside
the accretion flow. Further and more detailed study should be made
of the wind region solution and its interaction with the large-scale
magnetic field. The present results lend strong support to the sug-
gestion that the magnetic field has an important role in the vertical
structure of hot flows and magnetically channelled wind. Also, we
have noted that the diffusion properties of the magnetically domi-
nated corona have never been investigated and it would be good if
these were tested in future investigations.
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APPENDI X A

We seek a proper boundary for c2
A, but before that we need to

investigate the behaviour of c2
A from the equatorial plane towards

disc surface. For this purpose we refer to the induction equation:

∂Bφ

∂t
= 1

r

∂

∂r

[
η

∂

∂r
(rBφ) − rvrBφ

]
+ 1

r2

∂

∂θ

[
η

(
Bφ cot θ + ∂Bφ

∂θ

)]
.

(A1)

We suppose that ∂Bφ/∂t = 0 and then, by multiplying by Bφ/4πρ,
we have (after multiplication and some simplification)

3

8

(
1

2
− 3α

η0

)
c2

s B
2
φ + ∂c2

s

∂θ

(
B2

φ cot θ + 1

2

∂B2
φ

∂θ

)

+ c2
s

⎡⎣− B2
φ

sin θ2
+ 1

2

∂B2
φ

∂θ
cot θ + 1

2

∂2B2
φ

∂θ2
− 1

4B2
φ

(
∂B2

φ

∂θ

)2
⎤⎦= 0.

(A2)

This relation in the equatorial plane (θ = π/2), where ∂/∂θ = 0,
converts to

∂2B2
φ

∂θ2
= 13

8

(
1 + 18α

13η0

)
B2

φ > 0. (A3)

It is therefore obvious that B2
φ must be a minimum in the equator of

the disc.
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