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Abstract. In this paper, we have recalled some of the known stochastic orders
and the shifted version of them, so discussed their relations. Also, we obtained
some applications of proportional hazard rate ordering in reliability. Then we
investigated stochastic comparisons between exponential family distributions
and their mixtures with respect to the usual stochastic order, the hazard rate
order, the reversed hazard rate order and the likelihood ratio order.
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1 Introduction

Stochastic orders have been proven to be very useful in applied probability,
statistics, reliability, operation research, economics and other fields. Vari-
ous types of stochastic orders and associate properties have been developed
rapidly over the years. A lot of research works have done on likelihood ratio,
hazard rate and reversed hazard rate orders due to their properties and appli-
cations in the various sciences, for example hazard rate order is a well-known
and useful tool in reliability theory and reversed hazard rate order is defined
via stochastic comparison of inactivity time. Likelihood ratio order which
is stronger than hazard rate and reversed hazard rate orders, introduced by
Ross (1983). We can refer reader to the papers such as Shanthikumar and Yao
(1986), Muller (1997), Kijima (1998), Chandra and Roy (2001), Gupta and
Nanda (2001), Nanda and Shaked (2001), Kochar et al. (2002), Kayid and
Ahmad (2004), Ahmad et al. (2005) and Shaked and Shanthikumar (2007).
Ramos-Romero and Sordo-Diaz (2001) introduced a new stochastic order be-
tween two absolutely continuous random variables and called it proportional
likelihood ratio (plr) order, which is closely related to the usual likelihood ra-
tio order. The proportional likelihood ratio order can be used to characterize
random variables whose logarithms have log-concave (log-convex) densities.
Many income random variables satisfy this property and they are said to have
the increasing proportional likelihood ratio (IPLR) and decreasing propor-
tional likelihood ratio (DPLR) properties. As an application, they showed
that the IPLR and DPLR properties are sufficient conditions for the Lorenz
ordering of truncated distributions.
Jarrahiferiz et al. (2010) studied some other properties of the proportional
likelihood ratio order, then extended hazard rate and reversed hazard rate or-
ders to proportional state similar to proportional likelihood ratio order called
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them proportional (reversed) hazard rate orders, and studied their properties
and relations.
Shifted stochastic orders that are useful tools for establishing interesting in-
equalities that have been introduced and studied in Nakai (1995) and Brown
and Shanthikumar (1998). Also, they have been touched upon in Belzunce et
al. (2001). Lillo et al. (2001) have been studied in detail four shifted stochas-
tic orders, namely the up likelihood ratio order, the down likelihood ratio
order, the up hazard rate order and the down hazard rate order. They have
compared them and obtained some basic and closure properties of them and
have shown how those can be used for stochastic comparisons of order statis-
tics. Recently, Aboukalam and Kayid (2007) obtained some new results about
shifted hazard and shifted likelihood ratio orders. In this paper we recall the
proportional state of stochastic orders and the shifted version of them and
so obtained some applications of proportional hazard rate order. Also we
studied stochastic comparisons between exponential family distributions and
their mixtures.

2 Preliminaries

Let X and Y be two absolutely continuous random variables with densities f
and g, distribution functions F and G, hazard rate functions rF and rG and
reversed hazard rate functions r̃F and r̃G respectively, each with an interval
support. Denote by lX the left endpoint of the support of X, and by uX the
right endpoint of the support of X. Similarly, define lY and uY for Y . The
values lX , uX , lY and uY may be infinite (for any a > 0 we define a

0 = ∞).
Also, let λ be any positive constant smaller than 1.

Definition 2.1 (1) We say X is smaller than Y in the usual stochastic order
( X ≤st Y ), if P (X > x) ≤ P (Y > x) ∀x.
(2) X is said to be smaller than Y in the likelihood ratio order ( X ≤lr Y ),

if g(x)
f(x) increases over the union of the supports of X and Y .

