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a b s t r a c t

It is crucial that more powerful integrations be developed as the plasticity models become more
sophisticated. Here, two new robust integrating tactics are suggested based on the Exponential map and
Euler's algorithms. The integrations are developed for the Drucker–Prager plasticity with nonlinear
mixed hardening. Moreover, two different types of exponential strategies are advanced for the plasticity
to be compared to the proposed techniques. Dealing with the apex of the yield surface is generally
discussed for the integrations as well. Eventually, the proposed algorithms are thoroughly examined
in a broad set of numerical tests comprising accuracy, efficiency, and convergence rate investigations.
The results demonstrate the supremacy of the suggested schemes amid the six diverse techniques under
discussion.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Whenever a material undergoes a plastic deformation, the
corresponding constitutive equations are path-dependent and as
a result the stress tensor is contingent upon the strain history as
well as function of the instantaneous amount of the strain.
Assuming a general path-dependent plasticity model, integration
of rate constitutive equations offers the updated stresses whose
strain histories are produced in the iterative solution of the
equilibrium equations during a generic nonlinear finite element
analysis. As an essential necessity to the finite element simulation
of path-dependent problems, an appropriate technique for inte-
grating a constitutive law is of great significance due to being
dramatically in touch with the final results of the numerical
analysis.

The history of incremental theory of plasticity and the integra-
tion of elastoplastic constitutive equations, as an inseparable part
of it, have their roots many years ago [1]. However, the current
form of the most well-known integrating technique is initially
attributed to Wilkins [2]. Having clearly explained the procedure
of an entire elastoplastic analysis, he formulated the equation of
State for two phases of elastic and plastic flow regions and
introduced the radial return algorithm to update the stress tensor
at elastoplastic state such that the yield strength of the material is
not exceeded. His integration technique was pragmatically used by
Rice and Tracy [3] to study the elastic perfectly plastic state of

crack tip deformation by a finite element procedure. Later on,
Krieg and Key [4] updated the algorithm for a more sophisticated
plasticity to account for the isotropic and kinematic hardenings.
Proposing an exact solution for perfect plasticity, Krieg and Krieg
[5] are known as the frontiers of exact integrations. They also
introduced the iso-error maps as a robust tool for examining the
integrating tactics. Subsequently, Schreyer et al. [6] extended their
scheme for a plasticity model with hardenings. At this point, it was
time for a thorough investigation on the different integration
schemes proposed to that time. Yoder and Whirley [7] performed
a comparative examination which proved the general primacy of
radial return integration, especially in the presence of hardening
plasticity. Ortiz and Popov [8] extended the investigation on the
ground of stability, likewise accuracy, to demonstrate the superior
stability of the generalized midpoint over trapezoidal rules. An
important fact of any of integration strategies is the consistent
elastoplastic tangent modulus which is responsible for preserving
the asymptotic rate of quadratic convergence in implicit finite
element codes. The concept was first perceived by Nagtegaal [9] to
which Simo and Taylor [10,11] and Dodds [12] are also known as
pioneers. Meanwhile, Loret and Prevost [13] developed an exact
solution for non-associative Drucker–Prager plasticity with linear
isotropic hardening. After a brief review of new developments to
that time, Runesson et al. [14] performed a comparison between
midpoint and closest point integrations with respect to the
treatment of non-smooth yield surfaces. Subsequently, Sloan and
Booker [15] suggested that the constitutive equations of a non-
smooth yield convex set such as Tresca or Mohr–Coulomb could be
integrated exactly under certain circumstances. Afterwards, Genna
and Pandolfi [16] illustrated a general two-step integration tactic
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for the associative rate plasticity of Drucker–Prager model with
some advantages over the typical radial return algorithm. At this
point, Hopperstad and Remseth [17] came by a modified return
mapping algorithm that would employ the closest point algorithm
along with a decomposition method to achieve a more efficient
integration. The last major attempt to improve the integration
schemes in twentieth century was carried out by Wei et al. [18]
where they proposed a consistent algorithm based on Prandtl–
Reuss elastoplastic models combining the advantages of exact time
integration of constitutive equations and the quadratic asymptotic
convergence of Newton–Raphson iterative procedures.

In the past century, as reviewed, the researches in this field were
chiefly to develop the implicit group of integrations such as closest
point, midpoint, trapezoidal and so on, which uses the unknown
values of the variables at each load increment and leads to an
iterative process in the heart of their algorithms. These studies were
followed by Kobayashi and Ohno [19] and Kobayashi et al. [20]
where they executed an integration strategy based on closest point
method for a cyclic plasticity and presented an implicit method for
time-and-temperature dependent constitutive equations. After-
wards, Clausen et al. [21] presented a new return method based
on the constant gradient of linear isotropic yield criteria achieving
simple formulae with closed form solution and no iteration for such
criteria. Similarly, Kan et al. [22] proposed another implicit integra-
tion based on the radial return method and Backward Euler's
integration. Coombs et al. [23] offered an alternative to the
Drucker–Prager and Mohr–Coulomb models by a conical surface
with modified Reuleaux deviatoric sections, which presents a better
accuracy in stress updating with Backward Euler approach.

On the other side, there are explicit integrations to which there
is no iterative part to update the stress state since they obtain the
variables utilizing the known values of the preceding load step. In
the recent century, this sort of integrations found a new life via
inaugurating a new technique called Exponential Map integration.
In essence, the strategy is based on converting the constitutive
equations of a given plasticity into the compact form of _X¼AX,
which was originally addressed by Hong and Liu [24–26]. Inspired
by the notion, Auricchio and Beirao da Veiga [27] are regarded as
the founders who practically presented an exponential-based
algorithm for integrating the constitutive equations of von-Mises
plasticity with linear mixed hardening. Subsequently, Artioli et al.
[28] modified their algorithm to be consistent with the yield
surface. Liu [29–31] investigated the internal symmetries of the
elastic perfectly plastic Drucker–Prager model and developed two
exponential-based integration schemes. Later on, accuracy and
convergence rate of the method were improved by Artioli et al.
[32,33] and Rezaiee Pajand and Nasirai [34,35]. Afterwards,
Rezaiee Pajand et al. [36,37] demonstrated the application of
exponential-based integrations for a class of von-Mises plasticity
with nonlinear isotropic and kinematic hardenings. Their methods
were all fast and consistent having a considerable accuracy and
efficiency for the considered plasticity models.

Besides, there is another general category of explicit integrations
where the constitutive equations are directly integrated by an
explicit Runge–Kutta technique such as Forward Euler, 2-stage RK
method of order 2. Of the most recent efforts in this field one could
find Sloan et al. [38] and Solowski and Gallipoli [39] helpful. It is
also possible to reduce the number of constitutive equations to
fewer ODEs and then hire the explicit Runge–Kutta techniques for
solving them. Many studies have been performed in this area from
which Wallin and Ristinmma [40,41], Szabo [42], Kossa and Szabo
[43] and Rezaiee Pajand and Sharifian [44] are the most notable
ones in the recent century.

In this study, two robust hybrid schemes are proposed estab-
lished upon three major integrations of Exponential map, Backward
Euler, and Forward Euler. The new algorithms could easily handle

sophisticated plasticity models where the aforementioned tactics
unveil their weak spots. The Drucker–Prager yield criterion along
with nonlinear isotropic and kinematic hardenings is chosen as the
plasticity to generally develop the integrations and also challenge
their capabilities. Coping with the apex of the yield surface is
described for the two general approaches of explicit and implicit
integrations, as well. Moreover, the exponential map algorithm, and
also Eulers' are derived for the plasticity model, which in case of the
exponential map is totally new concerning the plasticity. Eventually,
in a comprehensive numerical examination, the suggested schemes
are thoroughly investigated. First, the accuracy is scrutinized by
means of strain histories and iso-error maps. Second, the efficien-
cies are inspected via putting the computational effort versus the
accuracy. And third, using the stress relative errors for a succession
of load-step increments, the convergence rates of the schemes are
verified. In all numerical tests, the results are compared to those of
the exponential and Eulers' to clearly demonstrate the great
accuracy and efficiency of the suggested algorithms.

2. Constitutive models

To broadly develop the new hybrid techniques, a generic
constitutive model is taken into account where the Drucker–Prager
yield surface [45] represents a pressure dependent plasticity along-
side nonlinear mixed hardening. Many other plasticity models
could be particularized from this generic state. Small deformation
realm is also assumed for the strains. The following is the yield
function proceeded by Chaboche's nonlinear mixed hardening:

F ¼ 1
2
s′Ts′�ðτy�βp′Þ2 ¼ 0; τy�βp′40 ð1Þ

_τy ¼ bðτy;0þτy;s�τyÞ_γ ð2Þ

_a¼ ∑
m

i ¼ 1

_ai; _ai ¼Hkin;i _εp�Hnl;i _γai ð3Þ

Eqs. (2) and (3) display, respectively, the nonlinear isotropic and
kinematic hardenings where τy is the yield stress in pure shear, τy;0 is
the initial pure shear stress, and τy;s, b, Hkin;i, and Hnl;i are all material
constants. For more in this, refer to Chaboche et al. [46], Chaboche
[47,48] and Rezaiee-Pajand and Sinaie [49]. These hardening rules
are the most applicable laws for regulating the yield surface evolu-
tion in nonlinear plasticity since they are quite capable of taking
account of the transient stress–strain behavior of material and the
ratcheting. Other parameters used in these relationships are all based
on prevailing plasticity notation where a total stress is decomposed
into its elements of shifted stress, r′, and back stress, a:

r¼ r′þa ð4Þ
The parameters s′ and p′ are, respectively, the deviatoric and
hydrostatic/volumetric parts of the shifted stress:

r′¼ s′þp′i with p′¼ trðr′Þ
3

ð5Þ

The presence of the Kinematic hardening means the existence of the
back stress as it determines the yield surface center when its location
is going to change. Analogous to the total stress, the associated back
stress vector is divided into its deviatoric and hydrostatic parts, α and
p, respectively:

a¼ αþpi with p¼ trðaÞ
3

ð6Þ

In a deviatoric space the nonlinear kinematic hardening finds the
below shape:

_α¼ ∑
m

i ¼ 1
_αi; _αi ¼Hkin;i _e

p�Hnl;i _γαi ð7Þ
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where ep is created from the strain decomposition. This is the same as
the one for the stress:

ε¼ eþ εv
3
i with εv ¼ trðεÞ ð8Þ

In the prior equality, e stands for the deviatoric strain and εv is called
volumetric or hydrostatic strain. Elastic and plastic strains stem from
these strains as

ε¼ εeþεp ð9Þ

e¼ eeþep ð10Þ

εv ¼ εevþεpv ð11Þ
Using an associative flow rule, the plastic multiplier, _γ, holds the
connection between the rate of the plastic strain and the yield function
gradient as follows:

_εp ¼ _γ
∂F
∂s′

ð12Þ

Referring to Eq. (1), the above relation finds the below form:

_εp ¼ _γs′þ 2
3
β_γðτy�βp′Þi ð13Þ

Deviatoric and hydrostatic parts of _εp are easily recognized comparing
Eqs. (13) with (8) in the next forms:

_ep ¼ _γs′ ð14Þ

_εpv ¼ 2β_γðτy�βp′Þ ð15Þ
It is convenient to find τy by taking the initial conditions of τy ¼ τy;0
and γ¼ 0 to solve the associated differential equation, Eq. (2), which
reaches succeeding equality:

τy ¼ τy;0þτy;sð1�expð�bγÞÞ ð16Þ
It is crucial to obtain the shifted stress evolution. This goal is fulfilled
by Eq. (4) and the generalized Hooke's law reading:

_r′¼ 2G_εeþ K� 2
3
G

� �
_εevi�a ð17Þ

Using Eqs. (6)–(8), the rate of the shifted stress finds the following
shape:

_r′¼ 2G _ee� ∑
m

i ¼ 1
Hkin;i _e

pþ ∑
m

i ¼ 1
Hnl;i _γαi

þ K _εev� ∑
m

i ¼ 1

Hkin;i

3
_εpvþ ∑

m

i ¼ 1
Hnl;i _γ

trðαiÞ
3

 !
i ð18Þ

The preceding equality along with Eqs. (4), (5), (10), (11), (14), and (15)
are utilized to achieve the rates of the deviatoric and hydrostatic
shifted stresses as

_s′ ¼ 2G_e�2G_γs′þ ∑
m

i ¼ 1
Hnl;i _γαi ð19Þ

_p′¼ K _εv�2β_γΚðτy�βp′Þþ ∑
m

i ¼ 1
Hnl;i _γpi ð20Þ

Where K and G are constants defined with the subsequent formulae:

2G¼ 2Gþ ∑
m

i ¼ 1
Hkin;i ð21Þ

K ¼ Kþ ∑
m

i ¼ 1

Hkin;i

3
ð22Þ

As the last measure before computing the plastic multiplier, the rate of
the hydrostatic back stress must be attained. This is realized through
utilizing Eqs. (3) and (6) having them departed into their deviatoric
and volumetric sections and then drawing out _p in the next shape.
As guidance, during this mission one needs Eqs. (7) and (8) along with

some manipulations.

_p¼ ∑
m

i ¼ 1

_pi; _pi ¼
2
3
Hkin;i _γβðτy�βp′Þ�Hnl;i _γpi ð23Þ

Consequently, employing the consistency condition, _γ _F ¼ 0 if F ¼ 0,
during the plastic phase together with Eqs. (1), (2), (19), and (20), the
plastic multiplier is computed as

_γ¼ 2G _eTs′þ
ffiffiffi
2

p
βKR_εv

2ðGþβ2KÞR2þ
ffiffiffi
2

p
R bðτy;0þτy;s�τyÞ�β ∑

m

i ¼ 1
Hnl;ipi

" #
�s′T ∑

m

i ¼ 1
Hnl;iαi

ð24Þ
Where R serves as the yield surface radius having the next relation-
ship:

R¼
ffiffiffi
2

p
ðτy�βp′Þ ð25Þ

3. Exponential map integration using two integrating
factors, EX

This was first devised by Liu [31] where he integrated the
constitutive equations of the elastic-perfectly plastic Drucker–
Prager model and then was developed by the authors for the
Drucker–Prager plasticity with linear mixed hardening [50]. This
section is subject to evolve the scheme to the nonlinear isotropic
and kinematic hardenings. The integration algorithm is explained
in two major parts; mapping into augmented stress space and
stress updating procedure. It is worth mentioning that the for-
mulation is described in detail since many of its parts are needed
to be addressed where the new hybrid techniques are developed.

3.1. Mapping into augmented stress space

The heart of exponential based integrations is to map the
original constitutive equations into augmented stress space.
In this way, the system of nonlinear differential equations is
converted to a set of quasi-linear ones. The integrating factor X0

is defined so that it can satisfy the next two differential equations
drawn from Eq. (19):

d
dt

ðX0s′Þ ¼ X0 _s′þ2G_γX0s′ ð26Þ

d
dt

ðX0s′Þ ¼ 2GX0 _eþ _γX0 ∑
m

i ¼ 1
Hnl;iαi ð27Þ

Expanding the first equality and discarding the same parts from
both sides contribute to the following differential equation for the
integrating factor:

_X
0 ¼ 2G_γX0 ð28Þ

The plastic multiplier from the prior equation is substituted for its
counterpart from Eq. (24) which reads

_X
0 ¼ 4GG

Q
_eTs′X0þ 2

ffiffiffi
2

p
GβΚR
Q

_εvX0 ð29Þ

where

Q ¼ 2ðGþβ2KÞR2þ
ffiffiffi
2

p
R bðτy;0þτy;s�τyÞ�β ∑

m

i ¼ 1
Hnl;ipi

" #

�s′T ∑
m

i ¼ 1
Hnl;iαi ð30Þ

After multiplying Eq. (27) by s′T and making use of the following
relations

R2 ¼ s′Ts′ and _RR¼ _s′Τs′; ð31Þ
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obtained from the yield function, one can attain the subsequent
differential equation:

d
dt

ðX0RÞ ¼ 2G
R

X0s′T _eþ _γ
R
X0s′T ∑

m

i ¼ 1
Hnl;iαi ð32Þ

The differential equations (27) and (32) comprise the first dyna-
mical system as

_Xa ¼AaXa ð33Þ
where Xa and Aa are, respectively, called stress vector and control
matrix with the coming appearances:

Xa ¼
Xs

a

XR
a

( )
¼ X0s′

X0R

( )
and

Aa ¼
O9�9

2G
R _μ

2G
R _μT

0

" #
10�10

with _μ¼ _eþ _γ
2G

∑
m

i ¼ 1
Hnl;iαi ð34Þ

Solving this dynamical system, Xs and XR are obtained while the
integrating factor remains unknown as a key to acquire s′ and R.
The more the precise X0, the more accurate are the updated values.
To effectively manage the integrating factor with as much accu-
racy, another dynamical system is introduced as

_Xb ¼AbXb ð35Þ
which includes a new integrating factor denoted by x0. The basic
concept to draw this system is the function of the yield surface
radius containing two significant variables of τy and p′. Differen-
tiating both sides of Eq. (25) with respect to pseudo-time along-
side utilizing Eqs. (2) and (20) result in

_R¼
ffiffiffi
2

p
bðτy;0þτy;s�τyÞ_γ�βðK _εv�2β_γΚðτy�βp′Þþ ∑

m

i ¼ 1
Hnl;i _γpiÞ

 !

ð36Þ
Using Eq. (24) to substitute for the plastic multiplier and after lots
of manipulations, the previous relationship is transformed into the
next desired form:

_R¼ 2
ffiffiffi
2

p
Kβ2 _γðτy�βp′Þþ2GQ _eTs′þ

ffiffiffi
2

p
Q� 1

R

� �
βΚ _εv ð37Þ

with

Q ¼
ffiffiffi
2

p

Q
bðτy;0þτy;s�τyÞ�β ∑

m

i ¼ 1
Hnl;ipi

" #
ð38Þ

At this time, the new integrating factor is coined so it could fulfill
the following equality:

d
dt

x0ðτy�βp′Þ� �¼ Q� 1
R

� �
βK _εvþ

ffiffiffi
2

p
QG_eTs′

� �
x0 ð39Þ

Working on the previous relationship, one can reach the below
form:

d
dt

ðτy�βp′Þ ¼ Q� 1
R

� �
βK _εvþ

ffiffiffi
2

p
QG_eTs′� _x0

x0
ðτy�βp′Þ ð40Þ

Comparing both sides of Eqs. (37) and (40), the coming differential
equation is managed for the new integrating factor:

_x0 ¼ �2Kβ2 _γx0 ð41Þ
The next form is conveniently attained by manipulating Eq. (39)
along with taking its derivative with respect to ðτy�βp′Þ:
d
dt

ðx0RÞ ¼ 2
R

Q� 1
R

� �
βK _εvþ

ffiffiffi
2

p
QG_eTs′

� �
ðτy�βp′Þx0 ð42Þ

Utilizing Eq. (42) alongside the following appearance of Eq. (39)

d
dt

x0ðτy�βp′Þ� �¼ 1
R

Q� 1
R

� �
βK _εvþ

ffiffiffi
2

p
QG_eTs′

� �
Rx0; ð43Þ

yields the next system of differential equations as

d
dt

x0R

x0ðτy�βp′Þ

( )
¼ 1

R
Q� 1

R

� �
βK _εvþ

ffiffiffi
2

p
QG_eTs′

� �
2x0ðτy�βp′Þ

x0R

( )

ð44Þ
This could be reshaped in term of the dynamical system (35) as

Ab ¼
1
R

Q� 1
R

� �
βK _εvþ

ffiffiffi
2

p
QG_eTs′

� �
0 2
1 0

� �
and

Xb ¼
XR
b

X1
b

( )
¼

x0R

x0ðτy�βp′Þ

( )
ð45Þ

Having used the initial conditions to solve the differential equa-
tions (28) and (41) as

X0 ¼ expð2GγÞ and x0 ¼ expð�2Kβ2γÞ; ð46Þ
one can acquire the connection between the two integrating
factors as follows:

x0 ¼ ðX0Þ�Κβ2=G ð47Þ
Considering the control matrixes Aa and Ab as the matrixes with
their elements independent of time, the two dynamical systems
Eq. (33) and (35) are converted into two sets of linear differentials
having the following closed solutions:

XaðtÞ ¼ expðAatÞXað0Þ; Xað0Þ ¼
Xs

a;0

XR
a;0

8<
:

9=
;¼

s′0ffiffiffi
2

p
ðτy;0�βp′0Þ

( )

ð48Þ

XbðtÞ ¼ expðAbtÞXbð0Þ; Xbð0Þ ¼
X1
b;0

X0
b;0

8<
:

9=
;¼ ðτy;0�βp′0Þ

ffiffiffi
2

p

1

( )

ð49Þ

3.2. Stress updating procedure

To obtain the numerical algorithm, a rectilinear strain-
controlled path is assumed, where _e and _εv are unvarying within
each incremental pace. It is also assumed that the stress state at
time t ¼ tn is on the yield surface, i.e. F ¼ ð1=2Þs′nTs′n�
ðτy;n�βp′nÞ2 ¼ 0. Following an explicit scheme, the yield surface
radius is reckoned with its amount at the outset of each time step.
Thus, the control matrixes Aa and Ab are independent of aug-
mented stress vectors Xa and Xb, consequently, the desired
numerical algorithm reaches the following shapes:

Xa;nþ1 ¼ expðAa;nΔtÞXa;n ¼Ga;nXa;n ð50Þ

Xb;nþ1 ¼ expðAb;nΔtÞXb;n ¼Gb;nXb;n ð51Þ
where the matrix exponentials,Ga;n and Gb;n, are computed as

Ga;n ¼
I9�9þðan�1ÞΔμ̂Δμ̂T bnΔμ̂

bnΔμ̂T an

" #
10�10

and

Gb;n ¼
un

ffiffiffi
2

p
vn

1ffiffi
2

p vn un

2
4

3
5 ð52Þ

with

Δμ̂¼ Δμ
‖Δμ‖

with Δμ¼Δeþ λ
2G

∑
m

i ¼ 1
Hnl;iαn;i ð53Þ

an ¼ cosh
2G
Rn

jjΔμjj
� �

and bn ¼ sinh
2G
Rn

jjΔμjj
� �

ð54Þ

un ¼ cosh
1
Rn

Qn�
1
Rn

� �
βKΔεvþ

ffiffiffi
2

p
QnGΔeTs′n

� �� �
ð55Þ
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vn ¼ sinh
1
Rn

Qn�
1
Rn

� �
βKΔεvþ

ffiffiffi
2

p
QnGΔeTs′n

� �� �
ð56Þ

In these relationships, the parameter λ represents the discrete
plastic multiplier calculated through

λ¼ _γΔt

¼ 2GΔeTs′nþ
ffiffiffi
2

p
βKRnΔεv

2ðGþβ2KÞR2
nþ

ffiffiffi
2

p
Rn bðτy;0þτy;s�τy;nÞ�β ∑

m

i ¼ 1
Hnl;ipi;n

" #
�s′nT ∑

m

i ¼ 1
Hnl;iαi;n

ð57Þ
The stress vectors Xa and Xb are updated by means of Eqs. (50) and
(51). Having XR

a and XR
b from the updated stress vectors and

utilizing Eq. (47), one can gain the integrating factor X0 with the
below appearance:

X0
nþ1 ¼

XR
a;nþ1

XR
b;nþ1

 !G=ðKβ2 þGÞ

ð58Þ

Subsequently, the deviatoric shifted stress and the yield surface
radius are computed through

s′nþ1 ¼
Xs

nþ1

X0
nþ1

and Rnþ1 ¼
XR
nþ1

X0
nþ1

ð59Þ

As the below relationship suggests, the back stress must be
updated in order to sort out the deviatoric stress, s, at the end of
each load step:

s′nþ1 ¼ snþ1�αnþ1 with snþ1 ¼ snþ2GðΔe�ΔepÞ ð60Þ
With the purpose of updating the back stress vector, the differ-
ential equation (7) is integrated to have the next incremental
shape:

αnþ1�αn ¼ ∑
m

i ¼ 1

Z tnþ 1

tn
ðHkin;i _e

p�Hnl;i _γαiÞdt ð61Þ

To work out the previous integration, αi needs to be assumed
constant. It is of better accuracy to estimate the αi by its value at
the middle of each time step, which means

αi ¼
αnþ1;iþαn;i

2
ð62Þ

Having the prior equality replaced for αi in Eq. (61) leads to the
below relationship for the back stress:

αnþ1 ¼ ∑
m

i ¼ 1

2�λHnl;i

2þλHnl;i
αn;iþ

2Hkin;i

2þλHnl;i
Δep

 !
ð63Þ

The evolution of the deviatoric plastic strain is readily acquired
using the preceding equality along with Eq. (60) as

Δep ¼ 1

2Gþ ∑
m

i ¼ 1

2Hkin;i

2þ λHnl;i

snþ2GΔe�s′nþ1� ∑
m

i ¼ 1

2�λHnl;i

2þλHnl;i
αn;i

 !

ð64Þ
In this relationship, the discrete plastic multiplier should be
computed through the following, which is obtained by solving
Eq. (28) considering the initial condition of X0ðγ¼ 0Þ ¼ 1 as

λ¼ 1
2G

ln
X0
nþ1

X0
n

 !
ð65Þ

Up until now, the parameters s′nþ1, snþ1, αnþ1, and Rnþ1 have
been attained. The only variables to update are p′, p and τy. The
coming equality, which is conceived through Eq. (14) and the yield
surface function, helps obtain the variables via using the well
computed Δep for having better accuracy:

‖ _ep‖¼ _γ‖s′‖¼ _γR ð66Þ

Using the prior equation alongside the constitutive equation (20),
the hydrostatic shifted stress is updated as

p′nþ1 ¼ p′nþKΔεv�
ffiffiffi
2

p
βΚ‖Δep‖þλ ∑

m

i ¼ 1
Hnl;ipn;i ð67Þ

Referring to Eq. (25), computing p′nþ1 and Rnþ1 means having
τy;nþ1 with the following appearance:

τy;nþ1 ¼
Rnþ1ffiffiffi

2
p þβp′nþ1 ð68Þ

The same procedure, as was performed for α and p′, is utilized to
update the volumetric part of the back stress. In the constitutive
equation (23), the estimation pi ¼ ðpn;iþpnþ1;iÞ=2 and Eq. (66) are
exploited to reach the coming form:

pnþ1 ¼ ∑
m

i ¼ 1

1
2þλΗnl;i

ð2�λHnl;iÞpn;iþ
2
ffiffiffi
2

p

3
Hkin;iβ‖Δep‖

" #
ð69Þ

4. Hybrid exponential map-forward Euler integration, HXF

A growing number of variables need to be updated as the
plasticity models become more advanced. Following an explicit
manner, the problem is dealt with through assuming more
variables as constants with their amounts at beginning of each
time-step during the increments of the integration process. How-
ever, this would aggravate the outcomes of the explicit methods
such as Forward Euler and Exponential map. On the other side, it is
not wise to forsake explicit integrations and their advantages such
as easy implementation and speed. This will encourage developing
a new explicit algorithm based on the two well-known explicit
schemes of Exponential Map and Forward Euler.

Overall, the Exponential Map integrations are more accurate
and efficient than the Forward Euler's except for the fact that the
latter is faster than the former, see [36,37,50]. Consequently, the
hybrid scheme would better form based on the Exponential map
with some helps from the Froward Euler algorithm. In the
proposed scheme, the Forward Euler algorithm is firstly used to
update the variables at the middle of each load step, and then the
computed values are substituted for the amounts which used to be
approximated constant in a regular exponential scheme. This
will significantly improve the results and increase the rate of
convergence.

Therefore, the variables are updated via a two-step procedure;
computing the values at the middle of the load increment through
a Forward Euler scheme and then, utilizing the results of the
previous step to update the parameters with the Exponential map
scheme. The following elaborate the algorithm.

4.1. Forward Euler step

The discrete plastic multiplier is calculated for the half of the
load increment:

λ′¼ 1
2
_γΔt ð70Þ

where _γ will be replaced with Eq. (24). Having the discrete plastic
multiplier and using the constitutive equations (16), (19), (20),
(23), (14), and (7), all the variables are updated at the middle of
each load step as

s′m ¼ s′ðnþ1Þ=2 ¼ s′nþGΔe�2Gλ′s′nþλ′ ∑
m

i ¼ 1
Hnl;iαn;i ð71Þ

p′m ¼ p′ðnþ1Þ=2 ¼ p′nþ 1
2
KΔεv�2βλ′Κðτy;n�βp′nÞþ ∑

m

i ¼ 1
Hnl;iλ′pn

ð72Þ
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τmy ¼ τy;ðnþ1Þ=2 ¼ τy;0þτy;sð1�expð�bγmÞÞ with γm ¼ γnþλ′ ð73Þ

pm ¼ pðnþ1Þ=2 ¼ ∑
m

i ¼ 1
pmi

¼ ∑
m

i ¼ 1
pn;iþ

2
3
Hkin;iλ′βðτy;n�βp′nÞ�λ′Ηnl;ipn;i

� �
ð74Þ

αm ¼ αðnþ1Þ=2 ¼ ∑
m

i ¼ 1
αm
i ¼ ∑

m

i ¼ 1
ðαn;iþλ′ðHkin;is′n�Hnl;iαn;iÞÞ ð75Þ

The yield surface radius is obtained using Eqs. (72) and (73):

Rm ¼ Rðnþ1Þ=2 ¼
ffiffiffi
2

p
ðτmy �βp′mÞ ð76Þ

To fulfill the consistency condition, the deviatoric shifted stress
must be rectified adding the correcting vector normal to the yield
surface through the next process:

s′m ¼ s′mþafnm ð77Þ
with

nm ¼ s′m

‖s′m‖ and af ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððnmÞTs′mÞ2�jjs′mjj2þðRmÞ2

q
�ðnmÞTs′m:

ð78Þ

4.2. Exponential map step

At this step the whole load increment is performed again, and
the integration is carried out following an Exponential Map
scheme along with the results of the previous step. The discrete
plastic multiplier is computed by the way of Eq. (24) and the
equalities (71)–(77) as

λm ¼ 2GΔeTs′mþ
ffiffiffi
2

p
βKRmΔεv

2ðGþβ2KÞðRmÞ2þ
ffiffiffi
2

p
Rm bðτy;0þτy;s�τmy Þ�β ∑

m

i ¼ 1
Hnl;ip

m
i

" #
�ðs′mÞT ∑

m

i ¼ 1
Hnl;iαm

i

ð79Þ
The dynamical systems (50) and (51) are adapted to these forms:

Xa;nþ1 ¼ expðAm
a ΔtÞXa;n ¼Gm

a Xa;n ð80Þ

Xb;nþ1 ¼ expðAm
b ΔtÞXb;n ¼Gm

b Xb;n ð81Þ

where the matrix exponentials Gm
a and Gm

b are computed through

Gm
a ¼ I9�9þðam�1ÞΔ ^μmðΔμ̂mÞT bmΔμ̂m

bmΔμ̂mT am

" #
10�10

and

Gm
b ¼

um
ffiffiffi
2

p
vm

1ffiffi
2

p vm um

2
4

3
5 ð82Þ

with

Δμ̂m ¼ Δμm

‖Δμm‖
with Δμm ¼Δeþ λ

2G
∑
m

i ¼ 1
Hnl;iαm ð83Þ

am ¼ cosh
2G
Rm jjΔμmjj
� �

and bm ¼ sinh
2G
Rm jjΔμmjj
� �

ð84Þ

um ¼ cosh
1
Rm Q

m� 1
Rm

� �
βKΔεvþ

ffiffiffi
2

p
Q

m
GΔeTs′m

� �� �
ð85Þ

vm ¼ sinh
1
Rm Q

m� 1
Rm

� �
βKΔεvþ

ffiffiffi
2

p
Q

m
GΔeTs′m

� �� �
ð86Þ

Q
m ¼

ffiffiffi
2

p

Qm bðτy;0þτy;s�τmy Þ�β ∑
m

i ¼ 1
Hnl;ip

m
i

" #
ð87Þ

Qm ¼ 2ðGþβ2KÞðRmÞ2þ
ffiffiffi
2

p
Rm bðτy;0þτy;s�τmy Þ�β ∑

m

i ¼ 1
Hnl;ip

m
i

" #

�ðs′mÞT ∑
m

i ¼ 1
Hnl;iαm

i ð88Þ

Solving the two dynamical systems (80) and (81), and also
securing the integrating factor from Eq. (58), the deviatoric shifted
stress and the yield surface radius are computed by Eq. (59). The
deviatoric part of the back stress vector is updated through
equalities (60) and (61) except that αm

i ought to be substituted
for αi resulting in

αnþ1 ¼ ∑
m

i ¼ 1
ðαn;iþHkin;iΔep�Hnl;iλαm

i Þ ð89Þ

Δep ¼ 1
2G

snþ2GΔe�s′nþ1� ∑
m

i ¼ 1
ðαn;i�Hnl;iλαm

i Þ
 !

ð90Þ

Where λ is computed from Eq. (65). To update the volumetric
shifted and back stresses, p′andp, the constitutive equations (20)
and (23) are utilized alongside τmy , p′m, and pm from Eqs. (72)–(74)
that reach the following relationships:

p′nþ1 ¼ p′nþKΔεv�2βλΚðτmy �βp′mÞþ ∑
m

i ¼ 1
Hnl;iλp

m ð91Þ

pnþ1 ¼ ∑
m

i ¼ 1
pnþ1;i ¼ ∑

m

i ¼ 1
pn;iþ

2
3
Hkin;iλβðτmy �βp′mÞ�λΗnl;ip

m
i

� �
ð92Þ

Having managed to acquire Rnþ1 and p′nþ1, one can easily obtain
the shear stress from Eq. (68).

5. Semi-implicit exponential map integration, EXS

Rezaiee Pajand and Nasirai [35] first developed this scheme for
the elastic perfectly plastic Drucker–Prager model. They improved
the newly introduced Exponential Map integration at that time
into a second-order algorithm with better accuracy. In this section,
the algorithm is progressed to take account of the nonlinear
isotropic and kinematic hardenings. The purpose is to achieve a
second-order integration so it could be compared with the
proposed scheme, HXF, in numerical tests. Since the relationships
are mainly based on the formulations derived in the exponential
map division, Section 3, a summary of the algorithm is presented
focusing on the tricky parts.

The algorithm is performed in two general steps. First, the
parameters are updated at the middle of each load step and then
the entire process is carried out again using the obtained amounts
from the preceding step to be substituted for the variables that
used to be presumed constant in an ordinary exponential scheme.
The discrete plastic multiplier is the same as λ′ from Eq. (70) to
build the coming dynamical systems of

Xa;ðnþ1Þ=2 ¼ expðA′a;nΔtÞXa;n ¼G′a;nXa;n ð93Þ

Xb;ðnþ1Þ=2 ¼ expðA′b;nΔtÞXb;n ¼G′b;nXb;n ð94Þ

where the matrix exponentials,G′a;n and G′b;n, are computed via
Eq. (52) except that Δμ, Δμ̂,an, bn, un and vn should be replaced for

Δμ̂′¼ Δμ′
‖Δμ′‖

with Δμ′¼ Δe
2

þ λ′
2G

∑
m

i ¼ 1
Hnl;iαn;i ð95Þ

a′b;ðnþ1Þ=2 ¼ cosh
2G
Rn

jjΔμ′jj
� �

and b′b;ðnþ1Þ=2 ¼ sinh
2G
Rn

jjΔμ′jj
� �

ð96Þ
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ub;ðnþ1Þ=2 ¼ cosh
1
Rn

1
2

Qn�
1
Rn

� �
βKΔεvþ

ffiffiffi
2

p

2
QnGΔeTs′n

" # !
ð97Þ

vb;ðnþ1Þ=2 ¼ sinh
1
Rn

1
2

Qn�
1
Rn

� �
βKΔεvþ

ffiffiffi
2

p

2
QnGΔeTs′n

" # !
ð98Þ

Having solved the two dynamical systems of Eqs. (93) and (94),
one can acquire the integrating factor as

X0
ðnþ1Þ=2 ¼

XR
a;ðnþ1Þ=2

XR
b;ðnþ1Þ=2

 !G=ðKβ2 þGÞ

; ð99Þ

from which the components of the shifted stress and the yield
surface radius read,

s′ðnþ1Þ=2 ¼
Xs

ðnþ1Þ=2
X0
ðnþ1Þ=2

ð100Þ

p′ðnþ1Þ=2 ¼ p′nþ
1
2
KΔεv�2βλΚðτy;n�βp′nÞþ ∑

m

i ¼ 1
Hnl;iλpn;i ð101Þ

Rðnþ1Þ=2 ¼
XR
ðnþ1Þ=2

X0
ðnþ1Þ=2

ð102Þ

with the discrete plastic multiplier of

λ¼ 1
2G

ln
X0
ðnþ1Þ=2
X0
n

 !
: ð103Þ

By obtaining p′ and R from Eqs. (101) and (102), the shear stress
has inevitably been managed as

τy;ðnþ1Þ=2 ¼
Rðnþ1Þ=2ffiffiffi

2
p þβp′ðnþ1Þ=2 ð104Þ

As the back stress vector is computed via the succeeding equal-
ities, the step 1 is concluded.

αðnþ1Þ=2 ¼ ∑
m

i ¼ 1
αm
i ¼ ∑

m

i ¼ 1
ðαn;iþλ′ðHkin;is′n�Hnl;iαn;iÞÞ ð105Þ

pðnþ1Þ=2 ¼ ∑
m

i ¼ 1
pmi ¼ ∑

m

i ¼ 1
pn;iþ

2
3
Hkin;iλ′βðτy;n�βp′nÞ�λ′Ηnl;ipn;i

� �
ð106Þ

The second step of the scheme is the same as the exponential step
of the preceding Hybrid technique, which was thoroughly
explained, and therefore, it does not need recurring again.

6. Hybrid exponential map-backward Euler integration, HXB

This scheme is formed of the exponential and Backward Euler
integrations to gather their benefits and clearing away their draw-
backs. Examining the constituent algorithms reveals that the Back-
ward Euler integration is more capable than the Exponential map
when computing the magnitude of the stress while the Exponential
integration performs much better at finding the stress's direction [50].
Since the integrations are each competent in a different area, the
upside of each one is the downside of another, merging them with
each other could potentially lead to a much more powerful scheme.

Regarding the fundamental essence of each strategy, the
proposed integration, HXB, is best reached where the direction
of the stress is updated by the exponential algorithm and the
magnitude through the Backward Euler scheme. Hence, the two
schemes are only partially required. Clearly, the direction of the
total stress is determined by the direction of the deviatoric shifted
stress and the back stress and as a result they should be computed
through Exponential algorithm. Given that the total stress

magnitude is contributed by p′, p, and the magnitude of s, it needs
to be obtained utilizing the Backward Euler technique. Of course,
this was a general description of the Hybrid Scheme and there are,
for sure, more intricacies which would better to elaborate during
the algorithm debut as follows. Hence, the Hybrid scheme com-
prises two phases of Exponential Map and Backward Euler.

6.1. Exponential phase

The stresses, s′n and p′n, alongside the yield surface radius, Rn,
are utilized to compute the explicit discrete plastic multiplier
Eq. (57) denoted by λex. This will provide the solution of the
dynamical system Eq. (50) through Eqs. (52)–(54) which results in
Xs

nþ1 and XR
nþ1. The deviatoric part of the back stress is updated by

the means of Eqs. (63)–(65). Note that, in this strategy, there is no
need for the second dynamical system, Eq. (51), and its pertinent
computations. Thus, having reckoned the stress vector and the
updated deviatoric back stress, it is time to enter the Backward
Euler Phase concluding the integration scheme.

6.2. Backward Euler phase

The first step, which is also the most time-consuming part of
the algorithm, is evaluating the implicit discrete plastic multiplier,
λim. This will demand solving the complex nonlinear Eq. (A.10)
carried out by the Newton–Raphson method as if explained in
Appendix A. Though, here, there is the momentous asset of
exploiting the already-obtained explicit plastic multiplier which
can be used as an initial solution for the repetitive Newton–
Raphson procedure. This will dramatically drop the number of
iterations and boost the analyzing time up to 45% as a compensa-
tion for the time added to the regular Backward Euler integration
by the Exponential Phase. The recompense is so good that it even
makes the whole integration scheme faster than Backward Euler
as much as 15%. Securing the implicit discrete plastic multiplier,
one can readily update τy;nþ1, p′nþ1, and pnþ1 through equalities
(A.7)–(A.9). The yield surface radius is obtained via Eq. (25). At this
time, the integrating factor X0

nþ1 is computed as

X0
nþ1 ¼

XR
nþ1

Rnþ1
ð107Þ

The updated stress vectors from the Exponential Phase together
with X0

nþ1 are employed to obtain the deviatoric shifted stress
with the following appearance:

s′exnþ1 ¼
Xs

nþ1

X0
nþ1

ð108Þ

In this equality, s′exnþ1 presents the updated deviatoric shifted
stress through Exponential Map, which was truly superscript.
As a matter of fact, the magnitude of this vector is not as accurate
as its direction so it needs modifying. Actually, the final deviatoric
shifted stress would be a vector with the same direction as s′exnþ1
but the magnitude of s′backnþ1, its Backward Euler counterpart
attained by Eq. (A.6) in Appendix A. The following equalities
feature the procedure:

‖s′nþ1‖¼ ‖s′backnþ1‖¼
ffiffiffi
2

p
ðτy;nþ1�βp′nþ1Þ ¼ Rnþ1 ð109Þ

s′nþ1 ¼ s′exnþ1þanex
nþ1 ð110Þ

a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððnex

nþ1ÞTs′exnþ1Þ2�jjs′exnþ1jj2þ2ðτy;nþ1�βp′nþ1Þ2
q

�ðnex
nþ1ÞTs′exnþ1

ð111Þ
To more conceivably present the new scheme, a flow chart is
provided in Fig. 1, which depicts an overview of the whole
algorithm.
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7. Dealing with the apex

The tipping point of the Drucker–Prager cone is controversial.
Once the loading history pushes the stress in the realm of the apex
influence, the numerical analysis falls down. To eschew the
problem, the first thing to do is to determine the apex influence
realm. It means that from where exactly the stress position is
critical and it requires a special treatment. This is an issue where
different researchers have commented diverse tactics on, for
instance, see Genna and Pandolfi [16], de Souza Neto et al. [51]
and Szabo and Kossa [52]. The one used here is a straight and
effective technique formed based on defining another convex set
with its flank orthogonal to the main cone to which all the points
inside are considered as apex influence. That is to control the
following condition:

1- The stress point is outside the apex realm if ‖s′TRnþ1‖42G‖Δep‖;
s′TRnþ1 ¼ s′nþ2GΔe

2- The stress point is inside the apex realm if ‖s′TRnþ1‖r2G‖Δep‖

The updating procedure follows its common process whenever
the first condition is met while the second condition fulfillment
demands different measures.

Due to the fact that, the numerical schemes introduced in
this study are of explicit and implicit varieties and they
really do influence the stress updating procedure, the tactic of
coping with the apex singularity is separately described for each
case.

7.1. Updating stress at the apex for explicit manners

Immediately, after the second condition fulfillment, the stress
point gets place in the apex realm, and it must be settled on the
apex. It means that

s′nþ1 ¼ 0 ð112Þ
and

Rnþ1 ¼
ffiffiffi
2

p
ðτy;nþ1�βp′nþ1Þ ¼ 0: ð113Þ

Fig. 1. The flow chart of the integrating scheme HXB.
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The crucial part to update the variables is to attain the discrete
plastic multiplier. Here, it is important that the condition; Rnþ1 ¼ 0
be utilized to compute the discrete plastic multiplier. Thus, τy;nþ1

and p′nþ1 are obtained through the constitutive equations (2) and
(20) following an explicit approach as

τy;nþ1 ¼ τy;0þτy;s 1�expð�bðγnþλÞÞ
h i

ð114Þ

p′nþ1 ¼ p′nþKΔεv�2βλΚðτy;n�βp′nÞþ ∑
m

i ¼ 1
Hnl;iλpn;i ð115Þ

Substituting the preceding relationships, Eqs. (114) and (115), in
Eq. (113) leads to an equality from which the discrete plastic
multiplier must be acquired. Since the resultant is nonlinear with
respect to λ, it demands a numerical procedure, such as the
Newton–Raphson method, be applied in order to solve it. With
the discrete plastic multiplier in hand, either of τy or p′ could be
updated through Eqs. (114) and (115), however it had better
compute the other from the coming connection to have a con-
sistent algorithm.

p′nþ1 ¼
τy;nþ1

β
ð116Þ

Subsequently, the hydrostatic part of the back stress is readily
updated using Eq. (23) with the next appearance:

pnþ1 ¼ pnþ ∑
m

i ¼ 1

2
3
Hkin;iλβðτy;n�βp′nÞ�λΗnl;ipn;i

� �
ð117Þ

Based on the following relationship, the back stress deviator is
vital to update the deviatoric stress:

snþ1 ¼ s′nþ1þαnþ1 ð118Þ
Regarding the constitutive equation (7), here, the only unknown
parameter is the plastic strain evolution. This could be computed
via two diverse ways. One is simply to use the flow rule along with
the yield function to come up with

_ep ¼ _γ
∂F
∂s′ ¼ _γs′-Δep ¼ λs′n; ð119Þ

which is not as much accurate, and the other is to utilize the
constitutive equations (19) and (10) to reach

s′nþ1 ¼ s′nþ2GΔe� 2Gþ ∑
m

i ¼ 1
Hkin;i

 !
Δepþ ∑

m

i ¼ 1
Hnl;iλαn;i: ð120Þ

In this equality, s′nþ1 vanishes for being at the apex realm, the
expression 2G is substituted for 2Gþ∑m

i ¼ 1Hkin;i according to the
definition in Eq. (21), and the statement s′nþ2GΔe is replaced
with s′TRnþ1. This will potentially lead to the next relationship for
the evolution of the plastic strain:

Δep ¼ 1
2G

sTRnþ1�αnþλ ∑
m

i ¼ 1
Hnl;iαn;i

 !
ð121Þ

Plainly, the second manner for updating Δep is more precise.

7.2. Updating stress at the apex for implicit manners

When the shifted stress occurs at the apex influence, it is
essential that the same procedure as described in equalities (112)–
(116) be followed even though the expression for p′nþ1 must be
modified complying with an implicit approach. Therefore, the
hydrostatic shifted stress has the following formula obtained from
Eqs. (20) and (23):

p′nþ1 ¼ p′TRnþ1þλ ∑
m

i ¼ 1

Hnl;ipn;i
1þλHnl;i

ð122Þ

The described process gives rise to the coming equality from
which the discrete plastic multiplier should be calculated with the

help of a numerical solver such as Newton–Raphson procedure:

τy;0þτy;s�τy;sexpð�bγnÞexpð�bλÞ�βp′TRnþ1�βλ ∑
m

i ¼ 1

Hnl;ipn;i
1þλHnl;i

¼ 0

ð123Þ
Following an implicit manner, the deviatoric back stress is
obtained through the coming relationship via Eqs. (7) and (14):

αnþ1 ¼ ∑
m

i ¼ 1

αn;i

1þλΗnl;i
ð124Þ

Now that the discrete plastic multiplier is clear, the remaining
parameters are conveniently updated using their associated con-
stitutive equations along with taking an implicit treatment. The
shear stress is updated the same as Eq. (114) and the hydrostatic
back stress is computed as

pnþ1 ¼ ∑
m

i ¼ 1

pn;i
1þλHnl;i

� �
ð125Þ

To better illustrate the issue one may find Fig. 2 helpful where the
stress updating procedure is displayed schematically.

8. Consistent tangent operator

In a finite element analysis, the consistent tangent operator is
needed to preserve the quadratic asymptotic convergence through
the Newton–Raphson iterative procedure. Here, a brief explana-
tion is presented for deriving the consistent tangent moduli
corresponding to the numerical integrations. Linearizing stress
updating method, the tangent operators are derived through the
following equation:

∂rnþ1

∂εnþ1
¼ ∂r′nþ1

∂εnþ1
þ ∂anþ1

∂εnþ1
ð126Þ

The present relationship is expanded to the subsequent one
utilizing Eqs. (4)–(6), and (8):

∂rnþ1

∂εnþ1
¼ ∂s′nþ1

∂enþ1
þ ∂αnþ1

∂enþ1

� �
Idevþ

∂s′nþ1

∂εv;nþ1
þ ∂αnþ1

∂εv;nþ1

� �
iT

þ ∂p′nþ1

∂εv;nþ1
þ ∂pnþ1

∂εv;nþ1

� �
iiTþ ∂p′nþ1

∂enþ1
þ ∂pnþ1

∂enþ1

� �
iTIdev;

Idev ¼ I� 1
3
ðiiTÞ ð127Þ

One could readily compute the components of the above equality
referring to the relationships of s′, α, p′, and p given for each
integration method in the related sections. Appendix C, for
instance, explicitly addresses the consistent tangent modulus of
the suggested hybrid integration, HXB.

Fig. 2. Stress updating process at the apex realm.
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9. Numerical tests

The suggested schemes are assessed in diverse grounds of
accuracy, efficiency, and convergence rate. The appraisal is based
on comparative investigations between the proposed formulations
and the well-known techniques of the Forward Euler and Back ward
Euler which are presented in Appendixes A and B. The results of the
Euler integrations with as minute load-step sizes as Δt ¼ 1� 10�5

are presumed as exact solutions for the lack of them. Complying with
the considered plasticity, the properties of a bainitic high strength
roller bearing steel is adopted. The steels are reliable components for
transmitting high loads with minimum fraction and accurate location
through rotational movement [53]. The following presents the
mechanical characteristics of the chosen steel as

Elastic constants of E¼ 203GPa and ν¼ 0:27:

Isotropic hardening characteristics as

τy;0 ¼
1600ffiffiffi

3
p MPa; τy;s ¼ �100ffiffiffi

3
p ; and b¼ 534:

Kinematic hardening properties with
Hnl;1 ¼ 300; Hnl;2 ¼ 1000; Hnl;3 ¼ 0
Hkin;1 ¼ 113:33 GPa; Hkin;2 ¼ 133:33 GPa; Hkin;3 ¼ 10 GPa

(

For the sake of conciseness, the following abbreviations are used to
represent the integrations:

BE: Backward Euler Integration
FE: Froward Euler Integration
EX: Exponential Map Integration
HXB: Hybrid Integration between Exponential Map and
Backward Euler
EXS: Semi-Implicit Exponential Map Integration
HXF: Hybrid Integration between Exponential Map and
Forward Euler

9.1. Accuracy investigation

The accuracy of an integration scheme directly influences the
outcomes of a nonlinear finite element analysis. Therefore, it is
crucial that the precision of the suggested formulations be
evaluated with as much certitude as possible. Two reliable tools
for the purpose are strain load histories and iso-error maps.

9.1.1. Strain load histories
As the most common way of investigating accuracy, the

stresses are updated for a number of given strain histories using
the integrating schemes under discussion. This way, the schemes
are assessed while they are being used in updating the stress state
at a given Gauss point, and therefore, whatever the results are they
would have an accumulative effect on the outputs of a real
nonlinear finite element problem. Three biaxial non-proportional
strain paths along with their strain histories are adopted as shown
in Figs. 3–8. The strain paths are linearly piecewise to avoid the
discretization errors. Each strain history consists of two compo-
nents that alter proportionally to the first yielding strain as

εy;0 ¼
ffiffiffi
3

p
τy;0

2G
; ð128Þ

with other strain components zero.
The accuracies of the suggested techniques are assessed using

the relative errors of the updated stresses via each integration
scheme. As a basis of the investigation, the stresses are also
updated by Euler's tactics, so they could be compared with the
new formulations. The relative or non-dimensional stress error is

defined as

Esn ¼ ‖rn�rn‖
‖rn‖

ð129Þ

Fig. 3. Strain Path 1.

Fig. 4. Strain History 1.

Fig. 5. Strain Path 2.
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where rn stands for the exactly updated stress at time tn and rn
shows the stress vector corresponding to the time tn. The compar-
ison is carried out for two practical strain increments of
Δt ¼ 0:1and0:05s. Figs. 9–20 present a broad set of comparisons
between the proposed integrations and Euler's.

Before proceeding the investigation, some considerations are
needed. First of all, the Forward Euler integration is of no accuracy
as if its precision is about ten times weaker than BE owing mostly to

Fig. 6. Strain History 2.

Fig. 7. Strain Path 3.

Fig. 8. Strain History 3.

Fig. 9. Stress errorrs of Path 1, first-order schemes Δt ¼ 0:1s.

Fig. 10. Stress errorrs of Path 1, second-order schemes Δt ¼ 0:1s.

Fig. 11. Stress errorrs of Path 1, first-order schemes Δt ¼ 0:05s.
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Fig. 12. Stress errorrs of Path 1, second-order schemes Δt ¼ 0:05s.

Fig. 13. Stress errorrs of Path 2, first-order schemes Δt ¼ 0:1s.

Fig. 14. Stress errorrs of Path 2, second-order schemes Δt ¼ 0:1s.

Fig. 15. Stress errorrs of Path 2, first-order schemes Δt ¼ 0:05s.

Fig. 16. Stress errorrs of Path 2, second-order schemes Δt ¼ 0:05s.

Fig. 17. Stress errorrs of Path 3, first-order schemes Δt ¼ 0:1s.
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the shape of the yield surface and the nonlinear isotropic hardening
causing dramatic changes in the yield surface radius. This will demand
the presence of the FE be disregarded favoring the investigation, for
instance see Figs. 21 and 22. Additionally, of all four integrations
suggested, the EX and HXB come with first-order rate of convergence
whereas the EXS and HXF are second-order schemes, as it will be
demonstrated in the Convergence Rate section. Thus, the two latter
cases have such an accuracy their stress-error graphs cannot be
displayed conceivably in a single diagram with the associated first-
order integrations. This will mandate separate figures for each class.

Overall, the HXF and HXS are the most accurate schemes in the
group owing mostly to their convergence rate. They have accuracy
of second-order while the others are all first-order schemes.
Moreover, the HXF is more precise than EXS based on Figs. 10,
12, 14, 16, 18 and 20. The reason is that the EX and FE cover their
drawbacks through the suggested scheme, HXF, for converging to
the response via two different directions. Amid the first order
schemes, the proposed HXB is far more accurate than EX and BE
according to Figs. 9, 11, 13, 15, 17, and 19. The HXB is almost ten
times more precise than EX and three times relative to BE.Fig. 18. Stress errorrs of Path 3, second-order schemes Δt ¼ 0:1s.

Fig. 19. Stress errorrs of Path 3, first-order schemes Δt ¼ 0:05s.

Fig. 20. Stress errorrs of Path 3, second-order schemes Δt ¼ 0:05s.

Fig. 21. Demonstration of rough accuracy of FE Strain Path 1, Δt ¼ 0:05s.

Fig. 22. Demonstration of rough accuracy of FE Strain Path 3, Δt ¼ 0:05s.
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9.1.2. Iso-error maps
Evaluating the accuracy of three numerical integrations along

with an exact one, Krieg and Krieg [5] first devised iso-error maps.
Since then, a growing number of scientists have adopted the
technique in their studies, such as Ortiz and Popov [8], Ortiz and
Simo [54], Loret and Prevost [13], Genna and Pandolfi [16], Simo
and Hughes [55], Artioli et al. [32,33], de Souza Neto et al. [51],
Rezaiee Pajand et al. [50] and so on. Today, the iso-error maps are
known as a methodical robust way to examine the precision of
plasticity integrations.

The error contours are acquired for a purely plastic step where
the deviatoric strain increment is of arbitrary amplitude but have
the same principle direction as s′cors′nþα. This will ease the
precision investigation and help it be conveniently visualized in
the deviatoric plane with least influence on the general conclu-
sions. The dilatancy parameter V is defined as the ratio of the
hydrostatic to deviatoric parts of the strain increment to specify
the total strain evolution Δε. As the basis of the deviatoric stress
plane, the orthonormal system of ðn̂; t̂Þ is hired where n̂ is the normal
unit outward to the yield surface at s′nþα, and it is defined as

n̂¼ s′n
‖s′n‖

¼ s′n
Rn

ð130Þ

The direction and amplitude of the deviatoric loading increment
are readily identified through the following radial and tangential
projections:

N¼ 2
ffiffiffi
2

p
G

Rn
‖Δe‖ cos ðψnÞ ð131Þ

T ¼ 2
ffiffiffi
2

p
G

Rn
‖Δe‖ sin ðψnÞ ð132Þ

where ψn is the angle between the deviatoric loading increment
and the normal n̂, see Fig. 23.

The accuracy of the integration algorithms is investigated
through the two diverse grounds of orientation and the amplitude
assessments of the final stress. The evaluation is carried out
utilizing the angular error:

Δθ¼ cos �1 ðs′Enþ1ÞTs′nþ1

RE
nþ1Rnþ1

 !
ð133Þ

and the radial error:

ΔR¼ 1� Rnþ1

RE
nþ1

 !
; ð134Þ

in which s′Enþ1 and RE
nþ1 stand for the exact solution of the

deviatoric shifted stress computed through one of Euler's scheme

with a very fine load-step size. And s′nþ1 and Rnþ1 represent the
approximate results by the algorithms. An illustration of these
errors is presented in Fig. 24. The investigation is performed over
the rectangular domain of

�5rNr5; 0rTr5 ð135Þ

Two particular amounts of V ¼ 0 and V ¼ 1 are adopted for the
dilatancy parameter. In case of V ¼ 0, the angle ψn could vary only
between 0 and π=2 ensuring that the stress stay in the plastic
phase. This will demand the parameter N take the limited domain
of 0rNr5. Nonetheless, where there be the V ¼ 1, the trial stress
does not extend across the yield surface for laying tangentially on
the convex set and therefore the domains of 0rψnrπ and
�5rNr5 are expected to happen, see Figs. 25–28.

In essence, the proposed schemes are all based on the three
well-known integrations of BE, FE, and EX. Consequently, to best
interpret the associated iso-error contours, one needs to compre-
hensively perceive the behavior of these basic methods. The
explicit techniques of FE and EX are apparently quite competent
whenever the yield surface radius has the least variation. The
realization of this fact is best beheld in the case of V ¼ 0, according
to Figs. 31–34, where loading occurs in π� plane with least sign of
change in R.

In such circumstances, the EX appears superior to FE and BE
and, as a result, the second-order scheme totally based on the
exponential map, i.e. EXS, has the least angular and radial errors as
Figs. 37 and 38 prove it. Though, the problem with the explicit
integrations arises when R starts to change during a loading
process which is also very likely in a real condition. This aggravates

Fig. 23. Definition of the parameters N and T .

Fig. 24. Illustration of the radial and angular errors.

Fig. 25. The trial stress state in the deviatoric plane, V ¼ 0.
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most, according to the isodiagrams of Figs. 43–46, when it comes
to extreme cases of radius alterations in V ¼ 1 in which even FE
shows a better performance than EX. This will contribute to the
supremacy of HXF towards EXS, especially in the case of radial
errors as observed in Figs. 49–52.

Referring to Figs. 41 and 42, obviously, the state of V ¼ 1 is the
area of expertise of Backward Euler in which BE is essentially
proficient in computing the yield surface radius alongside preser-
ving a good accuracy in finding the stress directions. Here, the
merely major drawback of BE is when loading history induces
considerable changes in stress direction as if surfaces most in its
angular error of V ¼ 0, see Figs. 29 and 30. This problem with BE
and also the deficiency of EX in figuring the yield surface radius
are all eradicated in HXB. Having every vantage of BE and EX, the

Fig. 27. The trial stress state in the deviatoric plane, V ¼ 1.

Fig. 28. The trial stress state in the space of principle stresses, V ¼ 1.

Fig. 29. The angular error of BE for V ¼ 0.

Fig. 30. The radial error of BE for V ¼ 0.

Fig. 26. The trial stress state in the space of principle stresses, V ