Applied Mathematics and Computation 223 (2013) 298-310

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

A new Bernoulli matrix method for solving second order linear @ CrossMark
partial differential equations with the convergence analysis ™

F. Toutounian ®°, E. Tohidi **

2 Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
bThe Center of Excellence on Modelling and Control Systems, Ferdowsi University of Mashhad, Mashhad, Iran

ARTICLE INFO ABSTRACT
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ferential equations with partial derivatives. Therefore, Bernoulli operational matrices of
differentiation and integration together with the completeness of Bernoulli polynomials
can be used for transforming integro-differential equations to the corresponding algebraic
equations. A rigorous error analysis in the infinity norm is given provided that the known
functions and the exact solution are sufficiently smooth and bounded. A numerical exam-
ple is included to demonstrate the validity and the applicability of the technique. The
results confirm the theoretical prediction.
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1. Introduction

The theory of second-order partial differential equations (PDEs) has found extensive applications in the study of problems
in fluid mechanics, flow in porous media, heat conduction in solids, diffusive transport of chemicals in porous media, wave
propagation in strings and membranes, and in mechanics of solids [33]. The usual numerical methods for PDEs are weighted
residual techniques [18], finite element methods (FEMs) and boundary element methods (BEMs) [22]. Moreover, a huge size
of research works are related to the finite difference methods (FDMs) [2,11,19]. For instance, in [11] several explicit differ-
ence schemes are discussed for the numerical solution of the linear hyperbolic equations subject to initial and Dirichlet
boundary conditions.

In recent years several new approaches have been proposed for solving PDEs such as differential transform method (DTM)
[1,33], homotopy analysis method [14| and Adomian decomposition method (ADM) [4,13]. Also, one can refer to the meth-
ods that are based on radial basis functions (RBFs). In [21], Power and Barraco present a complete numerical comparison
between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of boundary va-
lue problems for PDEs. However some classical ideas such as cubic B-spline scaling functions find their application for solv-
ing linear hyperbolic PDEs [10].

Operational matrices of differentiation and integration have become increasingly important in the field of numerical solu-
tion of PDEs. As a primary research work, one can refer to [26]. In [26], a double Walsh series is introduced to represent
approximately functions of two independent variables, and is then applied to analyse single as well as simultaneous first
order PDEs. The basic idea of this work is based on the Walsh operational matrix of integration. Kesan in [15,16] proposed
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two numerical techniques for solving linear PDEs by using Chebyshev and Taylor operational matrices of differentiation,
respectively. In [7], Dascioglu presents a new chebyshev operational matrix of differentiation for solving high order linear
PDEs with complicated initial and boundary conditions. After the work of [7], Bulbul and Sezer [5] propose a similar idea
for solving second order PDEs by the aid of Taylor operational matrix of differentiation. In [34], Bernstein operational matri-
ces for integration, differentiation and the product are introduced and are utilized to reduce the solution of the parabolic
PDEs to the solution of algebraic equations. Nevertheless, no theoretical results are provided to justify the high accuracy
numerically obtained. In this paper, in the light of the above-mentioned methods we present a new matrix method for solv-
ing second order PDEs in the following form
2 2 2

oo ﬁ%wgt% oo ou=Glet), (60 € [0.1]x[0.1], (1)

subject to the initial conditions for variable t

{u(x, 0)=f(x), x€][0,1],

M0 — m(x), x€0,1],

together with the initial conditions for variable x

{u(O,t)—h(t), 0<tg1,

ouo. (3)
WOD — k(t), 0<t<1.

It should be noted that we develop a new matrix approach, which was previously examined in [3,27-32], for solving second
order linear PDEs. Integrating from (1) with respect to x and t, enables us to impose the initial conditions (2),(3). Thus, com-
pleteness of Bernoulli polynomials together with the Bernoulli operational matrices of differentiation and integration can be
used to reduce the main problem to the associated system of algebraic equations. Actually this is the first operational matrix
approach for which the high accuracy can be justified both theoretically and numerically.