(3) X is smaller than Y in the hazard rate order ( X ≤hr Y ), if rF (x) ≥
rG(x), which is equivalent to F̄ (x)

Ḡ(x)
decreases in x.

(4) X is smaller than Y in the reversed hazard rate order ( X ≤rh Y ), if

r̃F (x) ≥ r̃G(x), which is equivalent to F (x)
G(x) decreases in x.

Let X and Y be two absolutely continuous random variables as above:
(5) We say X is smaller than Y in the up likelihood ratio order ( X ≤lr↑ Y
), if X − x ≤lr Y, ∀x.
(6) X is smaller than Y in the up hazard rate order (X ≤hr↑ Y ), if X−x ≤hr
Y, ∀x.
(7) X is said to be smaller than Y in the up reversed hazard rate order (
X ≤rh↑ Y ), if X − x ≤rh Y, ∀x.
Let X and Y be two non-negative absolutely continuous random variables as
above:
(8) We say X is smaller than Y in the down likelihood ratio order ( X ≤lr↓ Y
), if X ≤lr [Y − x|Y > x], ∀x ≥ 0.
(9) X is smaller than Y in the down hazard rate order ( X ≤hr↓ Y ), if
X ≤hr [Y − x|Y > x], ∀x ≥ 0.
(10) X is said to be smaller than Y in the down reversed hazard rate order (
X ≤rh↓ Y ), if X ≤rh [Y − x|Y > x], ∀x ≥ 0.
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The proportional likelihood ratio order is an extension version of the likeli-
hood ratio order that is studied by Ramos-Romero and Sordo-Diaz (2001).
Also, they introduced the class of the random variables based on the pro-
portional likelihood ratio order and derived properties and results due to
them.

Definition 2.2 If X and Y are non-negative absolutely continuous random
variables, then we say that X is smaller than Y in the proportional likelihood

ratio order ( X ≤plr Y ), if g(λx)
f(x) is increasing in x over the union of the

supports of X and Y .

Equivalently, X ≤plr Y if,

g(λx)f(y) ≤ g(λy)f(x), ∀x ≤ y. (1)

Definition 2.3 If X is a non-negative absolutely continuous random vari-
able, then X is said to be increasing proportional likelihood ratio (IPLR), if
f(λx)
f(x) is increasing in x.

Ramos-Romero and Sordo-Diaz (2001) obtained some results of proportional
likelihood ratio order such as: if X ≤plr Y then, lX ≤ lY , uX ≤ uY and
µX ≤ µY orX ≤plr Y if and only ifX ≤lr aY for all a > 1. Also, they showed
that if Y has a log-concave density function, then, X ≤lr Y =⇒ X ≤plr Y .
Jarrahiferiz et al. (2010) developed hazard rate order and reversed hazard
rate orders to proportional state similarly and studied their properties and
relations.

Definition 2.4 Let X and Y be non-negative absolutely continuous random
variables. We say that X is smaller than Y in the proportional hazard rate
order (X ≤phr Y ), if rF (t) ≥ λrG(λt), t > 0.

We can see the relations between above orders as follow:

≤lr↑ ⇒ ≤hr↑
⇓ ⇓

≤phr ⇐ ≤plr ⇒ ≤lr ⇒ ≤hr ⇒ ≤st .
⇑ ⇑
≤lr↓ ⇒ ≤hr↓

3 Shifted proportional hazard rate order and its
applications

Here, we want to shift proportional hazard rate order and study its prop-
erties and relations. Note that, all of the following results are hold for the
proportional reversed hazard rate ordering similarly.

Definition 3.1 We say X is smaller than Y in the up proportional hazard
rate order ( X ≤phr↑ Y ), If [X − x|X > x] ≤phr Y, ∀x ≥ 0 .

