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Integrating the Pressure-Sensitive
Nonassociative Plasticity by
Exponential-Based Methods
A nonassociative plasticity model of Drucker–Prager yield surface coupled with a gener-
alized nonlinear kinematic hardening is considered. Conforming to the plasticity model,
two exponential-based methods, called fully explicit and semi-implicit, are recommended
for integrating its constitutive equations. These techniques are proposed for the first time
to solve nonlinear hardening materials. The integrations are thoroughly investigated by
utilizing stress and strain-updating tests along with a boundary value problem in diverse
grounds of accuracy, convergence rate, and efficiency. The results indicate that the fully
explicit scheme is more accurate and efficient than the Euler’s, but the same convergence
rate as the classical integrations is also perceived. Having a quadratic convergence,
the semi-implicit is noticeably the most accurate and efficient procedure to use for this
plasticity model among the algorithms in question. Since the plasticity model is in a great
consistency with discontinuously reinforced aluminum (DRA) composites, the suggested
formulations can be utilized pragmatically. The tangent moduli of the proposed and
Euler’s strategies are derived and examined, as well, due to their vital role in achieving
the asymptotic quadratic convergence rate of the Newton–Raphson solution in nonlinear
finite-element analyses. [DOI: 10.1115/1.4024173]
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1 Introduction

The prevailing account of metallic materials was that they are
pressure independent and as a result the associative plasticity
models were taken into account in their nonlinear analyses. This
is one of the basic tenets of the classical metal plasticity based on
the Bridgman’s works [1,2]. In subsequent investigations, differ-
ent experiments demonstrated that there are also a considerable
number of metallic materials being pressure sensitive and declin-
ing the conventional account.

For instance, Spitzig et al. [3,4] performed the basic researches
in this ground where they examined the stress–strain behavior of
high-strength steels like AISI 4310, AISI 4330, and HY-80 to show
the pressure sensitivity of their yield and flow stresses. Spitzig and
Richmond [5] proved that iron-based materials and aluminum are
also sensitive to hydrostatic pressure with a linear relationship
between flow stress and hydrostatic pressure and incompressible
plastic deformation. This fact was also confirmed by Wilson [6].
Examining 2024-T351 aluminum and using nonlinear finite-
element analysis, he demonstrated that the Drucker–Prager yield
criterion [7] essentially matched the experimental results while the
results of von-Mises were overestimated. Subsequently, Singh et al.
[8] concluded that the pressure dependence flow stress model by
Spitzig and Richmond [5] appeared the most promising since it
gave a relatively better agreement with most of the experimental
observations. Improving the elastoplastic theory for grey cast iron,
Altenbach et al. [9] experimentally showed that the elastoplastic
behavior of the material cannot be described using classical
approaches and there is also sensitivity to the influence of the
hydrostatic pressure on the plastic behavior. They also deduced that
there should be a nonassociative flow rule with employing a plastic
potential to have a good agreement with experiments. The same
results were also concluded by Chait [10] for Titanium alloys, and

by Gil et al. [11], Iyer and Lissenden [12], and Lewandowski et al.
[13] for nickel base alloys such as Inconel 718.

The aforementioned characteristics for these metallic materials
lead to a certain plasticity model where the flow rule is nonasso-
ciative, and the plastic deformation is incompressible.
Conforming to this account, Lei and Lissenden [14] presented a
plasticity model for DRA composites, which particularly suits
their experimental results and also the work of others. These
composites are widely used metallic materials showing the same
characteristics as the aforementioned metals. Some of their great
features are specific stiffness, tailorable thermal expansion coeffi-
cient, ductility, and wear resistance. The plasticity model consists
of a Drucker–Prager yield criterion, a nonassociative flow rule
with incompressible plastic deformation, and a generalized
nonlinear kinematic hardening. As a significant part of this
plasticity whose integrations will be discussed, here, a brief
account of the developments of the kinematic hardening rules is
presented.

Prager proposed the simplest kinematic hardening asserting that
the direction of the plastic strain increment is the same as the back
stress evolution [15,16]. His linear kinematic hardening could
appropriately predict the Bauschinger effect in cyclic loading.
However, the nonlinear kinematic hardenings are required to fore-
bode ratcheting whenever a structure undergoes a cyclic load.
Generally, the hardening rules can be categorized into two general
types of coupled and uncoupled models corresponding to the
defined kinematic hardening mechanism which is coupled or
uncoupled with the plastic modulus [17]. For the coupled, several
models can be addressed by Armstrong and Frederick [18], Cha-
boche [19,20], Ohno and Wang [21], Abdel-Karim and Ohno
[22], Kang [23], Chaboche [24], Abdel-Karim [25], and Rezaiee-
Pajand and Siniae [26]. The kinematic hardening rules proposed
by Mroz [27], Dafalias and Popov [28], and Tseng and Lee [29]
are placed in the category of the uncoupled models.

The material’s constitutive equations characterize the stress as
a function of the deformation history. Integrating these equations,
stresses are updated and an important part of the nonlinear finite-
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element analysis is fulfilled. Although the analytical exact inte-
grating methods [30–37] have been developed for a few plasticity
models and are rarely used for their restrictions, still the general
approach is utilizing the numerical integrations due to their uni-
versality, flexibility and tolerance toward all kinds of materials
and plasticity models. The problem is, though, these approximate
procedures usually involve many iterations and calculations, and
their accuracy and performance are in a direct relationship with
the final outcomes of the nonlinear analyses. Therefore, it is of
great importance to use the numerical integrating algorithms with
as much accuracy and efficiency as possible.

In overall, the integrating schemes are divided into two general
groups of implicit and explicit algorithms. The return mapping
integration schemes proposed by Wilkins [38], Rice and Tracey
[39], and Ortiz and Popov [40] are samples of the implicit cluster
of integrating tactics. In the recent decade, the implicit backward
Euler integrating scheme, which is one of the well-known return
mapping techniques, was extended for different types of plastic
constitutive models by Kobayashi and Ohno [41], Kobayashi et al.
[42], Kang [43], Kan et al. [44], and Coombs et al. [45].

The forward Euler (FE) formulation is a famous classical tech-
nique among the explicit integrations. Another group of explicit
formulations, introduced in the recent decade, are exponential-
based integrations. These methodologies are developed in an aug-
mented stress space through an additional component of time in
the Minkowski space-time. Investigating the characteristics of the
Minkowski space-time, Hong and Liu [46–48] argued that the
constitutive equations of the von-Mises plasticity with linear kine-
matic hardening could be represented by a system of linear differ-
ential equations. Liu [49–51] developed the method for the von-
Mises mixed-hardening and Drucker–Prager plasticity. Another
integration process based on the exponential map techniques was
developed by Auricchio and Beirão da Veiga [52] to solve the
constitutive equations of the von-Mises plasticity model with a
linear mixed-hardening mechanism. Artioli et al. [53] improved
their integrating algorithm into two consistent exponential-based
tactics consistent with the yield condition. Enhancing the algo-
rithm from a first-order scheme to second-order integrations,
Artioli et al. [54,55] and Rezaiee-Pajand and Nasirai [56] pre-
sented exponential-based integrations of second-order accuracy
for von-Mises plasticity model with linear isotropic and kinematic
hardening. Rezaiee-Pajand and Nasirai [57] followed the effort by
presenting a numerical scheme based on exponential maps for
integrating the constitutive equations of the Drucker–Prager plas-
ticity model with no hardening. Considering the von-Mises plas-
ticity model with a class of multicomponent nonlinear kinematic
hardening, Rezaiee-Pajand et al. [58,59] developed the
exponential-based formulations and extended them to nonlinear
mixed-hardening models. Recently, two new exponential-based
approximate formulations for associative Drucker–Prager plastic-
ity model were developed by Rezaiee-Pajand et al. [36] assuming
linear hardening. They also derived an accurate solution for the
constitutive equations.

As a practical objective, in this study, the plasticity model pro-
posed by Lei and Lissenden [14] is considered. This model con-
sists of a nonassociative Drucker–Prager yield criterion with
Chaboche’s nonlinear kinematic hardening and incompressible
plastic deformation. This plasticity model is in a great correlation
with the DRA composites which inspired the authors to develop
two consistent exponential-based methods for integrating their
constitutive equations. These two schemes were first devised in
Refs. [51,57] for the Drucker–Prager plasticity with no hardening.
In this investigation, they are advanced for the nonassociative
Drucker–Prager plasticity with nonlinear kinematic hardening,
which are totally new and had never been carried out before. Con-
sidering a broad range of numerical tests, including stress and
strain-updating assessments alongside a boundary value problem,
the results of the suggested algorithms are compared to those of
the classical integrations, Backward and Forward Euler’s tactics.
To investigate the computational efficiency or performance of the

formulations, accuracy and computational times of the proposed
algorithms and Euler’s integrations are computed and compared.
Having developed the consistent tangent moduli of the developed
schemes and the Euler’s, their accuracy and asymptotic quadratic
convergence rate, when used with a Newton–Raphson solution,
are examined.

Simplifying the presentation of the formulations, all second-
order tensors are represented by nine-component column vectors
via arranging the tensor components in a vector format. Symmetry
of the second-order tensors contributes to six independent compo-
nents in each vector, which is a great aid. It is also worth mention-
ing that the definition of the trace operator and the Euclidean
norm need to be modified.

2 Basic Models

To develop the required basic equations, it is considered a non-
associative Drucker–Prager plasticity model with nonlinear kine-
matic hardening and the plastic deformation which is
incompressible. The strains are assumed in the realm of small
strains. The Drucker–Prager yield surface can consider the hydro-
static pressure effect on failure through the second term of its rela-
tionship, which is an asset to the von-Mises, as follows:

F ¼ 1

2
s0Ts0 � ðsy � bp0Þ2 ¼ 0; sy � bp0 > 0 (1)

In this relationship, s0 and p0 are deviatoric and hydrostatic parts
of the shifted stress, respectively. The parameter sy is dubbed
yield stress in pure shear, and b is a material constant. The shifted
stress is defined as a result of deducting the back stress vector, a,
from the total stress vector, r. The shifted stress, r0, and the total
strain, e, vectors are decomposed into their deviatoric and volu-
metric parts. The volumetric shifted stress, also called the hydro-
static shifted stress, is subjected to volumetric part of the strain
with proportion factor of the material bulk modulus, K. The fol-
lowings are the related relationships existing between these
parameters:

r0 ¼ r� a (2)

r0 ¼ s0 þ p0i with p0 ¼ trðr0Þ
3

(3)

e ¼ eþ ev

3
i with ev ¼ trðeÞ (4)

p ¼ Kev (5)

where e and ev are the deviatoric and volumetric parts of the total
strain, e. To build up the framework, it is needed for these parame-
ters to be divided into their elastic and plastic parts, as follows:

e ¼ ee þ ep (6)

e ¼ ee þ ep (7)

ev ¼ ee
v þ ep

v (8)

The rate of the plastic strain is defined by the following equation:

_ep ¼ _c
@Q

@r0
(9)

where _c and Q are known as the plastic multiplier and plastic
potential, respectively. Note that in this equation and all other
comings, the superposed dot introduces that the denoted parame-
ter is contingent on the pseudotime. Pseudotime is defined as a
response to the need for visualizing the stress and strain histories.
From now on, for short, pseudotime is called time. In this study,
the flow rule is nonassociative. As a result, the function of the
yield surface, F, cannot be employed as the plastic potential.
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Hiring the von-Mises yield function, the potential is defined by
the next relation

Q ¼ 1

2
s0Ts0 (10)

Using Eqs. (9) and (10), the plastic strain rate is achieved as

_ep ¼ _cs0 (11)

Due to incompressible plastic deformation, the volumetric part of
the plastic strain vanishes, which leads to the next result

_ep
v ¼ 0! _ep ¼ _ep (12)

Merging Eqs. (11) and (12), the subsequent connection will form

_ep ¼ _cs0 (13)

To regulate the evolution of the back stress, the succeeding Cha-
boche’s nonlinear kinematic hardening is adopted

_a¼
Xm

i¼1

_ai (14)

_ai ¼ Hkin;i _e
p � Hnl;i _cai (15)

where m specifies the number of components of the back stress,
Hkin;i is a material constant called kinematic hardening modulus
signifying strain hardening, and Hnl;i shows the nonlinearity of the
considered kinematic hardening. The latter factor is also a con-
stant parameter pertaining to the type of the material.

