, th
ul/_mw .
AN Seminar on Probability and Stochastic Processes
September 11-12, 2013

Faculty of Mathematics, University of Sistan and Baluchestan

*

University of Sistan and Baluchestan

Faculty of Mathematics

The Generalized Maximum o Entropy
Principle

Sanei Tabass, M and Mohtashami Borzadaran, G. R*

! Department of Statistics, Ferdowsi University Of Mashhad, Mashhad,
Iran.

Abstract. Generalizations of Maximum entropy principle(MEP) and min-
imum discrimination information principle (MDIP)are described by Kapur
and Kesavan(1989). In this paper we used generalized entropies and replaced
Shannon entropy with Tsallis entropy when o = 2. The generalization has
been achieved by the entropy maximization postulate and examining its con-
sequences. The inverse principles which are inherent in the maximum « en-
tropy and minimum discrimination « entropy are made in the new methodol-
ogy. An example is given to illustrate the power and scope of the generalized
maximum « entropy that follows from the entropy maximization postulate.
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1 Introduction

The generalized maximum « entropy principle which is the subject matter of
this paper, is a generalization of the MaEP (maximum « entropy principle)in
the sense that the latter forms an important constituent of it. Furthermore
it is the MaEP that provides the requisite background for the formulation
of this new principle. Given the three probabilistic entities, namely, the «
entropy measure, the set of moment constraints and the probability distri-
bution, the MaEP provides a methodology for identifying the most unbiased
probability distribution, based on a knowledge of the first two entities. As
stated earlier, the identification is based on the principle of maximization of
the a entropy measure subject to the given constraints.

The GMaEP (generalized maximum « entropy principle ) addresses itself
to the determination of any one the three when the remaining two proba-
bilistic entities are specified. The philosophical underpinning of the GMaEP
rests on the a entropy maximization postulate, which states it is the max-
imum information theoretic entropy that is always the controlling quantity
with respect to the states of the three mutually coupled probabilistic entities.
The GMaEP then spells out deductive procedures for the determination of
the unspecified entity when the other two are specified. The principle MEP
(Maximum entropy principle) implies the determination of the most unbi-
ased probability distribution proceeding from Shannon entropy and a given
set of constraints and MDI principle implies the most unbiased probability
distribution proceeding Shannon entropy and given set of constraints and
furthermore a prior probability distribution Q. In this paper, we generalize
this formalisms (MEP and MDI), with replacing Shannon entropy by Tsallis
entropy when o = 2 and we obtain most unbiased probability distribution
proceeding Tsallis entropy and given set of constraints. A formalism in gener-
alized maximum entropy principle is presented. The principles of Maximum
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« entropy and Minimum discrimination information is reviewed and an illus-
trative example is given.

2 The generalized maximum o entropy principle

Generalized maximum entropy principle possible to determine any one of the
probabilistic quantities when the other two are specified.

2.1 The maximum « entropy version

In continuous, we review the principle of maximum « entropy and give illus-
trative example. For a probability distribution, P = (p1, ..., p,) The Shannon
and Tsallis entropies are respectively :

H(P)=- Zpilogpi (1)
and Tsallis entropy is:

SulP) = ——[S PP —1)a>0,a #1. 2)

a—1

Let ¢(.) be a convex function,

n

H(P)==>¢(pi) (3)

i=1
be the measure of entropy and the constraints be
n n
sz: 17 szg'r(xl) :a,,«,’l”:172,...,m. (4)
i=1 i=1

Using the method of Lagrange multipliers, we maximize (3) subject to the
(m + 1) constraints in (4) and get an expression for the first derivative of

¢(P) as,
- Z é(pi) + AO(ZPi 1)+ Z )‘r(zpigr(xi) —ay) =

¢/(pi) =X+ Z Argr () (5)
r=1

A) The direct principle

Given the entropy measure ¢(.) and the constraint mean values of g1 (2), ..., gm (),
we wish to determine the probability distribution that maximizes the entropy
measure. Using (5) to substitute in to (4), we can solve for the (m + 1) La-
grange multipliers which in turn yield the probabilities p;.