Actually, X ≤phr↑ Y if and only if, Ḡ(λt)
F̄ (t+x)

,∀x ≥ 0, is increasing in t ∈
(−∞, uY

λ ), equivalently, Ḡ(λz)F̄ (w + x) ≤ Ḡ(λw)F̄ (z + x), ∀z ≤ w.
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Consider two coherent systems C1 and C2, each consisting of n iid compo-
nents. Suppose that the lifetime of components from C1 and C2 have distribu-
tion functions F and G respectively. In the following result, the preservation
of up proportional hazard rate is proved for a coherent system with iid com-
ponents, that is an analogous of Theorem 3.1 of Aboukalam and Kayid (2007).
Remark Let X and Y be non-negative and absolutely continuous random
variables. If X ≤phr↑ Y then, Ḡ(t+ x) ≤ F̄ (λx).

Theorem 3.2 Let h(p) be the reliability function of coherent system of n
independent and identical components having first and second derivatives

h′(p) and h′′(p) respectively. If ph′′(p)
h′(p) is decreasing and Ḡ ≤phr↑ F̄ , then,

h(Ḡ) ≤phr↑ h(F̄ ).

ProofWemust show that, λf(λt)h′(F̄ (λt))
g(t+x)h′(Ḡ(t+x))

is increasing in t > 0, equivalently,

λ[λf ′(λt)g(t+x)−g′(t+x)f(λt)]+λ[f(λt)g(t+x)][
g(t+ x)h′′(Ḡ(t+ x))

h′(Ḡ(t+ x))
−λf(λt)h′′(F̄ (λt))

h′(F̄ (λt))
] ≥ 0,

thus,

λ[λf ′(λt)g(t+ x)− g′(t+ x)f(λt)]

+λ[f(λt)g(t+ x)][
g(t+ x)

Ḡ(t+ x)

Ḡ(t+ x)h′′(Ḡ(t+ x))

h′(Ḡ(t+ x))
− λf(λt)

F̄ (λt)

F̄ (λt)h′′(F̄ (λt))

h′(F̄ (λt))
] ≥ 0,(2)

which is non-negative because the both terms are non-negative by assump-
tion. 2

Theorem 3.3 Let X and Y be non-negative absolutely continuous random
variables. If X ≤phr↑ Y , then, there exists a random variable Z that is
UIPLRS, such that X ≤phr Z ≤phr Y .

Proof If uX ≤ lY then take Z to be any random variables that is UIPLRS
on [uX , lY ]. Therefore, suppose that lY ≤ uX .

X ≤phr↑ Y ⇐⇒ rX(t+ x) ≥ λrY (λt), ∀x ≥ 0, t ∈ (lY , uX − x)

⇐⇒ rX(t′) ≥ λrY (λt), ∀lY ≤ t < t′ ≤ uX (3)

Define r∗(t) = maxν≤trY (ν), t ∈ (lY , uY ). By Lillo et al. (2001), r∗ defines a
hazard rate function on (lY , uY ) and it is sufficient that consider Z has the
hazard rate function r∗. By assuming r∗ is increasing in t, so, r∗(t′) ≥ λr∗(λt),
and therefore, Z ≤phr Y . Finally, from (4), it follows that rX(t) ≥ λr∗(λt),
for all t ∈ (lY , uX), so, X ≤phr Z. 2
Consider a system of n independent and not necessarily identical compo-

nents in which the ith component has survival function F̄i(t) = 1 − Fi(t),
i = 1, 2, ..., n. Let h(P) = h(p1, p2, ..., pn) be the system reliability function.
In the following theorem we compare the random lifetimes of two systems
according to the up proportional hazard rate order.
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Theorem 3.4 If
n∑

i=1

pi∂h/∂pi

h(p) is decreasing in pi and Xi ≤phr↑ Y, for all

i = 1, 2, ..., n then, h(X) ≤phr↑ h(Y).

Proof We know that the hazard rate function of a coherent system is:

rh(X)(z + t) =
n∑

i=1

rXi(z + t)F̄Xi(z + t)
∂h/∂pi
h(p)

|pi=F̄Xi
(z+t)

Hence, Due to relation (4) and hypothesis Xi ≤phr↑ Y, gives,

rh(X)(z + t) ≥ λrY (λz)
n∑

i=1

F̄Xi(z + t)
∂h/∂pi
h(p)

|pi=F̄Xi
(z+t),

using assuming implies that,

rh(X)(z + t) ≥ λrY (λz)
n∑

i=1

F̄Y (λz)
∂h/∂pi
h(p)

|pi=F̄Xi
(z+t) ≡ λrh(Y)(λz),

and the proof is complete. 2

4 Stochastic Ordering of Exponential Family and their
mixtures

In this section, we investigate stochastic comparisons between exponential
family distributions and their mixtures with respect to the usual stochastic
order, the hazard rate order, the reversed hazard rate order and the likelihood
ratio order. For represent the results we need recall the following definition.

Definition 4.1 We say X is log-concave relative to Y , denoted X ≤lc Y , if
(1) Support of X and Y are intervals on R.
(2) Support of X be sub-set if Support of Y .
(3) log(f(x)/g(x)) is concave on Support of X.

Yu (2010) proved the following result:

Theorem 4.2 For random variables X and Y let l(x) = log(f(x)/g(x)) is
continuous and moreover concave, i.e., X ≤lc Y . Then
(a) X ≤st Y and X ≤lr Y are equivalent, and each holds if and only if
limx↓0 l(x) ≥ 0.
(b) Assuming l(x) is continuously differentiable, then X ≤lr Y and X ≤rh Y
are equivalent, and each holds if and only if limx↓0 l

′(x) ≤ 0.

Consider the density of an exponential family

f(x; θ) = f0(x) exp[b(θ)x]h(θ), (4)

where θ is a parameter, and for simplicity, assume the support of f(x; θ)
is interval (0,∞). Let g(x) =

∫
f(x; t)dµ(t) be the mixture of f(x; θ) with

respect to a probability distribution µ on θ. Whitt (1985) showed that

log(g(x)/f(x; θ)) = log

(∫
e[b(t)−b(θ)]xh(t)/h(θ)dµ(t)

)
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is a convex function of x, i.e., l(x) = log(f(x; θ)/g(x)) is concave. YU (2010)
computed

lim
x↓0

l(x) = − log

(∫
h(t)/h(θ)dµ(t)

)
,

and

lim
x↓0

l′(x) =

∫
[b(θ)− b(t)]h(t)dµ(t)∫

h(t)dµ(t)
,

that provided the interchange of limit and integration is valid. Thus, if ran-
dom variables X and Y have densities f(x; θ) and g(x) respectively, then by
Theorem??,
1. X ≤st Y (X ≤hr Y ) if and only if

∫
h(t)dµ(t) ≤ h(θ) (5)

2. X ≤lr Y (X ≤rh Y ) if and only if

b(θ) ≤
∫
b(t)h(t)dµ(t)∫
h(t)dµ(t)

. (6)

Example 4.3 Let X ∼ Gamma(α, β), α > 0, β > 0, which is parameterized
so that the density function is

f(x;β) = Γ (α)−1β−αxα−1 exp(−x/β), x > 0,

or, in the form of (??),

f(x;β) = Γ (α)−1xα−1 exp(xb(β))h(β), x > 0,

with b(β) = −β−1 and h(β) = β−α. Suppose Y is a mixture of Gamma(α, t)
with respect to a distribution µ(t) on t ∈ (0,∞). Then (??) and (??) give
1. X ≤st Y (X ≤hr Y ) if and only if

∫
t−αdµ(t) ≤ β−α,

2. X ≤lr Y (X ≤rh Y ) if and only if

β

∫
t−α−1dµ(t) ≤

∫
t−αdµ(t) < ∞.
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