This paper is divided into the following sections. The properties of Bernoulli polynomials are presented in the next Sec-
tion. The numerical scheme for the solution of (1)-(3) is described in Section 3. A rigorous error analysis in the infinity norm
is given provided that the known functions and the exact solution are sufficiently smooth and bounded. The results of
numerical experiments are given in Section 5. Section 6 consists of a brief conclusion.

2. The properties of Bernoulli polynomials

Bernoulli polynomials (see, for instance [3,20]) and also Bernoulli functions [23], have received considerable attention in
numerical analysis. They appear in the integral representation of the differentiable periodic functions, since they are em-
ployed for approximating such functions in terms of polynomials. They are also used for representing the remainder term
of the composite Euler-Maclaurin quadrature rule [23]. Bernoulli polynomials can be defined in many ways such as the fol-
lowing form

B,(x) =nB,_1(x), Vn
]O B,(x)dx =0, Vn
Bo(x) =1.

]7

>
> 1, (4)

By using the following classical Corollary, one can expand an enough smooth function g(x) in terms of linear combination
of Bernoulli polynomials.

Corollary 1. [17] Assume that g € H = [2[0,1] be an enough smooth function and also is approximated by the Bernoulli serie
> m08nBn(x), then the coefficients g, for alln =0,1,...,00 can be calculated from the following relation

-l 1
g =g | £ 00ax (5)

Corollary 2. Assume that K(x,t) € H x H = L*[0, 1] x L?[0, 1] be an enough smooth function and also is approximated by the two

variable Bernoulli series Y o> okmnBm(X)Bn(t), then the coefficients ky,, for all m,n=0,1,..., 00 can be calculated from the
following relation
™K (x,t)
o= [ e, 6)

Proof. By applying a similar procedure in two variables we can conclude the desired result. O
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In the following lines, we will introduce Bernoulli operational matrices of differentiation and integration. If we assume
that B(x) = [Bo(x), B1(x),..., Bn(x)], then we have

01 0 . 0
0 0 2 0
[BO(X)v Bl(x)v"'v BN(X)}/ = [BO(X)7 B](X)7..., BN(XH . ) (7)
B'(x) B(x) 0 0O N
0 00O 0
M
where M is the Bernoulli operational matrix of differentiation. Similarly we have
—B, (0) *35(0) . *B%(O) 0
1 0 0 O
Y in , , 0 1 0 o0
| Bolo). Bi).... B(xJd¥ = [Bo(x), B(x)..... Bu(x) : "
0 B(x') B(x) : : :
0 0 0 L0

P

where P is the Bernoulli operational matrix of integration. It should be noted that according to (4) one can write

[ o) Buce)..... B = pop+ 20— B O

B(x')

where e}, ; denotes the unit vector of dimension N + 1. In our next computations we need to Kronecker multiplication of
matrices. Hence, we recall the definition of Kronecker multiplication of matrices and also an important property which is
related to Kronecker multiplications.

Remark 1. Suppose that A and B are two matrices of dimensions m x n and p x q, respectively, then the Kronecker
multiplication of A and B is denoted by A ® B = kron(A,B) and is defined in the following form

anB - auB
Amxn ®Bp><q = . (9)

amB - QB

Moreover the following interesting property is satisfied for matrices A, B, C and D with appropriate dimensions

(AB) ® (CD) = (A® C)(B® D). (10)
Now suppose that
B(X,t) = [Bo(X,t) Bi(x,0) ... Bu(X, D)}y, v s amn

where B;(x,t) = [Bio(X,t) Bi1(x,t)... Bin(x,t)] for all i=0,1,...,N and Bpn(X,t) = Bn(x)Bs(t) for all m,n=0,1,...,N. Evi-
dently B(x,t) = B(x) @ B(t).

For clarity of presentation in our next computations, we assume that M = M ® Iy,; and M = Iy,; ® M, where Iy,; denots
the identity matrix of dimension (N + 1). Trivially "Bf)—j‘(” = By(x,t) = B(x,t)M, because

B(x,t) M
— e —N——
By(x,t) = (B(x) ® B(t)), = B'(x) @ B(t) = (B(X)M) ® (B(t)In+1) = (B(x) @ B(£))(M @ In;1). (12)

By a similar way, we have % = B(x,t) = B(x, )M.