B) The first inverse problem (determination of constraints)
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Given the probability distribution for p; and the entropy measure ¢(.), de-
termine one or more probability constraints that yield the given probabil-
ity distribution when the entropy measure is maximized subject to these
constraints. Since we know ¢(p;), we also know ¢'(p;), and hence the right
hands of (5) can be determined. This will allow us to identify the values for
91(24), -, gm (i) by matching terms and thus a most unbiased set of con-
straints (4).

C) The second inverse problem (determination of the entropy measure)

In this case, given the constraints gi(z;), g2(2;), ..., gm (i) and the probabil-
ity distribution p;, determine the most unbiased entropy measure that when
maximized subject to the given constraints. Yields the given values in to (5)
and get a different equation that can be solved for ¢(.). Once ¢(.) is known,
we can determine the entropy measure H(P) = —>"" | ¢(p;). We now illus-
trate the MaEP version of generalized maximum « entropy principle on the
basis of an example.

Examplel: Let
o(pi) = pi(pi-1) (6)
and H(P) = — ), ¢(pi). We substitute ¢(p;), gives H(P) = =, ¢(pi) =

— > pi(pi—1), in this case H(P) is Tsallis entropy when o = 2.
Also the constraints be

Zpi =1, &= Zpiwu (7)
i=1 i=1

and p; that obtain from this equation is taken as the probability distribution

&' (pi) = Xo+ Axi = 2p; — 1= Xo + Mz (8)
Ao+ Mz +1
= pi=
_/\0+1 A1 Ao +1 _ A1
= »—/\1:10 1 A x
pl_ 2 K3 n 2n K2
I H
= Di = ST - T 5 i 9
p 2 +n 2nZ (9)

The Lagrange multiplier p can found from

I ) Sk (10)

On the basis of the formalism presented earlier, we wish to demonstrate
solutions to the one direct and two inverse problems for this specific example.
D)Determination of constraints (The first inverse problem)

The constraints are determined from a knowledge of equations (6) and (9),
Substituting in to equation (5), we get
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Mo+ Ag1(2) + oo+ g (z) =2p; — 1
Loop
—oly - AN -1
oo LS o )

2
=px; —pur+——1=
n

M=-Lz+2 1
n n ! 12
{)\1 =, g1(z) = x; (12)

Hence, the constraints are:

ipi =1and ipifﬂi =7 (13)

E) Determination of the entropy measure (second inverse problem)
Consider the following differential equation:

¢ (pi) = Ao + Mx; and from (8) = a+ bp;

b
= ¢(p;) = ap; + 51)? +c

b:27 n n n
:»{_a_mzl S HP) =Y =13 =Y e 1)
=1 =1 =1

(14)
We get the entropy H(P) = — .7, pi(p; — 1) which is Tsallis entropy when
oa=2.

2.2 Generalized maximum « entropy, which takes in to account
the generalized averaging procedures

Generalized entropies is based on the joint generalization of the concept of
information gain and the averaging procedure. Tsallis (1988) also proposed
the generalization of the entropy by postulating a non-extensive entropy,
(i.e.Tsallis entropy), which covers Shannon entropy in particular case. This
measure is non-logarithmic. Tsallis entropy (which is non additive ), is one of
the generalized entropy measures, and is based on the generalization of the
information gain only, since it preserves the linear averaging procedure of the
Shannon entropy.

This form of entropy is obtained through the joint generalization of the av-
eraging procedures and the concept of information gain. Tsallis entropy is not
extensive but generalizes the concept of the information gain and is obtained
by the linear averaging procedure. As seen before Tsallis entropy preserves
the same averaging procedure as Shannon entropy, i.e, linear averaging, but

756



generalizes the concept of information by deforming the logarithmic function.
Now, Tsallis entropy rewrites as follows:

Sa(f(x)) =< M%) >tin

where In,(z) is a-logarithm given by

i —1
Ing(z) = , 15
nale) = (15)
It is evident that, the functional to be maximized must be of the form
1
2, =< lna(z—?) Stin —A0 < . >iin —A1 < .. >lin (16)

where Ao, A1 are as usual Lagrange multipliers.
In order to determine the form of the function f(z) to be used in the linear
averaging procedure, Tsallis et.al. (2009) have found