Since the framework is formulated in deviatoric space, the
deviatoric back stress is required to be obtained by the following
formulae:

a ¼ a� trðaÞ
3

i (16)

_a¼
Xm

i¼1

_ai (17)

_ai ¼ Hkin;i _e
p � Hnl;i _cai (18)

Using generalized Hooke’s law, the rate of the shifted stress is
derived as a function of strain

_r0 ¼ 2G _ee þ K � 2

3
G

� �
_ee
vi�

Xm

i¼1

ðHkin;i _e
p � Hnl;i _caiÞ (19)

Substituting ai from Eq. (16) in Eq. (19) and comparing with Eqs.
(3) and (4) result in the following relationships for the rate of the
deviatoric, _s0, and volumetric, _p0, parts of the shifted stress, r0:

_s0 ¼ 2G _ee �
Xm

i¼1

ðHkin;i _e
p � Hnl;i _caiÞ (20)

_p0 ¼ K _ee
v þ

Xm

i¼1

Hnl;i _c
trðaiÞ

3
(21)

Employing Eqs. (7) and (13) with a little manipulation, Eq. (20)
can be rewritten in the following form:

_s0 ¼ 2G _e� 2G _cs0 � _cs0
Xm

i¼1

Hkin;i þ _c
Xm

i¼1

Hnl;iai (22)

The coming relationships are the loading/unloading conditions in
Kuhn–Tucker complementary form. These conditions are used to

determine if the material is in the plastic or elastic phase. If
_c ¼ 0 and F � 0, the material is in the elastic phase, and once the
condition _c > 0 and F ¼ 0 is met, the material is in the plastic
phase

_c � 0; F � 0; _cF ¼ 0 (23)

Employing the consistency condition

_c _F ¼ 0 if F ¼ 0; (24)

alongside Eqs. (1) and (22), the plastic multiplier is acquired, as
follows:

_c ¼ 2G _eTs0 þ 2bKðsy � bp0Þ _ev

4Gþ 2
Xm

i¼1

Hkin;i

 !
ðsy � bp0Þ2 � s0T

Xm

i¼1

Hnl;iai

(25)

The last equality can be oversimplified having defined the con-
stant parameter �G and also used the yield-surface radius, R, as

2 �G ¼ 2Gþ
Xm

i¼1

Hkin;i (26)

and

R ¼
ffiffiffi
2
p
ðsy � bp0Þ (27)

into

_c ¼ 2G _eTs0 þ
ffiffiffi
2
p

bKR _ev

2 �GR2 � s0T
Xm

i¼1

Hnl;iai

(28)

3 Exponential Map Integration

In this study, it is desired to develop two consistent exponential
mapping methods for integrating nonassociative Drucker–Prager’s
constitutive equations with nonlinear kinematic hardening and
incompressible plastic deformation. To develop the proposed
algorithm based on the exponential concept, the original constitu-
tive differential equations must be converted into quasi-linear
ones. Mapping the original differential problem into an aug-
mented stress space and defining an integrating factor, the task is
performed and the following dynamical system will be the result:

_X ¼ AX (29)

where X is the augmented stress vector and A is dubbed the con-
trol matrix. This is an equivalent but rather different form of the
initial differential problem, which has been improved to be con-
veniently solvable.

Equation (22) is simplified and reformed to the next relation-
ship having multiplied the both sides by integrating factor X0 and
hired the parameter �G. It is also assumed for the integrating factor
to satisfy the subsequent multiple equalities as though the first two
parts could be derived from the third part

X0 _s0 þ 2 �G _cX0s0 ¼ 2GX0 _eþ _cX0
Xm

i¼1

Hnl;ian;i ¼
d

dt
ðX0s0Þ (30)

Considering the first and last parts of the former relation, also the
middle and last ones, one can draw out the next two equations

_X0s0 þ X0 _s0 ¼ X0 _s0 þ 2 �G _cX0s0 (31)

d

dt
ðX0s0Þ ¼ 2GX0 _eþ _cX0

Xm

i¼1

Hnl;ian;i (32)
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Removing the similar segments from the both sides of the
Eq. (31) gives rise to the coming relationship, from which the
integrating factor is obtained

X0 ¼ expð2 �GcÞ (33)

It is helpful to mention that the initial condition of X0ðc ¼ 0Þ ¼ 1
has been taken into account to derive this relationship. The reason
is that, the material is undisturbed at the beginning of the loading
process. Considering the Drucker–Prager’s yield function and Eq.
(27), the following equalities are formed:

R2 ¼ s0Ts0 & _RR ¼ _s0Ts0 (34)

Having utilized the previous relationships and multiplied the mid-
dle and last parts of Equality (30) by s0T, the subsequent differen-
tial equation is derived

d

dt
ðX0RÞ ¼ 2G

R
X0s0T _eþ _cX0

R
s0T
Xm

i¼1

Hnl;ian;i (35)

At this stage, there is a set of differential equations in the aug-
mented stress space, Eqs. (32) and (35). Getting into these rela-
tionships, it can be perceived that a fixed term of parameters is
recurred in both. Choosing a variable as a representative of this
term helps the equations be much more comprehensible. The men-
tioned term is given below

_l ¼ _eþ _c
2G

Xm

i¼1

Hnl;ian;i (36)

Hence, the differential equations are transformed to the following
condensed ones:

d

dt
ðX0s0Þ ¼ 2GX0 _l (37)

d

dt
ðX0RÞ ¼ 2G

R
X0 _lTs0 (38)

These differential equations can be suited into the below general-
ized shape

_X ¼ AX, d

dt

XS

XR

( )
¼

O9�9

2G

R
_l

2G

R
_lT 0

2
64

3
75

10�10

XS

XR

( )
(39)

where XS and XR are the components of the augmented stress vec-
tor defined as follows:

XS ¼ X0s0 & XR ¼ X0R (40)

Pursuing below conditions, one can manage to distinguish
between the elastic and plastic phases. Material has entered the
plastic stage once the both are simultaneously fulfilled; otherwise,
it is still in the elastic phase.

(1) s0k k2¼ R2, i.e., XS
�� ��2¼ ðXRÞ2.

(2) _c > 0, i.e., 2G _eTXS þ
ffiffiffi
2
p

bKXR _ev > 0.

3.1 Fully Explicit Updating Stress. The first proposed algo-
rithm has a fully explicit character. For the Drucker–Prager plas-
ticity, the algorithm was first devised by Liu [51] with no
hardening and then developed for linear mixed hardening by the
authors [36]. In this section, the scheme is advanced for the nonas-
sociative plasticity of the same yield criterion but with generalized
nonlinear kinematic hardening.

To update the stress, the dynamical system presented in Eq.
(39) needs to be solved. Obviously, the augmented stress vector is
time-dependent, which makes it too difficult to find a close solu-
tion of the system. Therefore, it is presumed for the control matrix
to be independent of time. The result is a system of linear differ-
ential equations with constant coefficients and a close-form solu-
tion as follows:

XðtÞ ¼ expðAtÞXð0Þ (41)

where the initial conditions are

Xð0Þ ¼ XS
0

XR
0

( )
¼

s00ffiffiffi
2
p
ðsy;0 � bp00Þ

( )
(42)

and, s00 and p00 are the initial deviatoric and hydrostatic shifted
stresses, respectively. To develop a numerical algorithm, a recti-
linear strain-controlled route is adopted, which means that the _e
and _ev are unvarying within each time step. It is also assumed that
the radius of the yield surface and the back stress vector are con-
stant through each time increment. Note that the yield-surface fea-
tures, such as R and a, are not necessarily changeless during each
load step, but in an explicit manner, they can be approximated by
their values at the beginning of each time step. Based on these
considerations, the coming solution to the dynamical system is
expected

Xnþ1 ¼ expðAnþaDtÞXnþa ¼ GnþaXnþa (43)

where a separates the elastic and plastic parts of the load incre-
ment and is computed via Eq. (A3) as described in Appendix A.
The subscript nþ a means that the parameters are employed by
their values on the elastic border. Hence, Xnþa and Gnþa are
defined as follows:

Xnþa ¼
XS

nþa

XR
nþa

( )
¼

s0nþaX0
nþ1

RnþaX0
nþ1

( )
(44)

Gnþa ¼
I9�9 þ ðanþa � 1ÞDl̂Dl̂T bnþaDl̂

bnþaDl̂T anþa

� �
10�10

(45)

The subsequent relationships are defined for anþa, bnþa, and Dl̂

Dl̂ ¼ Dl
Dlk k (46)

Dl ¼ ð1� aÞDeþ k
2G

Xn

i¼1

Hnl;ian;i (47)

anþa ¼ cosh
2G

Rnþa
jjDljj

� �
(48)

bnþa ¼ sinh
2G

Rnþa
jjDljj

� �
(49)

The discrete plastic multiplier, k, also called the proportional fac-
tor, is calculated utilizing the next relationships

k ¼ð1� aÞ _cDt ¼
ð1� aÞð2GDeTs0nþa þ 2bKðsy;0 � bp0nþaÞDevÞ

2 �GR2
nþa � s0nþaT

Xm

i¼1

Hnl;ian;i

(50)

s0nþa ¼ s0n þ 2GaDe (51)

p0nþa ¼ p0n þ aKDev (52)

Rnþa ¼
ffiffiffi
2
p
ðsy;0 � bp0nþaÞ (53)
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In this investigation, De and Dev represent the deviatoric and volu-
metric portions of the nth strain increment. To obtain the updated
augmented stress, Xnþ1, the relationships (43)–(45) can be utilized
to solve the system of the differential equations in Eq. (39). Due
to incompressible plastic deformation, the hydrostatic shifted
stress is readily updated by the subsequent relationship, likewise
yield-surface radius

p0nþ1 ¼ p0nþa þ ð1� aÞKDev (54)

Rnþ1 ¼
ffiffiffi
2
p
ðsy;0 � bp0nþ1Þ (55)

Having XR
nþ1 and Rnþ1, the integrating factor X0

nþ1 has the below
appearance

X0
nþ1 ¼

XR
nþ1

Rnþ1

(56)

Finally, after computing XS
nþ1 and X0

nþ1 from the prior steps, the
stress is updated, as follows:

s0nþ1 ¼
XS

nþ1

X0
nþ1

(57)

What was acquired thus far was actually the updated deviatoric
shifted stress, s0, which sometimes it was called deviatoric stress
or stress for short. However, the main goal is to update the devia-
toric stress, s. Evidently, the back stress vector stands between
these two, which justifies the obligation to update the center of the
yield surface. The following relationship cites the story:

snþ1 ¼ s0nþ1 þ anþ1 (58)

where snþ1 and anþ1 have the below forms

snþ1 ¼ sn þ 2GðDe� DepÞ (59)

anþ1 ¼
Xm

i¼1

anþ1;i ¼
Xm

i¼1

an;i þ
Xm

i¼1

Hkin;iDep � k
Xm

i¼1

Hnl;ian;i (60)

It should be noted that the Equality (60) is achieved by integrating
Eq. (18) from tn to tnþ1 and also estimating the a by its value at
the outset of the load step, an, which is a rational assumption since
an explicit manner is being used. To achieve snþ1, the only
unknown parameter is Dep. Using Eq. (13), the plastic part of the
strain increment is attained, as follows:

Dep ¼ ks0nþa (61)

The proportional factor is easily computed from Eq. (33) through
succeeding formula

k ¼ 1

2 �G
lnðX0

nþ1Þ (62)

Substituting k in Eq. (61) with the former equation leads to the
next relationship for Dep

Dep ¼ 1

2 �G
lnðX0

nþ1Þs0nþa (63)

Another approach to update the center of the yield surface is the
reverse tactic, which means replacing the snþ1 and anþ1 in Equal-
ity (58) with their equivalents from Eqs. (59) and (60) alongside
using the Equality (62) for k. This way leads to the following rela-
tionship for the plastic part of the deviatoric strain increment:

Dep ¼ 1

2 �G
ðsn þ 2GDe� �a� s0nþ1Þ (64)

The factor �a is also determined from the below relation

�a ¼
Xm

i¼1

an;i 1� Hnl;i

2 �G
lnðX0

nþ1Þ
� �

(65)

3.2 Semi Implicit Updating Stress. In the previous tech-
nique, fully explicit, the characteristics of the yield surface were
estimated by their values at the beginning of each time increment
to solve the dynamical system in spite of being varied. Obviously,
this seems a bit rough approximation where better ones could be
taken. Thus, the authors decided to develop a numerical algorithm
which is capable of utilizing better approximations of the yield-
surface features. To reach the goal, another exponential-based
integration is utilized. It is called semi-implicit since it uses the
unknown features of the yield surface. The scheme was first
devised by Rezaiee Pajand and Nasirai [57] and was developed
for a Drucker–Prager plasticity with no hardening. Here the scheme
is progressed for the nonlinear kinematic hardening. In accordance
with the strategy, the values of R and a at the middle of each time
increment are hired to gain better responses rather than Rn and an.
It is expected that the greater estimations of R and a will enhance
the accuracy and convergence of the numerical approach.

Considering that the back stress vector, a, and the value of the
yield-surface radius, R, could be chosen in an arbitrary point of
the load step and it might be a subject of debate, the numerical
algorithm is derived in a broad form using parameter n. This fac-
tor denotes a specified point of each load increment, 0 < n <1.
For example, the subscript nþ nð1� aÞ alongside assuming
n ¼ 0:5, denotes the amount of the intended parameter at the mid-
dle point of the plastic part of the nth load increment. Taking a
rectilinear strain-controlled path and aforementioned procedure
for specifying a and R, the augmented stress vector at time tnþ1 is
updated by a two-step procedure.

At the first step, the deviatoric shifted stress, s0, back stress vec-
tor, a, and the radius of the yield surface, R, are computed at the
specified point, which is denoted by nþ nð1� aÞ, using their val-
ues on the yield surface, s0nþa, anþa and Rnþa. Again, the whole
process is carried out at the second step, but this time by hiring
the computed stress, s0nþnð1�aÞ, and the features of the yield sur-
face, anþnð1�aÞ and Rnþnð1�aÞ, from the previous step. This process
leads to the updated deviatoric and back stresses at the end of the
load increment, s0nþ1 and anþ1. In the subsequent parts, the
required mathematical formulas of the aforementioned methodol-
ogy will come.

3.2.1 Step One. The system of the differential equations is
changed at the first step to the below form

Xnþnð1�aÞ ¼ expðAn
nþaDtÞXnþa ¼ G

n
nþaXnþa (66)

In this relation, G
n
nþa is the exponential matrix of the dynamical

system. At each plastic load increment, this matrix is specified at
point n, as follows:

G
n
nþa ¼

I9�9 þ ðan
nþa � 1ÞDl̂n

nþaDl̂n T
nþa bn

nþaDl̂n
nþa

bn
nþaDl̂nT

nþa an
nþa

" #
10�10

(67)

The scalars an
nþa, bn

nþa and the vector Dl̂n
nþa are obtained by the

next relationships

Dl̂n
nþa ¼

Dln
nþa

Dln
nþa

��� ��� (68)

Dln
nþa ¼ nð1� aÞDeþ

kn
nþa

2G

Xm

i¼1

Hnl;ian;i (69)
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kn
nþa¼ nð1�aÞ _cDt¼

nð1�aÞð2GDeTs0nþaþ2bKðsy�bp0nþaÞDevÞ

2 �GR2
nþa� s0Tnþa

Xm

i¼1

Hnl;ian;i

(70)

an
nþa ¼ cosh

2G

Rnþa
jjDln

nþajj
� �

bn
nþa ¼ sinh

2G

Rnþa
jjDln

nþajj
� � (71)

where s0nþa, p0nþa, and Rnþa are calculated by Eqs. (51)–(53). The
rest of the first step is the same as the technique described in the
fully explicit updating method. In the following lines, the process
will be briefly presented to avoid any confusion. The yield-surface
radius and the volumetric shifted stress are calculated at the end
of the first step by next equalities

Rnþnð1�aÞ ¼
ffiffiffi
2
p
ðsy � bp0nþnð1�aÞÞ (72)

p0nþnð1�aÞ ¼ p0nþa þ nð1� aÞKDev (73)

Having solved the system of equations in Eq. (66) and acquiring
XS

nþnð1�aÞ and XR
nþnð1�aÞ, the deviatoric stress is obtained at the

specified point of nþ nð1� aÞ, as follows:

X0
nþnð1�aÞ ¼

XR
nþnð1�aÞ

Rnþnð1�aÞ
! s0nþnð1�aÞ ¼

XS
nþnð1�aÞ

X0
nþnð1�aÞ

(74)

It is also needed to attain the back stress vector at the point of
nþ nð1� aÞ, so it will be used in the next step. Utilizing the same
approach as discussed previously, the center of the yield surface is
updated through the coming relationship

anþnð1�aÞ ¼
Xm

i¼1

anþnð1�aÞ;i ¼
Xm

i¼1

�ai þ
Xm

i¼1

�HiDe
p

nþnð1�aÞ (75)

where �ai and �Hi are defined as

�an;i ¼
1� Hnl;i

4 �G
lnðX0

nþnð1�aÞÞ

1þ Hnl;i

4 �G
lnðX0

nþnð1�aÞÞ

0
B@

1
CAan;i (76)

�Hi ¼
Hkin;i

1þ Hnl;i

4 �G
lnðX0

nþnð1�aÞÞ
(77)

Using the same strategy as explained in Sec. 3.1, the plastic strain
deviator is attained employing Eqs. (58), (59), and (75)–(77) with
the below shape

De
p

nþnð1�aÞ ¼
1

2Gþ
Xm

i¼1

�Hi

sn þ GDe�
Xm

i¼1

�ai � s0nþnð1�aÞ

 !

(78)

3.2.2 Step Two. The whole process will be recurred at the
second step except for the fact that, at this time, the deviatoric
stress and the features of the yield surface acquired from the pre-
ceding step are used. The coming words and relationships thor-
oughly explain it

Xnþ1 ¼ expðAnþnð1�aÞDtÞXnþa ¼ Gnþnð1�aÞXnþa (79)

The vectors Xnþ1 and Xnþa have the next appearances

Xnþ1 ¼
Xs

nþ1

XR
nþ1

� 	
¼

s0nþ1X0
nþ1

Rnþ1X0
nþ1

( )
; Xnþa ¼

XS
nþa

XR
nþa

( )

¼ s0nþaX0
nþa

RnþaX0
nþa

� 	
(80)

As it is seen, the factor matrix, Gnþnð1�aÞ, is attained using the ter-
mination point of the previous step. It is formed in the below
shape

Gnþnð1�aÞ ¼
I9�9 þ ðanþnð1�aÞ � 1ÞDl̂nþnð1�aÞDl̂T

nþnð1�aÞ bnþnð1�aÞDl̂nþnð1�aÞ
bnþnð1�aÞDl̂T

nþnð1�aÞ anþnð1�aÞ

" #
10�10

(81)

where the parameters anþnð1�aÞ, bnþnð1�aÞ, and Dl̂nþnð1�aÞ are
obtained by the next relationships

Dl̂nþnð1�aÞ ¼
Dlnþnð1�aÞ

Dlnþnð1�aÞ

��� ��� (82)

Dlnþnð1�aÞ ¼ ð1� aÞDeþ
knþnð1�aÞ

2G

Xm

i¼1

Hnl;ianþnð1�aÞ;i (83)

The proportional factor knþnð1�aÞ is calculated by the subsequent
equation

knþnð1�aÞ ¼ ð1� aÞ

_cDt ¼
ð1� aÞð2GDeTs0nþnð1�aÞ þ 2bKðsy � bp0nþnð1�aÞÞDevÞ

2 �GR2
nþnð1�aÞ � s0nþnð1�aÞT

Xm

i¼1

Hnl;ianþnð1�aÞ;i

(84)

anþnð1�aÞ ¼ cosh
2G

Rnþnð1�aÞ
jjDlnþnð1�aÞjj

� �

bnþnð1�aÞ ¼ sinh
2G

Rnþnð1�aÞ
jjDlnþnð1�aÞjj

� � (85)

Having resolved the system of the differential equations and
attaining XS

nþ1 and XR
nþ1, one can update the deviatoric shifted

stress at the end of the load step, s0nþ1, using Eqs. (55)–(57).
Updating the deviatoric stress, snþ1, requires that the new position
of the yield-surface center be specified, which is designated by the
back stress vector, anþ1. It is achieved by integrating the equalities
(17) and (18) on the whole load interval

anþ1 � an ¼
Xm

i¼1

ðtnþ1

tn

Hkin;i _e
p � Hnl;i _caidt (86)

Due to the fact that Hkin;i and Hnl;i are constant during each load
increment, ai should be estimated by a constant vector within
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each load step to integrate the previous equation. It is usual for the
back stress to be estimated at the beginning of each load step, par-
ticularly in the explicit manners, which is not a good appraisal.
Therefore, exchanging it with the previously obtained vector from
the first step, anþnð1�aÞ;i, will generate better and more dependable
results owing to more accurate approximation for ai. Hence, the
center of the yield surface is updated through the next equality

anþ1 ¼
Xm

i¼1

anþ1;i ¼
Xm

i¼1

an;i þ
Xm

i¼1

Hkin;iDep � knþnð1�aÞ

�
Xm

i¼1

Hnl;ianþnð1�aÞ;i (87)

The last equation along with Eqs. (58), (59), and (62) give rise to
Eq. (64) for Dep with the exception of �a from the next equality

�a ¼
Xm

i¼1

an;i �
Hnl;i

2 �G
lnðX0

nþ1Þanþnð1�aÞ;i

� �
(88)

One can also choose the simple direct way to obtain the Dep

which is, of course, accompanied with lower accuracy and per-
formance. This approach gives the below result

Dep ¼ 1

2 �G
lnðX0

nþ1Þs0nþnð1�aÞ (89)

To sum up, the aforementioned technique for stress updating
comes with superior accuracy and better convergence rate since
it virtually merges two steps in one. It actually uses better
estimations of a, R, and s0 in the incremental pace of the numerical
algorithm to acquire the desired parameters, s0nþ1 and snþ1. Fur-
thermore, it will increase the performance by means of declining
the computational time alongside more accurate responses. It is
also worth mentioning that in all the numerical tests to come, the
parameter n is adopted 0.5 for being a logical choice taking the
values at the middle of each load step. Figure 1 presents a general
flow chart for the both proposed schemes to better perceive them.