It should be noted that, such these differentiation processes are exact relations, in other words in the above relations the
equality symbol can be seen obviously. However in similar integration processes the equality symbol do not exists and the
approximation symbol is replaced.

Again we assume that P = P® Iy.; and P = Iy,; ® P. Obviously Jo B(x',t)dx' ~ B(x,t)P, because
x X X B(x1) P
g , , , , — e ——
/ B(x',t)dx' = / (B(x') © B(t))dx = ( / B(x)dx)  B(t) ~ (B()P) @ (B()In:1) = (B(x) © BE) (P ® Iy;1). (13)
0 0 0
By a similar way, we have fé B(x,t')dt’ ~ B(x,t)P.
In our computations, we also need to approximate [; j; B(x',t')dt'dx’ by Bernoulli operational matrices of integration. For
this reason we can use both of the above-mentioned formulae as follows
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X t X
/ / B(x',t"dt'dx ~ / B(x',t)Pdx ~ B(x, t)PP. (14)
0 0 0

According to (8), the associated errors from using Bernoulli operational matrices of integration can be illustrated in the fol-
lowing Corollary.

Corollary 3. We have

(i) /o (t')dt' = B(t)P + ESy.(B(t)), where ESy(B(t)) = all-tua @l

(ii) [3 B(x,t)dt’ = B(x, t)P + ESy((B(x,t)), where ESy (B(x,t)) = B(x)  ESy (B(t)).
(iii) Jo B(X fdx = B(x,t)P + ESyx(B(x, 1)), where ESy(B(x, t)) = ESyx(B(x)) ® B(t).
(iv) fo JoB( t)dt'dx' = B(x,t)PP + ES((B(x,t)), where

ESnxe(B(X,t)) = ESnx(B(X, t))i) + ESn¢(B(X,t))P + ESnx(B(x)) ® ESn¢(B(1)).

Proof. Part (i) is proved, using the definition of Bernoulli operational matrix of integration:

/ “B(tydt’ = B(eyp + Pt — Bva(0)

N+1 EN+1.

Part (ii) follows from

/th’dt—/(()@B(t’) / t’dt)
= (B(x)In.1) @ (B(t)P + ESn(B(t))) = B(x, f)IA’ B(x) © ES.(B(t)).

The proof of part (iii) is similar to that of part (ii).
Part (iv) follows from (i), (ii) and (iii):

/OX ( /0[ B(x, f’)df) dx = /0 ' (B, )P + B(x) @ ESw(B(t)) ) d¥
= (/Oxg(x’,t)dx’>13+ </OXB(X’)dx’> ® ESy(B(t))

= (B(X, )P + ESux(B(x, 1)) P + (B(X)P + ESnx(B(x))) ® ESn(B(t))

= B(x, )PP + ESwx(B(x. £))P + ESy(B(x, £))P + ESwx(B(x)) ® ESw:(B(1)). U
In the next section, we will transform the basic PDEs into their associted system of linear algebraic equations.

3. The basic idea

In this section we want to convert the main problem (1) to an equivalent integro-differential equation which includes
initial conditions (2),(3) using a technique which can be generalized to equations in higher dimensions. Integrating both
sides of (1) with respect to t and x, respectively and also imposing the initial conditions (2),(3) yields

" k(t') fex) h(t) f0)
—_—— —_—— A~
x / (%, ') = u(0, £)]dt + flu(x, t) — u(x,0) — u(0,£) +u(0,0)]
J0

N m(x') / ; h(t') /
+y/ [ue(X',t) — ue(x', 0)]dx +5/ [u(x,t') —u(0,t'))dt
0 0
fe)
X e N X t
+17/ [u,t) —u(x’,O)}dx’JrH/ / u(x, t)dx'dt' = g(x,t), (15)
0 0 0

where g(x,t) = [} ~/g G(x',t')dt'dx’. Without loss of generality, we can assume that § = 0. If = 0 in (1), by linear transforma-

tions in spatial x and time t variables, one may apear g in (1) and take it to be nonzero. With the assumption of g # 0, Eq. (15)
can be rewritten in the following form

u(x, t) + ﬁ/uxxt’dt+//u[xtdx+// xt/dt+n/ u(x, tydx +— // (x,thdt'dx = Q(x,t), (16)
0
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where

1 " / / / 1 ! ! / / 1
Qx.0) = £ ~£(0) +h(0) +; [ (rmex) +fe)ax +5 [ k() + shie)at +5g(x.0)

We now suppose that u(x,t) can be approximated in terms of linear combination of Bernoulli polynomials as follows
N N
U, t) = Uy (X, t) = > tnaBn(X)By(t) = B(x,t)U, (17)
m=0n=0
where
U=[ugo Up1... Uon U10 U11-.. UiN... UNo UNT ... uN‘N}T-

Our aim is to determine all the components of U. For this purpose we should approximate Q(x,t) with the aid of Bernoulli
polynomials in the following form

N N
QX 1) ~ Qu(X, 1) = D> QuunBn(X)Ba(t) = B(x,1)Q. (18)

m=0n=0

We note that all components of Q can be obtained from (6) where

Q = [Q0.0 QO.] cee QO.N Ql.O Q].l s QI.N s QN,O QNJ s QN.N}T‘

By substituting uy(x,t) and Qy(x,t) (as approximations of u(x,t) and Q(x,t), respectively) in (16) we have

t N X st
uN(x,t)+%/ uN‘X(x,t’)dt’—kﬁ/ uN_[(x’,t)dx’—s-g/ un(x, t')dt'
B Jo B Jo B Jo

X X ot
o / un (X', t)dx’ +Q / / un (X', t)dt'dx' = Qu(x,t). (19)
ﬂ 0 ﬁ 0 0
By using (12)-(14), the integral terms in Eq. (19) can be approximated and we have
B(x, )U + %B(x, t)PMU + %B(x, t)PMU + %B(x, t)PU + %B(x, t)PU + %B(x, £)PPU ~ B(x,1)Q. (20)

Since Bernoulli polynomials form a complete basis, the above equation can be simplified and hence

B B BB B

where U is an approximation of U. The above ‘equation is a linear system including (N + 1)? equations and (N + 1)® un-
knowns. Eq. (21) can be written in the form WU = Q, where

<1(N+1)2+513M+ZP1\71+% +ﬂ13+91313>f]:Q, 21)

Uo— YPson 05 Ns 055
W:I(N+1)2+EPM+BPM+BP+BP+BPP.

It should be mentioned that, the linear system WU = Q is a sparse one. Because, all of the matrices M, M, P and P are sparse
and have the following forms

0 I 0, -0
0N+1 0N+l ZINH ON+1 MN+1 ON+1 . ON+1
N+1 N+1 N+1 e N+1
_ N N N N —~ 0N+1 MN+1 e ON+1
M=Mal= : C |, M=IgM=
Ovit Ovit Onir oo+ Niyp .
0 0 - M
Ovit Onir Owir -+ Oni T "
—Biln1 %&INH e %INH On;1
PN+1 0N+1 e 0N+1
Ins On1 s On:1 Ons1
— 1 ~ ONH PN+1 T 0N+1
P=Pxl=| Ovn a0 Ova Ova | P—jgp= :
0N 1 0N 1 e PN 1
Ovii Owit o flvia Oy o ’

where Iy,; and Oy,; denote the identity and zero matrices (of dimension N + 1) respectively. Also, My, and Py, are the
same that were defined in Section 2. In order to establish the sparsity of the coefficients matrix W, we assume that all of
the parameters o, 7, 5,7 and 0 to be nonzero and depict the structure of matrix Wsg.256 (associated to N = 15) in Fig. 1. From
this Figure, one can see that the coefficients matrix of system (21) is sparse. However in our numerical experiments we use
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Sparsity of the coefficients matrix W(N+1)2>< N1 for N=15

0 50 100 150 200 250
Number of nonzero elements = 2088

Fig. 1. Coefficients matrix (W 172 usy2) SPATSity of the linear system (21) for N = 15

Condition number history of coefficient matrix W(N+1)2X N+1)? for different values of N

80 T T T T T T T T

Log10((:ond(W”\M)zX (N+1)2))

Fig. 2. Condition number history of the coefficients matrix (W ., y,12) associated to the system (21)

direct solvers, but one can use high accurate robust iterative solvers which are suitable for solving such these sparse systems
[24]. Moreover, sometimes W ;2. v, is an ill-conditioned matrix for large values of N (see Fig. 2). Then, we need to pre-
condition the system (21) with similar ideas in [9]. Since the basic aim of this research work is the polynomial approximation
of some classes of PDEs and providing the convergence analysis, we do not focus on the concepts of preconditioning and
sparse iterative solvers. We will consider such these topics in the future works.

4. Convergence analysis

In all parts of this section we assume that ||g(X)||. = SUDycjo1j|€(X)| and [[u(X, t)[lsc = SUP peplU(X, )|, where D is the unit
sqaure in R2.
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Now by using Corollary 1, we shall provide the error of the associated approximation.

Lemma 1 [17]. Suppose that g(x) be an enough smooth function in [0, 1] and be approximated by Bernoulli polynomials as done
in Corollary 1. With more details assume that gy(x) is the approximated polynomial of g(x) in terms of linear combination of
Bernoulli Polynomials and E(gy(x)) is the remainder term. Then, the associated formulas are stated in the following forms

g(x) =gn(x) +E(gn(x)), x€10,1],

/g d><+Z . ) (g90(1) - i 1(0),

gN = N' / BN - t )dt

where By (x) = By(x — [x]) and [x] denotes the largest integer not greater than x.
Lemma 2. Suppose g(x) € C*[0, 1] and gy(x) be its approximated polynomial using Bernoulli polynomials. Then the error bound
would be obtained as follows

IEgn () < CCRm™, x€0,1],

where G denotes a bound for all the derivatives of function g(x) (i.e., ||g9 (%) < G fori=0,1,....)and C is a positive constant.

Proof. By using Lemma 1, we have

LA ) 1z
E(gn(x))] = |m/0 By(x = g™ (t)dt| < g GlIBN (X)]|-

According to [3] one can write

B0 =3 (Vs -3 (3 )= L(V)e xeon

n=0 =0

=

Now we use the formula (1.1.5) in [17] for the even Bernoulli numbers as follows
Bxi(0)| < 2(2D)!(2m) 2.

Therefore

[SE

& _21 N-21
IBN(x)\gzzwz (ﬁ”)m) NfZN'(Zn) ”l ((f]n)zl) N onen) exp(2n)+g.

In other words ||By(x)||. < CN!(27) ™, wher C is a positive constant independent of N. This completes the proof. [

Lemma 3. Under the assumptions of Lemma 1, we have

g’ () — gyl < llgl) —gn@)ll + 2m)™CC, x€[0,1],
where C = (27 + 1)C and C together with G are defined in Lemma 2.

Proof. According to Lemma 1. one can write
1
g00) — g9 = / By (x — g™ (t)dt,
£~ 800 =~y [ Buoslx 0™ 0

Thus

200~ 8109~ (80 ~ 8000 =~ gy | Bk 0g 0+ g [ Byx - g

1
- / (By(x— 1) — NBy_;(x — 1)) g™ (t)dt.
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Now by using the fact that |[NBy_; (x)||,. < (2m)' "NC(N!) we have

Ig'(x) — gy (%)l < I8X) —gv®) I + 2m) CG. O

In [8], a generalization of Lemma 1, can be found. Therefore we just recall the error of the associated approximation in
two dimensional functions.

Lemma 4. Suppose that u(x, t) be an enough smooth function and un(x, t) be the approximated polynomial of u(x,t) in terms of
linear combination of Bernoulli polynomials by the aid of Corollary 2. Then the error bound would be obtained as follows
IEun(x, 6))]|.. = [[u(x, £) — un(x, 6)l|. < CAN2m) ™, (x,£) € [0,1] x [0,1],

where A is a positive constant independent of N and is a bound for all the partial derivatives of u(x, t).

Remark 2. From Lemma 3, we have
(X, £) = Uy x (%, 0o < (X, ) = un(X, )] + NQ27) N CA, (22)
e (%, £) = Une(X, )| < [U(X, 1) — un(X, 1) ]l +N27) N CA,

where C is a positive constant independent of N.

