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Abstract. With the advancements of numerical upstream method in modeling flows in different 

paths including the flow inside turbine blades, employing the numerical CUSP technique in Jameson’s 

finite volume method can simultaneously benefit from the positive features of both mentioned 

methods. The novelty of this paper is to improve Jameson’s method in modeling a 2D supersonic flow 

between the blades of a steam turbine using the CUSP method, and defining the most optimum control 

function mode using Levenberg-Marquardt (LM) inverse method by effect of Weighing of 

experimental data and by accounting for the mass conservation equation. By considering the 

importance of the shock regions in the blade’s surface suction side, the focus of the mentioned method 

is in this part which results in the significant improvement of the pressure ratio in Jameson’s finite 

volume method. The results of the combined method (Jameson, CUSP and LM) at the shock region of 

the blade’s suction surface desirably agree with the experimental data, and a decrease of numerical 

errors at this region is resulted. Furthermore, the results of the combined method shows that in 

comparison, by average, the conservation of mass condition is improved 16% at the shock region of 

the blade’s suction surface. 

Keywords: Stationary turbine blade, Jameson’s time marching, upstream method, CUSP method, 
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1. Introduction  

Considering the importance of low pressure turbines in steam generators, the better 

design of these devices can result in higher efficiency [1]. For modeling these flows, 

finite volume numerical methods are commonly used. Reaching an exact numerical 

method that is able to capture the shock and flow discontinuities and has the least 

dissipation and oscillations is one of the most important challenges of Computational 

Fluid Dynamics modeling [2]. 

In numerical solutions, first, the differential equations are discreted using different 

methods and the resulting expansions are calculated by proper approximation of errors 

using numerical programs. In central difference schemes, a suitable approximation of 

the sentences eliminated during discretion should be added to the equations to prevent 

unwanted oscillations which are called artificial dissipation. When the shock 

phenomenon happens, it is appropriate to use second and higher degrees of accuracy for 

the solution region [3]. 



 

 

 
 

From the 1980s, vast efforts were made on flow upstream schemes that were 

categorized into flux vector splitting methods and flux vector difference methods which 

were developed for solving the Euler equations based on wave propagation. The 

common point among these methods lies within relationship between the direction of 

data propagation and direction of differential equation discretion or in other words, the 

discretion direction of the differential equations and receiving information concordant 

with the behavior of the inviscid flow [4,5]. 

In the presented work, the 2D CUSP (Convective Upstream Split Pressure) method 

which includes the upstream and finite difference methods is investigated which shows 

considerable improvement when employed in the Jameson’s method for stator blades of 

a dry steam turbine. It is to be noted that modeling flow in this region (the middle 

section of the blade suction surface towards the end of the blade) is of great importance 

due to the existence of aerodynamic shock and condensation shock in two phase steam 

[6], but in this research the flow has been investigated as a single phase. 

The novelty of this research is improvement of the Jameson’s finite volume method by 

combining the CUSP method [7] and LM (Levenberg-Marquardt) method [8,9] for 

improving the solution and also the optimization of the control function mode by 

accounting for the mass conservation equation and effect of Weighing for two 

experimental data [10]. Using a simple calculation grid [8] for the  modeling of single 

phase flows, although this proposed novel method can be used for complex two-phase 

flows. Considering the complexity of two-phase flows and the consequent high amount 

of calculations, employment of the standard grid is still suggested [11,12] which in this 

research, the steam flow is investigated at single phase, but the ultimate goal is 

developing the proposed model for two-phase steam flow and entropy theory in future 

studies.It is acknowledged that other finite volume methods could be used.  

 

2. Jameson’s Scheme 

Jameson and his associates [2] presented a four-step method to enhance the 

efficiency of approaches based on finite volume and time marching. The proposed 

method was equivalent to central dismissal in space, and for integration with respect to 

time, they used to completely independent Rang-Kuta multi-step approach. To discrete 

location and time individually, the above mentioned method is very flexible, and the 

results obtained using this method are independent of the size of time steps. For the 

desirable capture the shocks, in this method, they added a mixture of category two and 

four waste terms to fluxsentences. Meanwhile, it is necessary to recall that in the early 

methods of Jameson, three techniques were introduced to accelerateconvergence, local 

time stepping, enthalpy damping, and implicit Residual averaging. The following are 

the mass and energy conservationequations for aninviscid and compressible steam in 

two-dimensional cartesian coordinates [4]: 

(1) 
 



 

 

 
 

(2) 

 

(3) 
 

In the upper equation, vector  includes survival variables;vectors indicate an 

inviscid flux and  denotes the total energy. 

The attributes for every finite volume are around the corners denoted using subscripts i 

and j. Given that the equations are two-dimensional, we integrate on the surface element 

of . This method leads to the following equations in the cartesian system: 

(4) 

 
The above-mentioned vector equation shows the continuity and momentum equations in 

the direction of X and Y, the energy, and  denotes the constant area of each cell. The 

first term indicates the amount of change in the flow attributes with respect to time for 

every finite volume, and the second term represents the net rate of attributes that pass 

the flux from the faces of the finite volume.After integrating we can express the survival 

equation as follows: 

(5) 
 

indicates the residuals. It should be stipulated that the changes calculated for  

are relative to the complete computational cell, while the flow variables need to be 

saved at control points. Hence, we assign the resulting changes to the corners of the cell. 

This is a fairly easy procedure and involves dividing the residuals equally between the 

cell`s points. 

Hence, we obtain the following: 

(6)  
The resulting design is symmetric and logically reinforced, and the resulting separation 

equation for point A is as follows: 

(7) 
 

As can be seen, the above equation is a differential and can be solved using the existing 

methods. In this method for improving performance and computational speed, the waste 

term of  is calculated only in the first step of the Rang-Kuta multi-step methods; 

in the rest of the steps, we used the same value as that obtained in step one. 

3. CUSP’s Scheme 

This method is based on the separation of the pressure terms in flow flux equations 

[13]. This method attempts to reduce the complexity and the time required for the 

computation as well as reaching an acceptable result. The flux term is divided into the 

flux displacement and the pressure terms, and a two-dimensional state flux vector is 

formed in the two directions of X and Y as follows[8]: 

(8) 



 

 

 
 

(9) 

 
In the above equations,  and  are the surface vectors in directions X and Y, 

respectively. The first variable of flow (w) in the two-dimensional state is as follows: 

(10) 

 
The first step is to calculate the primary flow change vector on the two sides of (i,j) by 

using the switch function of . 

(11) 
 

The value of the power z ranges between values of  2 and 3[8]. 

(12) 
 

is calculated as follows: 

(13)  
Upon dividing the flow flux terms, we obtain the following: 

(14)  

 
Having the displacement flux of q as given below, the terms of the flow flux pressure 

will be as follows: 

(15)  
(16) 

 

(17) 

 

The local Mach numbers are defined as  and [8]. Therefore, factors 

and can be expressed as follows: 
(18)  

(19) 

 
In this state, we should correct the factor , as in the one-dimensional state, by using 

the following: 

(20) 
 

In this equation, the value of  is very small ( )[8]. To obtain more accurate 

results, we should apply the artificial dissipation terms more near the shock waves and 

less near the rest of the area. For achieving this, we insert a switch function of 

that has the capability of identifying the flow into the calculations. 

In this research, for the first time for the purpose of improving the two-dimensional 



 

 

 
 

numerical method of Jameson for dry vapor, we use the above mentioned method for 

developing the code. The best value of the z is calculated using the inverse method 

given the mass conservation equation. 

4. The LM’s Method 

In an inverse problem, the error is ; the differences between the measured outputs 

of the process, , and the calculated output of the model on the spot, , which can be 

described as follows[14]: 

(21)  

Vectors  and  are actually two elements because only the results obtained under a 

steady-state condition and at two experimental data calculated domain have been 

considered. These vectors have been reduced to scalar values (the experimentally 

measured pressure and the pressure calculated at a specified node). The goal is to 

compare these pressures to obtain a steady-state condition for the conservation of mass, 

which includes minor differences in the mass flow rate as compared to a simulated mass 

flow. However, the amount of pressure could be approximately determined by solving 

the analogous blades [9]. 

To minimize the above-mentioned error, the target function is defined in different ways. 

One of the common ways is to use the squared error method. The objective of solving 

an inverse problem is to minimize the sum of the squares: 

(22) 
or 

 

S is a function of P
r

. In this problem, the dimension of vertex P
r

 is  and each 

of its elements represents the share of Jameson’s method in a way that subsequently 

CUSP’s share will be specified as well. In this study, the weight exchange has been 

conducted with two data in the aim position of 

calculation( )[9].The total of the squared errors could change 

every effect of the errors by a weight exchange W.One of the most important methods 

was presented by Levenberg [15], which is also called the least depreciated squares 

method. This method has a statistical basis. The calculation of the sensitivity matrix is 

one of the great difficulties in solving nonlinear inverse problems. The component of 

row “i” and column “j” for a comprehensive problem according to the explanation is 

defined using the following relation: 

(23) 
 

In this problem, is equal to 2 and . Because of the measured and calculated 

parameters on a node that is considered and the number of undefined parameters, it 

observed that the Jameson’s and subsequently CUSP’s shares depend on the decrease in 

the mass flow rate. 

Here, is a diagonal matrix that reduces the change along the desired path, thereby 

restricting the deviation, and when the related diagonal terms are bigger than the 



 

 

 
 

diagonal terms , causes a reduction in vibration and instability. Levenberg’s 

method showed that if the adjustment coefficient is large at the beginning, S will 

decrease rapidly, and hence, this coefficient must be reduced because the answer of  

could be incorrect otherwise. If this is so, the gradients can be used for finding the real 

answer as follows: 

(24) 
 

Here, tonsorial summation has been used. This selection can cause the result of the 

method to be fixed under a linear transition. In this condition an appropriate coefficient 

is obtained by using the following equation: 

(25) 
 

Marquardt’s method is similar to Levenberg’s. In this method, to change the adjustment 

coefficient, equation (25) is used along with the following relation: 

(26) 
 

Here  is the appropriate fixed number, and  is any number greater than value of 

1[9].In general, this method is more useful in contexts related to inverse problems. 

Therefore, LM’s method along with the revised functions as the follows: 

(27) 
 

Where ، is a scalar value and is called the depreciation parameter, and  is a 

diagonal matrix. 

 is introduced into a repetitive equation to depreciate the vibrations and 

instabilities caused by the problem criticality. The depreciative parameter at the 

beginning of the simulation when the unknown parameter with the initial guess is 

introduced is usually large; hence, because of the latter, we no longer need to study the 

singularity of the term .The following relation is used for calculating this 

component [16]: 

(28) 

 

Thus, an equation for correcting and the criteria for ending the inverse solving 

obtained. 

5. Combined Method 

In this method, the domain that contains 11512×  standard meshes was used [8]. First, 

the flow is calculated with the finite volume using Jameson’s method for the initial 

guess for the solution domain. After 20 iterations, the calculated results combine with 

CUSP’s losses equations, and the solution continued. Each of them has a sensor for 

investigating the results for obtaining the convergence separately. To obtain better 



 

 

 
 

results, the calculated experimental data for pressure on one node of the solving domain 

as the  method is introduced to the inverse solving method, and the sensitivity matrix 

is calculated for obtaining the minor differences in the flow rates. As stated earlier in 

the case of a lack of experimental results for the selected blade, it is possible to estimate 

the required pressure using the results of the theoretical solution or the experimental 

results of the analogous blades [17].  

6. Results and Discussion 

The Domain of the cascade blades have 11512×  cells.The comparison results of the 

improved Jameson’s finite volume method by combining with CUSP’s method and LM-

inverse technique is illustrated in Figures 2-5. 

In Figures 1 the variations of the ratio of the static pressure to the initial stagnation 

pressure along the blade is shown on the suction surface respectively. As can be seen 

from these Figures, in the goal region (0.7 < X/X Chord  < 0.95) which is the sensitive and 

important region of the aerodynamic shock on the suction surface and where the 

combined method is also focused upon, the theoretical results are in agreeable 

accordance with the experimental results [10] when compared to the initial Jameson’s 

method (without CUSP). 
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Figure 1. Variations of the pressure ratio along the blade on the suction surface (SS) 
 

In this research the  flow is adiabatic and inviscid therefore the stagnation pressure 

should remain constant except in the shock regions. In Figure 2 the ratio of the 

stagnation pressure differences to the initial stagnation pressure is illustrated.As can be 

seen the combined method has less errors. 
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Figure 2. . Percentage variation of the ratio of the stagnation pressure differences to 

the inlet stagnation pressure on the flow mid-passage 
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Figure 3. Effects of z values (Eq. (11)) on the percentage variation of the mass flux 
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Figure 4. Contribution of each experimental data with using Weighing effect [10] 
 

For the steady state conditions, the amount of inlet mass flux along the path must be 

constant. In Figure 3 by obtaining the best value for CUSP’s convergence parameter 

( =z  2.56), it is observed that the combined method shows the least variations of the 

mass flux with respect to the inlet mass flux. Figure 4 shown that the percentage of two 

approximately data which are influenced the LM-inverse method for flow optimization. 
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Figure 5. Variations of the mass flux from the improved Jameson’s method using LM 

 



 

 

 
 

Further, the use of the LM method results in a 16% improvement in the results when 

compared to Jameson’s and the combined method (Figure 5). This new achievement 

assures better satisfaction of the law conservation of mass. 

It is to be noted that the LM method can be simultaneously used for other regions, but 

the calculation burden will increase significantly. In this research, the goal was to 

combine Jameson’s finite volume numerical method and the CUSP method and then to 

improve this combination by using the LM method. This new research shows desirable 

results in this respect. 

7. Conclusions 

As it has been explained, the idea of combining the two methods of finite volume 

and CUSP can significantly improve Jameson’s finite volume method. In this research, 

for increasing the accuracy of the results, the LM method is used in the goal region. 

Also, using the LM method with contribution effect of two Weighing points of 

experimental data, the conservation of mass condition is significantly improved. 

Considering the attributes and vast implications of numerical finite volume methods 

which are employed for complex geometries such as flow inside turbines, conducting 

appropriate research is necessary for their improvement. It is acknowledged that any 

other finite volume method can be used in the proposed method. Defining the most 

optimum control function mode using LM-inverse method by effect of Weighing of 

experimental data and by accounting for the mass conservation equation. 

In Figure 1 the comparison of the proposed models with experimental results and also 

Jameson’s standard method, shows acceptable accordance of the proposed methods’ 

result particularly in the goal region (shock region on the blade’s suction surface). Also 

in Figure 5 the conservation of mass has achieved more appropriate conditions. 
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