4 Treatment of the Apex

There is a sharp point at the tip of the Drucker–Prager’s cone
called apex. This causes a singularity in the yield-surface func-
tion. In order for it to cope, it is conventional to define a comple-
mentary cone working as an indicator to show whether the trial
stress is placed inside the area of the apex influence or not
[36,60]. For an associative plasticity model, this cone is postulated
with its flank orthogonal to those of the convex set, considering
that the plastic strain flow is defined via the subdifferential of the
indicator function of the yield surface, see Fig. 2. For the assumed
nonassociative plasticity model, the plastic strain flow is not or-
thogonal to the loading surface. In contrast, it is perpendicular to
the hydrostatic pressure axis, since the von-Mises yield function

Fig. 1 Flow chart for the explicit exponential, EXF, and semi-implicit exponential,
EXS, integrations
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has been taken in its flow rule. Therefore, the complementary
cone’s flank should be upright as in Fig. 3.

In overall, the stress-updating process would follow its routine
method preceded before if the trial stress was situated outside of
the complementary cone; otherwise, the r0TR

nþ1 would be in the
realm of the apex influence which suggests that the trial stress
must fall back to the apex.

(1) The updated stress lies on the smooth portion of the cone,
i.e., jjs0TR

nþ1jj > 2GjjDepjj
(2) The updated stress settles on the apex of the cone, i.e.,
jjs0TR

nþ1jj � 2GjjDepjj
For the first state, the process of updating stress was presented

in Secs. 3.1 and 3.2. What appears later is the procedure that
should be taken to update the stress in the event of the second
condition

s0nþ1 ¼ 0 (90)

Rnþ1 ¼
ffiffiffi
2
p
ðsy;0 � bp0nþ1Þ ¼ 0! p0nþ1 ¼

sy;0

b
(91)

After the deviatoric and hydrostatic shifted stresses were updated,
the back stress vector must be updated to acquire the deviatoric
stress, snþ1. Considering Eq. (20), the following relationship is
attained:

s0nþ1 � s0n ¼ 2GDee �
Xm

i¼1

Hkin;iDep þ k
Xm

i¼1

Hnl;ian;i (92)

Evidently, updating the back stress vector means computing Dep,
which concerns the rest of the operation. Employing Eqs. (7) and
(92) and the subsequent equation to substitute for k

k ¼ 2GDeTs0n þ 2bKðsy;0 � bp0nÞDev

2 �GR2
n � s0Tn

Xm

i¼1

Hnl;ian;i

(93)

leads to the following equality:

2GDeþ s0n ¼ 2 �GDep � k
Xm

i¼1

Hnl;ian;i (94)

The left side of the former equation can be replaced with the next
relationship

sTR
nþ1 � an ¼ 2GDeþ s0n (95)

Therefore, the plastic part of the strain increment is obtained by
the below formula

Dep ¼ 1

2 �G
sTR

nþ1 � an þ k
Xm

i¼1

Hnl;ian;i

! 
(96)

5 Consistent Tangent Modulus

Through the Newton–Raphson algorithm, the tangent modulus,
which is consistent with the integration scheme, is essential for
achieving the asymptotic quadratic convergence rate in a finite-
element analysis. In the following lines, the tangent operators are
derived for the proposed integration schemes, fully explicit expo-
nential map (EXF) and semi-implicit exponential map (EXS), as
well as the forward Euler and backward Euler techniques. As dis-
played in Appendix C, the general relationship of the tangent op-
erator is attained departing the deviatoric and volumetric parts of
the stress

@rnþ1

@enþ1

¼
@s0nþ1

@enþ1

þ @anþ1

@enþ1

� �
Idev þ KðiiTÞ (97)

5.1 Forward Euler Consistent Tangent Modulus. Referring
to Eq. (97), the derivatives @s0nþ1=@enþ1 and @anþ1=@enþ1 must be
calculated. If s00 represents the deviatoric shifted stress prior to
implementing the correcting vector, afnnþ1, the adjusted devia-
toric shifted stress, s0, will be computed by the below formulas

Fig. 2 Treatment of the apex for associative model

Fig. 3 Treatment of the apex for nonassociative model

031010-8 / Vol. 135, JULY 2013 Transactions of the ASME

Downloaded From: http://materialstechnology.asmedigitalcollection.asme.org/ on 05/25/2013 Terms of Use: http://asme.org/terms



s0nþ1 ¼ s00nþ1 þ af nnþ1; nnþ1 ¼
s00nþ1

s00nþ1

�� �� (98)

Taking the derivative of the previous equation with respect to
enþ1 leads to the next result

@s0nþ1

@enþ1

¼
@s00nþ1

@enþ1

þ @af

@enþ1

nT
nþ1 þ af

@nnþ1

@enþ1

(99)

Using Eqs. (A6), (A10), and (A11), the constituents of
@s0nþ1=@enþ1 are computed, as follows:

@s00nþ1

@enþ1

¼ 2Gð1� aÞIdev þ 1� 2 �Gkð Þ
@s0nþa

@enþ1

� 2G
@a
@enþ1

DeT

þ
Xm

i¼1

Hnl;ian;i � 2 �Gs0nþa

 !
@kT

@enþ1

(100)

where the derivatives of s0nþa, a, and k are presented in Appendix
D. @nnþ1=@enþ1 and @af =@enþ1 are computed through the coming
relationships

@nnþ1

@enþ1

¼ 1

s00nþ1

�� ��2

@s00nþ1

@enþ1

s00nþ1

�� ��� @s00nþ1

@enþ1

s00nþ1
Ts00nþ1

s00nþ1

�� ��
 !

(101)

in which @s00nþ1=@enþ1 has been gained from the previous equality.
The computed @nnþ1=@enþ1 along with Eq. (A10) are utilized to
obtain @af =@enþ1, as given below

@af

@enþ1

¼
2ðnT

nþ1s00nþ1Þ
@nnþ1

@enþ1

s00nþ1þ
@s00nþ1

@enþ1

nnþ1

� �
�2

@s00nþ1

@enþ1

s00nþ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnT

nþ1s00nþ1Þ
2� s00nþ1

�� ��2þR2
nþ1

q
� @nnþ1

@enþ1

s00nþ1þ
@s00nþ1

@enþ1

nnþ1

� �
(102)

Having @s0nþ1=@enþ1, the only remained part to calculate the tan-
gent modulus from Eq. (97) is obtained by the next equality,
which has been achieved using Eq. (A9)

@anþ1

@enþ1

¼
Xm

i¼1

Hkin;i
@k
@enþ1

s0nþa þ k
@s0nþa

@enþ1

� �
� Hnl;i

@k
@enþ1

aT
n;i

� �
(103)

5.2 Backward Euler Consistent Tangent Modulus. To for-
mulate the consistent tangent modulus of the backward Euler

algorithm for the considered plasticity, it requires that the deriva-
tives of s0nþ1 and anþ1 with respect to enþ1 be found. Referring to
Appendix B, one can hire Eq. (B1) to reach @s0nþ1=@enþ1

@s0nþ1

@enþ1

¼ 1

1þ 2 �Gk� k2C1

@s0TR
nþ1

@enþ1

þ ð�2 �Gþ 2kC1 � k2C2Þ
@k
@enþ1

s0Tnþ1

�

þ @k
@enþ1

ðCT
3 � kCT

4 Þ
!

(104)

For absence of complexity and ambiguity, the scalars C1 and C2

also the vectors C3 and C4 are defined in the following shapes:

C1 ¼
Xm

i¼1

Hnl;iHkin;i

1þ kHnl;i
(105)

C2 ¼
Xm

i¼1

H2
nl;iHkin;i

ð1þ kHnl;iÞ2
(106)

C3 ¼
Xm

i¼1

Hnl;i

1þ kHnl;i
an;i (107)

C4 ¼
Xm

i¼1

H2
nl;i

ð1þ kHnl;iÞ2
an;i (108)

To differentiate anþ1 with respect to enþ1, Eq. (B3) will be uti-
lized, which eventually leads to the succeeding results

@anþ1

@enþ1

¼
Xm

i¼1

@anþ1;i

@enþ1

(109)

@anþ1;i

@enþ1

¼ Hkin;i

1þ Hnl;ik
@k
@enþ1

s0nþ1
T þ k

@s0nþ1

@enþ1

� �

� Hkin;iHnl;i

ð1þ Hnl;ikÞ2
@k
@enþ1

1

Hkin;i
an;i

T þ ks0Tnþ1

� �
(110)

As it is perceived from the former relationships, calculating
@s0nþ1=@enþ1 and @anþ1=@enþ1 is contingent on coming by the
derivative of the proportional factor with regards to enþ1 that will
be managed using Eq. (B5). The below relationship for @k=@enþ1

is the outcome of differentiating the aforementioned equality with
respect to enþ1

@k
@enþ1

¼

@s0TR
nþ1

@enþ1

ðs0TR
nþ1 þ kC3Þ

s0TR
nþ1 þ kC3

�� ��2

ð1þ 2 �Gk� k2C1Þ
ð2 �G� 2kC1 þ k2C2Þ � ðC3 � kC4ÞTðs0TR

nþ1 þ kC3Þ
(111)

5.3 Fully Explicit Exponential Consistent Tangent
Modulus. Considering Eq. (97), @rnþ1=@enþ1 is achieved calcu-
lating @s0nþ1=@enþ1 and @anþ1=@enþ1. Having referred to relation-
ships (56) and (57), taking the derivative of s0nþ1 with respect to
enþ1 means figuring @XS

nþ1=@enþ1 and @XR
nþ1=@enþ1. Expanding

Eq. (43), XS
nþ1 and XR

nþ1 are determined, as follows:

XS
nþ1 ¼ XS

nþa þ ðanþa � 1ÞðDl̂TXS
nþaÞDl̂þ bnþaXR

nþaDl̂ (112)

XR
nþ1 ¼ bnþaDl̂TXS

nþa þ anþaXR
nþa (113)

In these formulas, the subscript nþ a denotes the variables on the
yield surface. Using Equalities (44) and (51)–(53) lead to the
below values for XS

nþa and XR
nþa

XS
nþa ¼ XS

n þ 2GaX0
nDe (114)
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XR
nþa ¼ XR

n �
ffiffiffi
2
p

abKX0
nDev (115)

By exploiting the pervious equalities, the following derivatives
can be found:

@XS
nþ1

@enþ1

¼
@XS

nþa

@enþ1

þ ðDl̂TXS
nþaÞDl̂

@anþa

@enþ1

� �T

þ Dl̂ ðanþa � 1ÞQT
1 þQT

2


 �
þ ðanþa � 1ÞðDl̂TXS

nþaÞ



þ bnþaXR
nþaÞ

@Dl̂
@enþ1

(116)

The vectors Q1 and Q2 are defined as below

Q1 ¼
@Dl̂
@enþ1

XS
nþa þ

@XS
nþa

@enþ1

Dl̂

� �
(117)

Q2 ¼
@bnþa

@enþ1

XR
nþa þ bnþa

@XR
nþa

@enþ1

� �
(118)

@XR
nþ1

@enþ1

¼ @anþa

@enþ1

XR
nþa þ anþa

@XR
nþa

@enþ1

þ bnþaQ1 þ
@bnþa

@enþ1

ðDl̂TXS
nþaÞ

(119)

The following relations will be resulted if Eqs. (114) and (115)
are used:

@XS
nþa

@enþ1

¼ 2G
@a
@enþ1

X0
nDeT þ 2GaX0

nI (120)

@XR
nþa

@enþ1

¼ �
ffiffiffi
2
p

bKX0
n

@a
@enþ1

Dev (121)

The @a=@enþ1 is presented in the Appendix D. Appendix E gives
the derivatives of anþa, bnþa, and Dl̂ with respect to enþ1 intro-
duced in relations (116) to (119).