Lemma 5. If we assume that the exact solution of (1) is sufficiently smooth and bounded, under the assumptions of Corollary 2 and
3, we have

B(x.)PU

. . 't ,  a——
Hm [[ESy e (un (%, 1)) [|oo = lgljgll/o un(x, £)dt" — Sy e(un(x, £))]l = 0, (23)

B(x,

. . . ’ / X,1)PU

Hm [ESyx(un(x, ) := Lim | / un(x', £)dx" — Sy x(un(x,1))[l = 0,
—00 —00 . 0

B(x,t)PMU

. . t , — |
151m||ESN,t(uN,X(x, )]l == I£1m||/ Unx (X, t)dt — Sy (Unx(X, 1)) ] =0,

B(x,t)PMU
. . X / 1 ——l

lslm”ESN‘x(uN‘t(x, )]l == l%lm”/ un (X', 0)dX — Snx(une(x,8))]l = 0,
—00 —00 0

4 . - o B(x,t)PPU
1 [ESye (un (¢, 1) = lim | / / (X, ) dX — Syee(Un(x, )| = 0.

Proof. We just prove the first term and the proof of the other terms is similar. Trivially ESy:(un(x,t)) = ESn+(B(x,t))U,
because

ESw¢(un(x, 1)) = /0 t un(x, t')dt’ — Sye(un(x, 1)) = [ /0 t B(x,t')dt’ — B(x,t)P|U = ESy.(B(x, t))U,

where ESy:(B(x,t)) was defined in Corollary 3. It should be noted that

ESw(Blx. 1) = B9 & BSua(B(0)) = 1O BvQ gy el el o Btk

According to Lemma 2, we have

N times N times
2(NI —(N+1) ! 0 ... ! -N
|ESN.[(B(X7 t))‘ < 2C (N)(ZTC) O; ) 07 0(27'5) ’ ) 07 ’ OvN(ZTC) .

Now (6) implies that |u;;| < % for all i,j € {0,1,---}. Therefore
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el ot ot o )
[<AlGor ome oNe o0 TING T NIon T (N1
Thus
2C2NIA (1 1 1
|ESw ¢ (un(x,£))| < |ESne(B(x, 1)) ||IU| < 20" (M ot (2n)”N!>’
2C2A 1 1
(2m) 2n (2m)

Lemma 6. [25] (Wendroff inequality) Let u(x,t) (and also ¢(x,t)) be continuous and nonnegative functions on the unique square
D =1[0,1] x [0,1]. If u(x, t) and ¢(x,t) satisfy in the following inequlity

t X X ot
u(x, t) < ¢(x, t)+a/ u(x, t’)dt'+b/ u(x’,t)dx’+c/ / u(x', t')dt'dx’,
0 0 0

0
then

[ux, )l < I¢(x, t)l|cexpla+ b+ ab +c].

In the following lines the main Theorem of this section will be provided.

Theorem 1. Assume that uy(x,t) = B(x, t)U be the approximated solution of (16) where the unknown Bernoulli coefficient vector
U is determined by solving the algebraic system of Egs. (21). If u(x,t) be the exact solution of (16), then we have
limy_ . un(x,t) = u(x,t).

Proof. Eq. (20) can be rewritten in the following form

Uy (X, ) + %SN_[(UN,X *, 1) + %SN,X(uN,t(x, £) + gsN,t(uN(x, £)
S (%, ) + O Sye (U (2. ) = Qu(x, ), (24)

p p

where Sy (unx(x, 1)) = B(X, )PMU, Syx(un.(x,t)) = B(x,)PMU, Sy (un(x,t)) = B(x,t)PU,
Snx(un(x,t)) = B(X, t)PU, Snxe(un(x,t)) = B(x,t)PPU.
According to the definitions of Lemma 5, one can deduce that

Uy (x, £) +% ( /0 ln (6, E)dE — ESye(tina(%, r))) 47 ( /0 e (¢, )X — ESwa(tine(%, t)))

B
+% ( [) (6, £~ ES(un(x, t))) +% ( /0 (¥, 0~ ESua(tn(x, t”)
+3 ( / 3 [ (¢, )X e — ESue iy (x, t))) = Qulx.0). %)

Now by subtracking (25) from (16) we have
o [* Ly [ ;8" ,
u(x, t) — un(x, t)+7/ (Uy — uny)dt +7/ (U — un)dx +f/ (u—uy)dt
B Jo B Jo B Jo

ﬂ X B , Q X t B , , _ B
+ ﬁ /O (ll uN)dX + ﬁ /0 /0 (u uN)dt dX Q(X, t) QN(X7 t) +]N(X7 t)‘ (26)
where

Inxt) = — ((% ESxe(unx(, 1)) + %Esw(uw,f(m £) + %ESN,AuN (x,1)

i 0
+ES s 0,0) + § ES e, r))).

It should be noted that (x,t) € [0, 1] x [0, 1]. Now by using Remark 2. one can write
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. T
[u(x,t) uN(x,t)Klﬁl/0 [u(x,t) uN(x7t)|dt+|ﬁ|/0 (X, £) — un(X, 0)[dX
R T
gy ) w1 )~ a0
i [ [ ) - () ldea -+ 1Q0x 6~ Qa0 + U .0)] + 2CAN ) ™, 27)
|[§‘ 0o Jo

where C is a positive constant independent of N. Now we can use Wendroff inequality [25,6,12] (or Gronwal inequality in
two dimensional functions) and hence

lu(x, £) = un(x, )]0 < CIQEX, E) = Qu(x, )l + Uy (X, D)]lc), (28)

where C is a positive constant independent of N. Lemma 4. implies that limy_...||Q(x, t) — Qu(X, t)||~ = 0, and also Lemma 5.
implies that limy_ .. ||/y(X, t)|l. = 0. These complete the proof. O

5. Numerical experiments

In this section a numerical example is considered to demonstrate the efficiency and accuracy of the proposed method. In
this example, the linear algebraic systems are solved by using direct solvers in MATLAB 7.12.0 software with the Digits envi-
ronment variable assigned to be 20. However, one can use several iterative krylov subspace methods and determine the vec-
tor U and hence the approximated solution B(x,t) U is obtained. For more information about iterative krylov subspace
methods one can point out to the [24]. In this book, several iterative methods have been introduced for solving large sparse
linear systems. All calculations are run on a Pentium 4 PC laptop with 2.70 GHz of CPU and 2 GB of RAM. One of the basic
advantages of the proposed method is that, if the exact solution of the PDEs is a polynomial, one can find it by using sufficient
values of N. Moreover, the proposed scheme obtain high order accuracy for dealing with PDEs which have exact solutions in
the nonpolynomial forms. The readers can see the efficiency of the proposed method from the provided Figures and Table in
the following Example.

Numerical example. As a typical numerical example, we consider the following second order linear PDE
Uyy — 3Uy + Uy = 3exp(—t)cos(x),
subject to the time initial conditions

{ u(x,0) = sin(x),

u(x,0) = —sin(x),

together with the spatial initial conditions

Error History of the Example 2 for N=4

o S
S NS S TS SOUSSSONSS

SIS ‘¢:“g“s\.‘

SOTSS S

S
ST
S SoaSoSSS
SIS
===

u(x,t)—uN(x,t)

X t

Fig. 3. The error history ey(x,t) (=u(x,t) — un(x, t)) of numerical example for N = 4
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Error History of Example 2 for N=6

oo

u(x,t)—uN(x,t)

X t

Fig. 4. The error history ey(x,t) (=u(x,t) — un(x,t)) of numerical example for N = 6