14+n(a—1)
fon(z) = fjflﬂ(al)((;)dz n=0,1,2,.. (17)

A function f(z) can alternatively be determined by its a-moments (as a re-
sult of rewriting the definition of the information gain through a- logarithm).
They entitled relation (17), generalized escort distribution. The probability
density that must be used in equation (16), is the generalized escort distri-
bution is given by equation (17). If we want to obtain the linear average of
a constant, we substitute n = 0 in equation (17). For any first moment, we
substitute n = 1 and so on. There for, we write, for the linear average of 1 as

<1 >un= /d:vfao(:v) = % =1 (18)

Next, we consider the linear average of the x

<X >pin= /a:fod(:c)dcc = % (19)

The maximization of the functional in equation (16) subject to constraints
equations (18) and (19), yields the well-known stationary distribution

1

. L= o1 = o) Py )™= 0
S =201 = o) eI do
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3  Formalism of the Minimum discrimination
information principle (MDI)
Here we briefly review the principle of Minimum discrimination information.

In order to discriminate the probability distribution P from @, the measure,
Tsallis divergence is introduced as follow:

Dsa(PlIQ) = Z 1fi,a>0,a# 1. (21)

This measure always> 0, and has a global minimum value of zero when the
two distributions are identical. If @ is the uniform distribution (Q = U =

(1,1 L)) we have

nn o n

Dsa(PlQ) = Dsa(PlIU) = ——n** (™" — 1)p,

=n""1[Sa(U) = Sa(P)]
where S, (U) is the Tsallis entropy associated with the uniform distribution.

Minimizing Dg,(P||U) would entail maximizing S, (P
If ¢(.) be a convex function and let

D(P||Q) = Zqub (%) (22)

be the measure of directed divergence. The constraints be

Z}%‘:l ) Zpigr(:vi)zam r=1,2..,m. (23)
i=1 i=1
Minimizing (22) subject to (23), we get

pi
> qmﬁ(;) + Qo+ DO pi =D+ MO gpr—ar) =0
= ¢I(%) =—(Ao+1) = Xgi(z1) — .. = Amgm(@i) (24)
Tsallis divergence measure when o = 2 is:

n

Dsa(PIIQ) = 5= I — 1l = 3o - 1
i=1 i=

— Ui

If ¢(p;) = pi(p; — 1) we have gb(%) = %(ﬂ —1) and so

Da(PlI@) = 32— i

3

¢’(%) — 2%’ —1=—(No+1) = Agr(xi) — o — Amgm(zi)  (25)
o= —Xo — A1g1 () 2— . )\mgm(xi)qi (26)
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A) The direct problem (Determination of probability distribution )
If ¢; and g1(x;), g2(x;), ..., gm(x;) are known, (25) determines the p1, pa, ..., Pp.

B) First inverse problem (Determination of the constraints)
If p;s, g;s and ¢(.) are known, (25) determines the constraint functions

91(:),92()s s gm ()-

C) Determination of the divergence measure (Second inverse problem)
If p;s, ¢;s and g,(x;) are known, (25) and (26) determine ¢(.) and as such
determines the divergence measure Dy, (P||Q).

D) Determination of a priori distributions (Third inverse problem)

Finally, if p;s, g;s and ¢(.) are known, (25) and (26) determine the ¢;s. It
has to be shown that if any three of the aforementioned are given, then the
fourth is the most unbiased one. That is, the fourth is such that the observed
probability distribution is a minimum discrimination information probability

distribution(MDIPD).

4 Conclusion

Generalized maximum entropy principle and maximum entropy principle
have found useful applications in a wide variety of problems. But there are
other applications, as illustrated by example in this paper. we replaced Shan-
non entropy and Kullback divergence with Tsallis entropy and Tsallis diver-
gence respectively. The first inverse problem is addressed to the determination
of a set of unbiased constraints. The second inverse problem focuses on deter-
mining the most unbiased entropy measure when the other two probabilistic
entities are given. The nonadditive Tsallis entropy preserves the linear aver-
aging procedure in its definition. with considering this point, the constraints
have shown with linear averaging procedure and Tsallis entropy maximized.
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