Now that @XS
nþ1=@enþ1 and @XR

nþ1=@enþ1 are known, one can
manage to obtain @s0nþ1=@enþ1 using Eqs. (56) and (57)

@s0nþ1

@enþ1

¼ Rnþ1

XR
nþ1

@XS
nþ1

@enþ1

� Rnþ1

ðXR
nþ1Þ

2
XS

nþ1

@XR
nþ1

@enþ1

� �T

(122)

To derive the derivative of the back stress vector with respect to
the deviatoric strain, @anþ1=@enþ1, Eq. (60) is hired, which results
in the coming relationship

@anþ1

@enþ1

¼
Xm

i¼1

Hkin;i
@Dep

@enþ1

�
Xm

i¼1

Hnl;ian;i
@k
@enþ1

� �T

(123)

In this equality, @k=@enþ1 is calculated akin to the one described
in Appendix D for the forward Euler. To obtain @Dep=enþ1, one
can use either Eqs. (63) or (64) corresponding the two approaches
explained in Sec. 3.1. Following the first approach and Using Eq.
(63) alongside Eq. (56), the next formula can be derived

@Dep

@enþ1

¼ s0n
2 �GX0

nþ1Rnþ1

þ GaDe

�GX0
nþ1Rnþ1

" #
@XR

nþ1

@enþ1

� �T

þ
G lnðX0

nþ1Þ
�G

De
@a
@enþ1

� �T

þaI

 !
(124)

where @XR
nþa=@enþ1 is known by Eq. (121) and @a=@enþ1 is pre-

sented in Appendix D. On the other hand, having pursued the sec-
ond approach and used Eq. (64), @Dep=@enþ1 is computed in the
following form:

@Dep

@enþ1

¼ 1

2 �G
2GI� @�a

@enþ1

�
@s0nþ1

@enþ1

� �
(125)

The term of @s0nþ1=@enþ1 has already been acquired through rela-
tionship (122) and @�a=@enþ1 is given by the next equality, which
has been derived via Eq. (65)

@�a

@enþ1

¼
Xm

i¼1

�Hnl;i

2 �GRnþ1X0
nþ1

an;i
@XR

nþ1

@enþ1

� �T

(126)

5.4 Semi-Implicit Exponential Consistent Tangent
Modulus. To reach the tangent modulus consistent with the
scheme, it is needed to calculate the derivatives of the deviatoric
shifted stress and the back stress at the specified point of each
load increment, which is designated by n; 0 < n < 1. This means
computing @s0nþnð1�aÞ=@enþ1 and @anþnð1�aÞ=@enþ1. By referring
to relationships (74), @s0nþnð1�aÞ=@enþ1 is attained, as follows:

@s0nþnð1�aÞ
@enþ1

¼
Rnþnð1�aÞ
XR

nþnð1�aÞ

@XS
nþnð1�aÞ
@enþ1

�
Rnþnð1�aÞ

ðXR
nþnð1�aÞÞ

2
XS

nþnð1�aÞ
@XR

nþnð1�aÞ
@enþnð1�aÞ

 !T

(127)

where using Eqs. (66) and (67), @XS
nþnð1�aÞ=@enþ1 and

@XR
nþnð1�aÞ=@enþ1 are obtained through the subsequent

relationships

@XS
nþnð1�aÞ
@enþ1

¼
@XS

nþa

@enþ1

þ ðDl̂nT
nþa XS

nþaÞDl̂n
nþa
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nþa
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 !T
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nþa ðan
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T
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nþa
TXS

nþaÞ þ bn
nþaXR

nþa
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� @Dl̂n

nþa

@enþ1

(128)

In this equation, Q
n
1 and Q

n
2 are defined by the below formulas

Q
n
1 ¼

@Dl̂n
nþa

@enþ1

XS
nþa þ

@XS
nþa

@enþ1

Dl̂n
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 !
(129)

Q
n
2 ¼

@bn
nþa

@enþ1

XR
nþa þ bn

nþa

@XR
nþa

@enþ1

 !
(130)

@XR
nþnð1�aÞ
@enþ1

¼ @an
nþa

@enþ1

XR
nþa þ an

nþa

@XR
nþa
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nþaQ

n
1

þ @bn
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@enþ1

ðDl̂n
nþaTXS

nþaÞ (131)

To avoid any confusion and since the procedure of achieving the
tangent modulus is in the first degree of importance to the authors
than the derivatives themselves, the details of the calculations
related to the former equations are given in Appendix F. The term
of @anþnð1�aÞ=@enþ1 is derived from Eq. (75), as follows:

@anþnð1�aÞ
@enþ1

¼
Xm

i¼1

@�an;i

@enþ1

þ
Xm

i¼1

@ �Hi

@enþ1

De
p

nþnð1�aÞ þ
Xm

i¼1

�Hi

@De
p

nþnð1�aÞ
@enþ1

(132)

The values of @�an;i=@enþ1, @ �Hi=@enþ1, and @De
p

nþnð1�aÞ=@enþ1

will be presented in Appendix F.
Now that, the derivatives of a and s0 are known at the specified

point denoted by n, @rnþ1=@enþ1 will be acquired by performing
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the whole process again, but this time using @s0nþnð1�aÞ=@enþ1 and
@anþnð1�aÞ=@enþ1 instead of @s0nþa=@enþ1 and @anþa=@enþ1,
respectively. It means that the following relationship, which has
been obtained from Eqs. (56) and (57), computes @s0nþ1=@enþ1:

@s0nþ1

@enþ1

¼ Rnþ1

XR
nþ1

@XS
nþ1

@enþ1

� Rnþ1

ðXR
nþ1Þ

2
XS

nþ1

@XR
nþ1

@enþ1

� �T

(133)

To avoid lengthening, @XS
nþ1=@enþ1 and @XR

nþ1=@enþ1 are intro-
duced in Appendix F. Equation (87) is utilized to reach the below
relationship for @anþ1=@enþ1

@anþ1

@enþ1

¼
Xm

i¼1

Hkin;i
@Dep

@enþ1

�
Xm

i¼1

Hnl;ianþnð1�aÞ;i
@knþnð1�aÞ
@enþ1

� �T

(134)

Appendix F presents @knþnð1�aÞ=@enþ1 in this equality. @Dep=enþ1

is calculated via Eq. (125), in which, @�a=@enþ1 is derived using
Equality (88), as follows:

@�a

@enþ1

¼
Xm

i¼1

�Hnl;i

2 �GRnþ1X0
nþ1

anþnð1�aÞ;i
@XR

nþ1

@enþ1

� �T

�Hnl;i

2 �G
lnðX0

nþ1Þ
@anþnð1�aÞ
@enþ1

(135)

where @XR
nþnð1�aÞ=@enþ1 and @anþnð1�aÞ=@enþ1 have already

been attained through Eqs. (131) and (132), respectively.
@Rnþnð1�aÞ=@enþ1 will be presented in Appendix F and other pa-
rameters are also known by means of prior relationships.

6 Verifying the Suggested Formulations

A body of point-wise numerical examples is presented in this
section to validate the proposed algorithms. Three general types
of numerical tests are taken to investigate the accuracy and per-
formance of the formulations, including stress and strain-updating
tests along with a boundary value problem. At the first category,
for a given strain history, stresses will be updated using the classi-
cal integrations of Forward and backward Euler and the newly
developed exponential-based techniques consisting of fully
explicit and semi-implicit. Having updated the stresses via the
four integrating methods, the results are compared in three major
grounds of accuracy, convergence rate, and performance using il-
lustrative graphs and lucid tables.

The second category of numerical experiences is adopted to as-
certain the tangent operators of the classical and suggested
schemes. In this group of examples, the derived tangent operators
of the proposed schemes are examined using the strain-updating
examples, which means computing strain histories for a variety of
stress paths. The examination includes accuracy investigation and
verification of the asymptotic quadratic convergence rate of the
developed consistent tangent moduli.

In order for these tests to have a comprehensive comparison,
two different histories of strains and two different histories of
stresses are adopted for the stress and strain-updating tests, respec-
tively. To avoid the discretization errors, all the strain and stress
histories are considered linear. It is also necessary to mention that,
due to the absence of the analytical solutions of the investigated
problems, the results of the numerical techniques are compared
with those of backward Euler method with a very small load-step
size (100,000 steps per second), which is considered as the exact
solution.

Eventually, a boundary value problem is chosen to be solved
using each algorithm in a nonlinear finite-element code to verify
the proposed strategies and the tangent operators in rendering the
asymptotic quadratic convergence rate in actuality. The problem

is comprised of a rectangular strip having an elliptical hole in its
center under a uniform load.

As it was mentioned earlier, this study is to introduce two new
exponential-based integrations for the pressure-sensitive nonasso-
ciative plasticity model proposed by Lei and Lissenden [14] for
DRA composites. Therefore, the mechanical properties of the
DRA system 6092/SiC/17.5p-T6 are taken into account drawn
from Ref. [14]. The linear elastic parameters of the material are
given below

E ¼ 102; 000 MPa � ¼ 0:325 G ¼ 38; 500 MPa

The yield-surface parameters include the following values:

sy;0 ¼ 220=
ffiffiffi
2
p

MPa b ¼ 0:078=
ffiffiffi
2
p

This DRA system consists of the subsequent material hardening
parameters

Hkin;1 ¼ 220; 000 MPa Hnl;1 ¼ 3200

Hkin;2 ¼ 24; 000 MPa Hnl;2 ¼ 400

Hkin;3 ¼ 3200 MPa Hnl;3 ¼ 35

For the sake of brevity and conciseness, abbreviations below are
used to represent the methods:

FE: Forward Euler integrating method and its tangent modulus
BE: Backward Euler integrating method and its tangent modulus
EXF: Fully explicit exponential map integrating method and its

tangent modulus
EXS: Semi-implicit exponential map integrating method and its

tangent modulus

6.1 Stress-Updating Tests. This section is subject to a broad
set of numerical tests, where the new algorithms are examined in
three different areas, including the accuracy, performance, and ac-
curacy convergence rate. Figures 4 and 5 illustrate the two biaxial
nonproportional strain histories considered for the purpose. Each
strain history is regulated by two strain components varied propor-
tionally to the first yielding strain, ey;0, in a uniaxial loading his-
tory. Other strain components are considered equal to zero.

Test 1: e11 and e12

Test 2: e11 and e22

ey;0 ¼
ffiffiffi
3
p

sy;0

2G
(136)

Fig. 4 Strain history 1
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To investigate the accuracy of the new formulations, stress rela-
tive error of the Euler’s and the suggested methods are calculated
and compared with each other. The error is obtained through the
following relationship, where �rn and rn are, respectively, the nu-
merical and the exact updated stresses at time tn

Er
n ¼

rn � �rnk k
rnk k

(137)

Figures 6–9 display the plotted errors of the Euler’s, FE and BE,
and the suggested schemes, EXF and EXS, against the time for
the practical time step size of Dt ¼ 0:025. Since EXS is much
more accurate that cannot be perceived in one diagram with
others, it is compared to EXF in different graphs for each strain
history.

As it is obvious in all diagrams, the accuracy of the updated
stresses from FE is less than the other three methods by a long
way. The precision of BE and EXF are either approximately the
same or EXF is better than BE but not much. Remarkably, EXS
has a greater accuracy compared to the others. The preciseness of
EXS is in a huge extent that even for a large step size like
Dt ¼ 0:1s, it has already achieved such good results that are com-
parable with those of BE or EXF with small step sizes of

Fig. 5 Strain history 2

Fig. 6 Stress relative errors by FE, BE, and EXF for strain his-
tory 1

Fig. 7 Stress relative errors by EXF and EXS for strain history
1

Fig. 8 Stress relative errors by FE, BE, and EXF for strain his-
tory 2

Fig. 9 Stress relative errors by EXF and EXS for strain history
2
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Dt ¼ 0:025 and 0:0125 s. See, for example, Figs. 10 and 11. The
reason is the convergence rate.

The convergence rates of the recommended strategies, EXF and
EXS, are verified by computing their relative errors for different
load-step sizes, as it is shown in Figs. 12 and 13. The diagrams
prove that the EXS rapidly converges on the exact solution. Hav-
ing computed the average stress errors of the new and classical
tactics and plotted them against each other, their convergence
rates are thoroughly investigated, as it is shown in Fig. 14. While
linear convergence rate is discerned for EXF, like BE and FE, the
convergence rate of EXS is quadratic. That is why its convergence
begins from large step sizes such as Dt ¼ 0:3 s and by
Dt ¼ 0:025 s it has a nearly exact response with the accuracy of
10�5. At this point, a significant question is, how long does it take
for EXF or EXS to get to the response? Are they fast enough to
defeat the classical methods of FE and BE? These questions are
replied by computational efficiency or performance.

Performance is the most important fact of the numerical
approaches, which means putting accuracy in front of the compu-
tational time. To investigate performance of the integrating
schemes, the following relationship is adopted:

g ¼ Accuracy

Computational time
¼ 1

EA � TCPU

(138)

Fig. 10 Comparison of the accuracy of EXF and BE with EXS
for strain history 1

Fig. 11 Comparison of the accuracy of EXF and BE with EXS
for strain history 2

Fig. 12 Stress relative error by EXS in consecutive load-step
sizes for strain history 1

Fig. 13 Stress relative error by EXF in consecutive load-step
sizes for strain history 1

Fig. 14 Demonstration of the accuracy convergence rates of
the integration schemes for strain history 1
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where, g, TCPU, and EA represent the performance, CPU time, and
average error, respectively. Here, accuracy has been defined as the
inverse of average error. To compare the performance of the sug-
gested formulations with the classical integrating ones, average
errors and CPU times are computed for 200 cycles of the strain
history 1, whereby one can have more measurable CPU times and
more accurate average errors. To have a better examination of the
performance, this act is performed for a variety of load-step sizes.
The results are presented in Table 1. Total error, ET, which is the
sum of the stress relative errors, divided by the number of points
where the errors are calculated gives the average error. Moreover,

Table 1 Performance of the integrating schemes for 200 cycles
of the strain history 1

Integration
scheme Load-step size ET EA TCPUðsÞ g

BE 0.2 25.2065 0.3600 8.52 0.33
0.1 10.0374 0.1434 14.25 0.49
0.05 4.8820 0.0697 23.76 0.60
0.025 2.4112 0.0344 42.68 0.68

FE 0.2 581.1668 8.3012 1.13 0.11
0.1 44.9087 0.6415 2.10 0.74
0.05 14.4703 0.2067 4.04 1.20
0.025 7.9068 0.1129 7.83 1.13

EXF 0.2 8.5027 0.1214 1.51 5.45
0.1 3.6410 0.0520 2.73 7.04
0.05 1.7678 0.0253 5.17 7.64
0.025 0.8687 0.0124 10.16 7.94

EXS 0.2 2.5244 0.0361 2.41 11.49
0.1 0.4566 0.0065 4.52 34.04
0.05 0.0916 0.0013 8.57 89.76
0.025 0.0248 0.0003 16.89 197.355

Table 2 Computational time of the schemes for 200 cycles of
the strain histories 1 and 2

Strain history 1 Strain history 2

Integration scheme Total error CPU time (s) Total error CPU time (s)

FE 0.093 659.08 0.187 1204.20
BE 0.092 673.28 0.189 301.72
EXF 0.092 96.08 0.189 72.08
EXS 0.092 8.57 0.185 9.68

Fig. 15 Stress history 1

Fig. 16 Stress history 2

Fig. 17 Strain relative errors by FE, BE, and EXF for stress his-
tory 1

Fig. 18 Strain relative errors by EXF and EXS for stress history
1
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Table 2 presents the computational efforts of the schemes in
achieving the same accuracy as each other rendering another
means of performance investigation. As it is evident in both
tables, the performances of the new integrating schemes are much
better than the Euler’s schemes, particularly the EXS. Thanks to
the very accurate responses alongside short CPU times, the EXS
is the most efficient algorithm among the others. It is also deduced
that by shortening the load-step size, the performance of FE, BE,
and EXF tend to converge on a constant amount while the compu-
tational efficiency of the EXS will increase constantly. It is worth
emphasizing that among the four presented integrating methodol-
ogies, unquestionably, the best integration for this nonassociative
plasticity model is the EXS. The reason is its great preciseness
and performance that it can be named virtually as an accurate inte-
gration than an approximate one.

6.2 Strain-Updating Tests. In this section, two different
point-wise tests are considered to investigate the consistent tan-
gent modulus of the suggested exponential map processes, EXF
and EXS. In each test, for a given stress history, strain will be
updated using the tangent operators of the suggested schemes and
the ones of the forward Euler and backward Euler methods. The
two stress histories are illustrated in Figs. 15 and 16. Using the
strain-updating results of the forward Euler technique with a very
fine load-step size of Dt ¼ 1� 10�5 as the exact solution, the ac-
curacy of the EXF and EXS are assessed. The coming relationship
obtains the relative strain error, Ee

n

Ee
n ¼

en � �enk k
enk k

(139)

where en represents the exact strain vector at time tn and �en stands
for the numerical solution. Figures 17–20 display the relative
strain errors of the methods in question compared to one another
for both stress histories. Since the new exponential-based methods
are much more accurate than the classical ones, EXF and EXS are
graphed in separate diagrams similar to what were given for the
stress relative errors. The results are presented for the practical
load-step size of Dt ¼ 0:025 s. Clearly, the EXF and EXS are
much more accurate than FE and BE. The EXS also presents
much better responses compared to the EXF. To examine the
quadratic convergence rate of the tangent operators, it is needed to
calculate the relative Euclidean norms of the errors for each time
step, which are defined as below

Fig. 19 Strain relative errors by FE, BE, and EXF for stress his-
tory 2

Fig. 20 Strain relative errors by EXF and EXS for stress history
2

Table 3 Relative Euclidian norms to demonstrate the tangent operators, stress path 1

t ¼ 2 s t ¼ 6 s

Iteration FE EXF EXS FE EXF EXS

1 1.000� 10 1.000� 10 1.000� 10 1.000� 10 1.000� 10 1.000� 10
2 8.100� 10�3 2.300� 10�3 2.300� 10�3 9.700� 10�3 2.100� 10�3 2.100� 10�3

3 1.078� 10�5 6.332� 10�6 6.319� 10�6 1.120� 10�5 5.487� 10�6 5.505� 10�6

4 1.106� 10�7 1.457� 10�8 1.455� 10�8 1.330� 10�7 1.170� 10�8 1.179� 10�8

5 2.551� 10�10 4.069� 10�11 4.065� 10�11 1.461� 10�11 3.047� 10�11 3.077� 10�11

Table 4 Relative Euclidian norms to demonstrate the tangent operators, stress path 2

t ¼ 2 s t ¼ 6 s

Iteration FE EXF EXS FE EXF EXS

1 1.000� 10 1.000� 10 1.000� 10 1.000� 10 1.000� 10 1.000� 10
2 2.900� 10�3 5.970� 10�4 6.063� 10�4 8.367� 10�3 1.826� 10�4 1.822� 10�4

3 1.825� 10�5 3.864� 10�7 3.851� 10�7 1.629� 10�6 3.637� 10�8 3.662� 10�8

4 5.178� 10�9 2.236� 10�10 2.254� 10�10 1.330� 10�10 6.362� 10�12 6.288� 10�12
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Ei
n ¼

ei
n � en

�� ��
e1

n � en

�� �� (140)

In the former equality, en is the converged strain and ei
n presents

the converged strain at the ith iteration. To verify the quadratic
convergence rate of the developed tangent operators, Tables 3 and
4 were prepared to illustrate the relative Euclidean errors of the
tangent modulus of FE, EXF, and EXS in successive iterations for
both stress histories in two arbitrary times, t ¼ 2 s and t ¼ 6 s.

At this stage, it is worth emphasizing that the quadratic conver-
gence rate of the tangent operators has no connection with the
convergence rate (accuracy order) of the integration schemes.
Regardless of the convergence rate of an integration method, their
tangent operators must always be capable of achieving the asymp-
totic quadratic convergence rate of the Newton–Raphson solution
in nonlinear finite-element analyses.

6.3 Boundary Value Problem. In the following, a boundary
value problem is solved by utilizing all the algorithms under dis-
cussion to feature the schemes’ performance as well as proving
the derived tangent operators in practice. Hence, using the path-

Fig. 21 The strip with an elliptical hole

Fig. 22 The finite-element mesh Fig. 23 The history of the nonproportional loads
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independent strategy alongside the Newton–Raphson solution, an
implicit nonlinear finite-element code is provided by the authors
to compare the precision, computational effort and efficiency of
the suggested integrations with the Euler’s, likewise, better verify-
ing the consistent tangent operators. The typical boundary value
problem of a rectangular strip with a central elliptical opening is
opted under the plane strain conditions. As it is shown in Fig. 21,
the strip undergoes symmetric uniform loads applied perpendicu-
larly on its all sides. Obviously, only one-quarter of the strip needs
to be analyzed owing to its symmetry, see Fig. 21.

Assuming the thickness of unit for the strip, the quarter is dis-
cretized by 192 four-node isoparametric bilinear quadrilaterals as
if displayed in Fig. 22. Furthermore, the biaxial nonproportional
load history depicted in Fig. 23 is considered for the analyses. To
better present the problem, the deformation of the strip and the
elements endured plastic deformation are featured in Fig. 24 for
the successive times of t ¼ 1� 8 s. The elements having plastic
strain are also depicted in Fig. 24 by gray color to see their
involvements in plastic computations. Note that the displacements
have been enlarged 50 times to be easily discernible. Moreover,
the quadratic convergence rate of the tangent moduli are demon-
strated deriving the Euclidian norm of the out-of-balance forces of
Newton’s iterations, which are presented in Tables 5 and 6 for
two given increments of 10th and 60th.

Accuracy is defined as the inverse of the total error. To assess
the accuracy of the algorithms, the total errors of nodes’ displace-
ments are computed through the following relationship:

ET ¼
XN

i¼1

uE
j � uN

j

��� ���
uE

j

��� ��� with uT ¼ u1; u2; :::; unodef g and ui

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x;i þ u2
y;i

q
(141)

in which, N stands for the total number of load increments. The
vector uE

j specifies the reference global displacements of the
nodes in jth increment computed by 100 subincrements. Addition-
ally, uN

j denotes the global displacement vector when the pro-
posed and classical schemes are employed.

The total CPU times are also recorded to evaluate the formula-
tions’ speed during the finite-element analyses. Eventually, hiring

Fig. 24 The elements involvement in plastic computations alongside their deformations

Table 5 Residual norms of the tangent operators in a given
finite-element analysis at increment 10th

Iteration BE FE EXF EXS

1 1:1411� 10þ3 1:1411� 10þ3 1:1411� 10þ3 1:1411� 10þ3

2 1:2466� 10þ2 1:2471� 10þ2 1:2440� 10þ2 1:2441� 10þ2

3 8:3437� 10�1 9:2663� 10�1 8:7046� 10�1 8:7138� 10�1

4 6:0179� 10�3 4:9443� 10�3 4:2676� 10�3 4:3732� 10�3

5 9:7430� 10�5 3:7380� 10�5 2:6812� 10�5 3:0949� 10�5

6 — — — —

Table 6 Residual norms of the tangent operators in a given
finite-element analysis at increment 60th

Iteration BE FE EXF EXS

1 1:4764� 10þ3 1:4764� 10þ3 1:4764� 10þ3 1:4764� 10þ3

2 1:2888� 10þ2 1:1761� 10þ2 1:2744� 10þ2 1:2845� 10þ2

3 9:4753� 10�1 1:44761� 10þ0 1:5175� 10þ0 1:5270� 10þ0

4 8:5521� 10�3 3:5782� 10�2 1:9349� 10�2 1:9299� 10�2

5 7:7426� 10�5 1:0564� 10�3 3:4564� 10�4 3:4306� 10�4

6 — 3:5646� 10�5 — —

Table 7 The accuracy, computational time, and performance of
the schemes in a boundary value problem

Integrating scheme Ninc ET TCPUðsÞ nit g gn ¼ g
gBE

BE 5 0.0882 178.05 5 0.064 1
10 0.0461 328.92 5 0.066 1

FE 5 0.3282 259.47 12 0.012 0.18
10 0.1342 386.37 9 0.019 0.28

EXF 5 0.0028 169.88 7 2.102 32.84
10 0.0013 304.82 6 2.524 38.24

EXS 5 0.0008 215.22 7 5.808 90.75
10 0.0002 393.61 6 12.703 192.47
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the same procedure as used in the stress-updating tests, the com-
putational efficiency or performance is appraised employing Eq.
(138) with the difference of using total error, ET, instead of aver-
age error, EA. Table 7 delivers the results for two numbers of sub-
increments; Ninc ¼ 5 and 10. To better interpret the results, the
maximum number of iterations during each analysis is also added
to the table represented by nit.

Overall, the same results as observed in the stress and strain-
updating tests are beheld here, too. Clearly, the tangent operators
are working properly where the residual forces plunge down from
10þ3 to 10�5 with the iterations as few as 5 or 6, see Tables 5 and
6. In case of the accuracy and computational efficiency assess-
ments presented in Table 7, the first thing obvious is the consider-
able influence of the integration procedures on the outcomes of a
small simple finite-element problem. This could surely intensify
in almost all other pragmatic engineering problems for the plastic-
ity computations that must be carried out in each Gauss point
whose numbers soar as the structures become bigger and more
complicated. Unquestionably, the most promising strategies in
integrating the constitutive equations of the plasticity are the
exponential-based methods. The EXF and EXS are far more accu-
rate and efficient than the BE and FE. Among the exponentials,
the EXS features great performance having an incredible precision
alongside quadratic convergence rate.

7 Conclusions

A nonassociative plasticity model of Drucker–Prager’s yield
criterion along with nonlinear kinematic hardening is taken into
consideration in which the plastic deformation is incompressible.
This plasticity model was chosen since it fits the plastic behavior
of a broad range of engineering metallic materials, specially DRA
composites and many others like high-strength steel, aluminum,
plain carbon, titanium, etc., as it was demonstrated by Lei and Lis-
senden [14].

Two consistent exponential-based formulations were proposed
for integrating the constitutive equations of the plasticity model.
These techniques, for short called EXF and EXS, have only been
developed up to linear hardening and no hardening, respectively.
In this investigation, they were evolved for the generalized nonlin-
ear kinematic hardening. To verify the EXF and EXS, formulas of
forward and backward Euler methods, FE and BE, were derived and
briefly presented corresponding to the plasticity model. The vantage
of EXS is to use better estimations of the stress and the yield-
surface’s features in each incremental step of the numerical proce-
dure. A broad set of numerical tests were adopted to assess the inte-
grating strategies in three major areas of accuracy, convergence rate,
and computational efficiency or performance. After purely evaluating
the schemes by the stress and strain histories at a given Gauss point, a
typical boundary value problem was also solved implementing each
technique in order to exhibit their performance in a real practice.

The greater accuracy and performance of the exponential-based
tactics, especially the EXS, were obvious in the tests. It was also
discerned that the EXS has second-order accuracy, which gener-
ates an increasing efficiency, whereas the EXF linearly
approaches to the exact solution. Moreover, the direct correlation
between the accuracy and efficiency of the integration schemes
and the precision and computational effort of the nonlinear finite-
element analyses were also obvious in the boundary value prob-
lem. As it was observed, the finite-element analyses performed
using the exponential-based schemes were much more accurate
and efficient than those carried out through the forward and back-
ward Euler’s techniques.

The consistent tangent moduli of the proposed and Eulers’
methodologies were also developed to achieve the quadratic con-
vergence rate when used in nonlinear finite-element analyses
through a Newton algorithm. In order for the tangent operators to
be examined, two diverse stress histories were chosen as well as
the boundary value problem. For each stress history, the updated
strains via the tangent operators of the EXF and EXS were derived

and compared to those of FE and BE. Much more accurate strains
by the EXF and EXS were concluded than FE and BE. Further-
more, having computed the relative Euclidean errors of the stress
histories and the residual forces of the nonlinear finite-element
analysis, the quadratic convergence rates through all developed
tangent operators were proven, too.

In short, while the exponential-based integrations are explicit
strategies with great speed and easy implementation, they have
the advantages of the implicit tactics such as appreciable robust-
ness and consistency with the yield surface and therefore, they are
highly recommended for the finite-element codes.

Nomenclature

a ¼ back stress tensor
A ¼ control matrix
E ¼ Young’s modulus

ET ¼ total error
EA ¼ average error

Er;Ee ¼ relative stress error, relative strain error
e; ee; ep ¼ deviatoric strain tensor, elastic deviatoric strain

tensor, plastic deviatoric strain tensor
F ¼ yield-surface function

G; �G ¼ shear modulus, extended shear modulus
G ¼ exponential/factor matrix

Hkin;Hnl ¼ kinematic hardening moduli
i ¼ array representation of second-order identity tensor
I ¼ fourth-order symmetric identity tensor:

Iijkl ¼ 1=2ðdikdjl þ dildjkÞ
Idev ¼ deviatoric projection tensor: Idev ¼ I� 1=3ðiiTÞ

K ¼ bulk modulus
n ¼ identity tensor of deviatoric stress

p; p0 ¼ volumetric/hydrostatic stress, volumetric/hydrostatic
shifted stress

Q ¼ plastic potential function
R ¼ radius of yield surface

s; s0 ¼ deviatoric stress tensor, deviatoric shifted stress tensor
s00 ¼ deviatoric shifted stress tensor prior to correction

t ¼ pseudotime
TCPU ¼ CPU time

u ¼ global displacement vector
X0 ¼ integrating factor
X ¼ augmented stress vector
a ¼ scalar separating elastic and elastoplastic parts of a

load increment
a ¼ deviatoric back stress tensor
b ¼ material constant in Drucker–Prager yield criterion

ey;0 ¼ first yielding strain
ev ¼ volumetric/hydrostatic strain

e; ee; ep ¼ strain tensor, elastic strain tensor, plastic strain tensor
_c ¼ plastic multiplier
k ¼ discrete plastic multiplier
g ¼ performance of a numerical integration

r; r0 ¼ stress tensor, shifted stress tensor
� ¼ Poisson ratio
sy ¼ yield stress in pure shear
n ¼ indicator of the specified point at the middle of an

elastoplastic load increment

Appendix A: Forward Euler Integration

As it is customary for the forward Euler algorithm, a trial solu-
tion is considered as

sTR
nþ1 ¼ sn þ 2GDe; aTR

nþ1 ¼ an; s0TR
nþ1 ¼ sTR

nþ1 � aTR
nþ1;

p0TR
nþ1 ¼ p0n þ KDev; sTR

y;nþ1 ¼ sy;n (A1)

The trial solution is admissible so long as the coming condition is
met
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jjs0TR
nþ1jj � RTR

nþ1 ¼
ffiffiffi
2
p
ðsy;nþ1 � bp0TR

nþ1Þ; (A2)

otherwise, the strain increment involves a plastic portion to be
specified. The next equalities give the information where a and
1� a designate the elastic and plastic parts, respectively

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

� B

2A
with

A ¼ 4G2DeTDe� 2ðbKDevÞ2

B ¼ 4GDeTs0n þ 4bKðsy;n � bp0nÞDev

C ¼ s0n
Ts0n � 2ðsy;n � bp0nÞ

2

8><
>: ; a 2 0; 1½ Þ

(A3)

Using the parameter a, the deviatoric and volumetric parts of the
shifted stress are calculated at the turning point of the load step
from elastic to plastic, as follows:

s0nþa ¼ s0n þ 2GaDe (A4)

p0nþa ¼ p0n þ KaDev (A5)

The plastic multiplier is acquired via Eq. (50). Having computed
k and used Eqs. (13), (17), (18), (21), (22), and (27), the parame-
ters are updated as follows:

s0nþ1 ¼ s0nþa þ 2Gð1� aÞDe� 2 �Gks0nþa þ k
Xm

i¼1

Hnl;ian;i (A6)

p0nþ1 ¼ p0nþa þ Kð1� aÞDev (A7)

sy;nþ1 ¼ sy;n ¼ sy;0 (A8)

anþ1 ¼ an þ
Xm

i¼1

Hkin;iDep � Hnl;ikan;i


 �
with Dep ¼ ks0nþa

(A9)

To enforce the consistency of the yield condition, the following
corrector vector is required:

af ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnT

nþ1s0nþ1Þ
2 � jjs0nþ1jj

2 þ 2ðsy;nþ1 � bp0nþ1Þ
2

q
� nT

nþ1s0nþ1; nnþ1 ¼
s0nþ1

s0nþ1

�� �� (A10)

s0nþ1 ¼ s0nþ1 þ afnnþ1 (A11)

Appendix B: Backward Euler Integration

The trial solution, Eq. (A1), and the associated condition, Eq.
(A2), are utilized pursuing the scheme. If the tentative assumption
is rejected, a plastic corrector is needed. The correction is exe-
cuted by omitting the plastic part from the strain increment while
calculating the stresses. Consequently, the variables are computed
through the subsequent relationships

s0nþ1 ¼ s0TR
nþ1 � 2 �Gks0nþ1 þ k

Xm

i¼1

Hnl;ianþ1;i ! s0nþ1

¼ 1

ð1þ 2 �GkÞ
s0TR

nþ1 þ k
Xm

i¼1

Hnl;ianþ1;i

 !
(B1)

Dep
v ¼ 0! p0nþ1 ¼ p0TR

nþ1 ¼ p0n þ KDev (B2)

Equation (18) is hired to update the back stress vector, as follows:

anþ1;i ¼
an;i

1þ Hnl;ik
þ Hkin;ik

1þ Hnl;ik
s0nþ1 (B3)

Replacing anþ1;i in Eq. (B1) with the former expression gives rise
to the next relationship for s0nþ1

s0nþ1 ¼ s0TR
nþ1 � 2 �Gks0nþ1 þ k

Xm

i¼1

Hnl;ian;i

1þ kHnl;i
þk2

Xm

i¼1

Hnl;iHkin;i

1þ kHnl;i
s0nþ1

(B4)

Using the yield function and substituting Eqs. (B2) and (B4) for
s0nþ1 and p0nþ1 leads to the following equality from which k is
acquired:

1þ 2 �Gk� k2
Xm

i¼1

Hnl;iHkin;i

1þ kHnl;i

 !�2

s0TR
nþ1 þ k

Xm

i¼1

Hnl;ian;i

1þ kHnl;i

�����
�����

2

� R2
nþ1 ¼ 0; Rnþ1 ¼

ffiffiffi
2
p
ðsy;0 � bp0nþ1Þ (B5)

A root finding technique such as the Newton–Raphson method is
hired to find the plastic multiplier.

Appendix C: Demonstration of Taking the Derivative of

Stress With Respect to Strain, ›rnþ1=›enþ1

rnþ1 ¼ snþ1 þ pnþ1i & snþ1 ¼ s0nþ1 þ anþ1 (C1)

@rnþ1

@enþ1

¼
@s0nþ1

@enþ1

þ @anþ1

@enþ1

þ @ðpnþ1iÞ
@enþ1

(C2)

where the components of the last equation are calculated, as
follows:

@s0nþ1

@enþ1

¼
@s0nþ1

@enþ1

� @enþ1

@enþ1

¼
@s0nþ1

@enþ1

� Idev

@anþ1

@enþ1

¼ @anþ1

@enþ1

� @enþ1

@enþ1

¼ @anþ1

@enþ1

� Idev;
@ðpnþ1iÞ
@enþ1

¼ KðiiTÞ
(C3)

Appendix D: Derivatives Mentioned in the Consistent

Tangent Modulus of Forward Euler Method

The derivatives of s0nþa, a, and k are obtained in the following
way:

@s0nþa

@enþ1

¼ 2G aþ @a
@enþ1

DeT

� �
(D1)

@a
@enþ1

¼ 8A1G2Deþ 4A2Gs0n (D2)

A1 ¼
1

2

� �
2AC� B2 þ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p (D3)

A2 ¼
1

2

� �
B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p (D4)

A ¼ jj2GDejj2 � 2ðbKDevÞ2

B ¼ 4GDeTs0n þ 4bKðsy;0 � bp0nÞDev

C ¼ jjs0njj
2 � 2ðsy;0 � bp0nÞ

2

(D5)

k ¼
ð1� aÞð2GDeTs0nþa þ 2bKðsy;0 � bp0nþaÞDevÞ

4 �Gðsy;0 � bp0nþaÞ2 � s0nþa
T
Xm

i¼1

Hnl;ian;i

¼ V

W
(D6)

@k
@enþ1

¼

@V

@enþ1

W � @W

@enþ1

V

W2
(D7)

@V

@enþ1

¼� 2GDeTs0nþa
@a
@enþ1

þ 2Gð1� aÞ s0nþa þ
@s0nþa

@enþ1

De

� �

� 2bKDev ðsy;0 � bp0nþaÞ
@a
@enþ1

þ bð1� aÞ
@p0nþa

@enþ1

� �
(D8)
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@W

@enþ1

¼ �8 �Gbðsy;0 � bp0nþaÞ
@p0nþa

@enþ1

�
@s0nþa

@enþa

Xm

i¼1

Hnl;ian;i (D9)

where @s0nþa=@enþ1 is known by Eq. (D1) and @p0nþa=@enþ1 is
derived below

@p0nþa

@enþ1

¼ KDev

@a
@enþ1

(D10)

Appendix E: Derivatives Mentioned in the Consistent

Tangent Modulus of Fully Explicit Exponential Map

Method

@Dl̂=@enþ1 is figured by hiring Eqs. (46) and (47), as follows:

@Dl̂
@enþ1

¼ 1

Dlk k
@Dl
@enþ1

� Dl

Dlk k3

@Dl
@enþ1

Dl

� �T

(E1)

@Dl
@enþ1

¼ ð1� aÞI� De
@a
@enþ1

� �T

þ 1

2G

Xm

i¼1

Hnl;ian;i
@k
@enþ1

� �T

(E2)

@anþa=@enþ1 and @bnþa=@enþ1 are also derived using Eqs. (48)
and (49). The next results will be obtained

@anþa

@enþ1

¼ 2G

Rnþa

@Dl
@enþ1

Dl
Dlk k �

Dlk k
Rnþa

@Rnþa

@enþ1

� �
sinh

2G

Rnþa
Dlk k

! 

(E3)

@bnþa

@enþ1

¼ 2G

Rnþa

@Dl
@enþ1

Dl
Dlk k �

Dlk k
Rnþa

@Rnþa

@enþ1

� �
cosh

2G

Rnþa
Dlk k

! 

(E4)

@Rnþa

@enþ1

¼ �
ffiffiffi
2
p

bKDev

@a
@enþ1

(E5)

It should be noted that @k=@enþ1 and @a=@enþ1 have already been
presented in Appendix D.

Appendix F: Derivatives Mentioned in the Consistent

Tangent Modulus of Semi-Implicit Exponential Map

Method

@XS
nþa=@enþ1 and @XR

nþa=@enþ1 are calculated by equalities
(120) and (121). @Dl̂n

nþa=@enþ1 is obtained using relationships
(68) and (69), as follows:

@Dl̂n
nþa

@enþ1

¼ 1

Dln
nþa

��� ���
@Dln

nþa

@enþ1

� Dln
nþa

Dln
nþa

��� ���3

@Dln
nþa

@enþ1

Dln
nþa

 !T

(F1)

@Dln
nþa

@enþ1

¼ nð1� aÞI� nDe
@a
@enþ1

� �T

þ 1

2G

Xm

i¼1

Hnl;ian;i
@kn

nþa

@enþ1

 !T

(F2)

where @a=@enþ1 has already been calculated through Eqs.
(D2)–(D5). @kn

nþa=@enþ1 is also derived utilizing Eq. (70) which
results in the relationships like (D6)–(D9) except for the below
fact that there should be the factor n multiplied to these
relationships

@kn
nþa

@enþ1

¼ n
@knþa

@enþ1

(F3)

To derive @an
nþa=@enþ1 and @bn

nþa=@enþ1, one can use Eq. (71)
which contribute to the below equalities

@an
nþa

@enþ1

¼ 2G

Rnþa

@Dln
nþa

@enþ1

Dln
nþa

Dln
nþa

��� ����
Dln

nþa

��� ���
Rnþa

@Rnþa

@enþ1

0
B@

1
CA

� sinh
2G

Rnþa
Dln

nþa

�� ��! 
(F4)

@bn
nþa

@enþ1

¼ 2G

Rnþa

@Dln
nþa

@enþ1

Dln
nþa

Dln
nþa

��� ����
Dln

nþa

��� ���
Rnþa

@Rnþa

@enþ1

0
B@

1
CA

� cosh
2G

Rnþa
Dln

nþa

�� ��! 
(F5)

To achieve @De
p

nþnð1�aÞ=@enþ1, one can employ Eqs. (76)–(78).
Thus, the following results are obtained:

@De
p

nþnð1�aÞ
@enþ1

¼
�
Xm

i¼1

@ �Hi

@enþ1

2Gþ
Xm

i¼1

�Hi

 !2
snþGDe�

Xm

i¼1

�an;i� s0nþnð1�aÞ

 !

þ 1

2Gþ
Xm

i¼1

�Hi

GI�
Xm

i¼1

@�an;i

@enþ1

�
@s0nþnð1�aÞ
@enþ1

 !

(F6)

@ �Hi

@enþ1

¼
�Hnl;iHkin;i

2
� @ �k
@enþ1

ð1þ Hnl;i
�k=2Þ2

;
@�an;i

@enþ1

¼
�Hnl;i

@ �k
@enþ1

an;i

ð1þ Hnl;i
�k=2Þ2

;

@ �k
@enþ1

¼ 1

2 �GRnþnð1�aÞX
0
nþnð1�aÞ

�
@XR

nþnð1�aÞ
@enþ1

(F7)

Using Eqs. (82) and (83), one can have the coming formulas

@Dl̂nþnð1�aÞ
@enþ1

¼ 1

Dlnþnð1�aÞ

��� ���
@Dlnþnð1�aÞ
@enþ1

�
Dlnþnð1�aÞ

Dlnþnð1�aÞ

��� ���3

@Dlnþnð1�aÞ
@enþ1

Dlnþnð1�aÞ

� �T

(F8)

@Dlnþnð1�aÞ
@enþ1

¼ ð1� aÞI� De
@a
@enþ1

� �T

þ 1

2G

Xm

i¼1

Hnl;ianþnð1�aÞ;i
@knþnð1�aÞ
@enþ1

� �T

(F9)

where @knþnð1�aÞ=@enþ1 is obtained through Eqs. (D6)–(D9) sub-
stituting the subscript nþ nð1� aÞ for nþ a. The derivatives
@XS

nþ1=@enþ1 and @XR
nþ1=@enþ1 are computed through the follow-

ing relationships acquired from Eqs. (79) to (81):

@XS
nþ1

@enþ1

¼
@XS

nþa

@enþ1

þ ðDl̂T
nþnð1�aÞX

S
nþaÞDl̂nþnð1�aÞ

@anþnð1�aÞ
@enþ1

� �T

þ Dl̂nþnð1�aÞ ðanþnð1�aÞ � 1ÞQ01 þQ02

 �T

þ ðanþnð1�aÞ � 1ÞðDl̂T
nþnð1�aÞX

S
nþaÞ þ bnþnð1�aÞX

R
nþa

� 

�
@Dl̂nþnð1�aÞ
@enþ1

(F10)
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Q01 ¼
@Dl̂nþnð1�aÞ
@enþ1

XS
nþa þ

@XS
nþa

@enþ1

Dl̂nþnð1�aÞ

� �
(F11)

Q02 ¼
@bnþnð1�aÞ
@enþ1

XR
nþa þ bnþnð1�aÞ

@XR
nþa

@enþ1

� �
(F12)

@XR
nþ1

@enþ1

¼
@anþnð1�aÞ
@enþ1

XR
nþa þ anþnð1�aÞ

@XR
nþa

@enþ1

þ bnþnð1�aÞQ
0
1

þ
@bnþnð1�aÞ
@enþ1

ðDl̂T
nþnð1�aÞX

S
nþaÞ (F13)

In these relationships, @XS
nþa=@enþ1 and @XR

nþa=@enþ1 have been
calculated through Eqs. (120) and (121). @l̂nþnð1�aÞ=@enþ1,
@anþnð1�aÞ=@enþ1, and @bnþnð1�aÞ=@enþ1 are achieved through
Eqs. (D6)–(E5) replacing subscript nþ a with nþ nð1� aÞ in
which @s0nþnð1�aÞ=@enþ1 is calculated by Eq. (127) and
@p0nþnð1�aÞ=@enþ1 is obtained as follows:

p0nþnð1�aÞ ¼ p0n þ ðaþ nð1� aÞÞKDev (F14)

@p0nþnð1�aÞ
@enþ1

¼ ð1� nÞKDev

@a
@enþ1

(F15)

@Rnþnð1�aÞ=@enþ1 is gained using relationships (72) and (F14),
which has the below shape

@Rnþnð1�aÞ
@enþ1

¼
ffiffiffi
2
p
ðn� 1ÞbKDev

@a
@enþ1

(F16)
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[34] Wei, Z., Perić, D., and Owen, D. R. J., 1996, “Consistent Linearization for the
Exact Stress Update of Prandtl–Reuss Non-Hardening Elastoplastic Models,”
Int. J. Numer. Methods Eng., 39, pp. 1219–1235.
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