Table 1

Absolute values of the error |ey(x, t)| (=|u(x,t) — un(x,t)|) at the selected points of numerical example
(x,t) N=38 N=10 N=12 N=14 N=16 N=18
(0,0) 4.500e — 010 2.060e — 010 2.900e — 013 1.310e - 013 6.700e — 016 8.200e — 017
(0.1,0.1) 6.560e — 008 2.192e — 009 4.201e - 011 1.405e — 012 2.665e — 014 7.510e — 016
(0.2,0.2) 6.135e — 008 2.556e — 009 3.944e - 011 1.640e — 012 2.531e - 014 9.070e — 016
(0.3,0.3) 2.030e — 009 9.950e — 010 1.370e — 012 6.370e — 013 2.440e — 015 2.640e — 016
(0.4,0.4) 5.748e — 008 1.469e — 009 3.699e — 011 9.430e — 013 2.576e — 014 7.700e — 016
(0.5,0.5) 6.627e — 008 3.178e — 009 4.255e — 011 2.040e — 012 2.753e — 014 1.503e — 015
(0.6,0.6) 1.514e — 008 2.959e — 009 9.590e — 012 1.900e — 012 4.880e — 015 1.451e - 015
(0.7,0.7) 5.665e — 008 9.250e — 010 3.633e - 011 5.930e — 013 2.354e — 014 5.150e — 016
(0.8,0.8) 9.087e — 008 1.591e — 009 5.816e — 011 1.019e — 012 4.441e - 014 4.800e — 016
(0.9,0.9) 5.613e — 008 2.947e — 009 3.623e — 011 1.892e — 012 2.132e - 014 1.023e — 015
(1.0,1.0) 3.232e — 008 2.331e — 009 1.566e — 011 1.483e — 012 1.221e - 014 7.690e — 016

{ u(0,t) =0,

uy(0,t) = exp(—t).

The exact solution of this PDE is u(x, t) = exp(—t)sin(x). Integrating from the above PDE with respect to x and t and imposing
the initial conditions yield

/t Uy(x, t))dt' — /tux(O, t)dt' — 3[u(x, t) — sin(x)]
0

0

+ {/OX ur(x', t)ydx' — /OX uf(x’,O)dx’}

X t
=3 / exp(—t)cos(x')dx'dt'.
o Jo
In other words

/t Uy (x, t)dt' — 3u(x, t) + /X u (X, t)dx' = Q(x,t),
0 0

where

0

Q(x,t) = /Otexp(ft’)dt’ — 3sin(x) — /x sin(x')dx’ + 3 /OX /O.texp(ft)cos(x’)dx’dt’.
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Sparsity of the coefficients matrix W 2 for N=20

A\ N S W S o N
AN

Y i
NNS

100} \iYY ]
AN\

50

NN
400 \iYY

0 50 100 150 200 250 300 350 400
Number of nonzero elements = 1680

Fig. 5. Coefficients matrix (W 172 cvs1y2) SPATSsity of the linear system (29) for N = 20
Eq. (21) implies that

(ﬁm — 3l + FIVI) U=0, (29)

where the vector U should be determined after solving the above system of linear algebraic equations.

We solve the above system by taking N =4, 6, 8, 10, 12, 14, 16 and 18. The error histories.

en(x,t)=u(x,t) —un(x,t) for N =4 and 6 are depicted in Figs. 3 and 4. Moreover, absolute values of the error function
len(x,t)|=lu(x,t) —un(x,t)| at the points (x,t)= (&, where i=0,1,...,10 are provided in Table 1 by taking
N =38, 10, 12, 14, 16 and 18. From this table one can see high order of accuracy of the presented method. The sparsity
of the coefficients matrix Wy, 2, .12 = PM — 3y, +PM for N = 20 are depicted in Fig. 5.

6. Conclusions

This paper presents a new matrix approach by using double truncated Bernoulli series for solving second order linear
PDEs subject to the given initial conditions. The technique is based upon integrating from the considered PDEs and then
transforming them to the associated Volterra integro differential equations. After this main step, Bernoulli operational matri-
ces of differentiation and integration together with the completeness of Bernoulli polynomials can be used for reducing
equations to the corresponding systems of algebraic equations. A rigorous error analysis in the infinity norm is given pro-
vided that the known functions and the exact solution are sufficiently smooth and bounded. It should be noted that this
is the first operational matrix approach for which the high accuracy can be justified both theoretically and numerically. A
numerical example is provided to confirm high order accuracy of the proposed method. However we examine here one-
dimensional problems only, it is straightforward to extend the method to more dimensions.
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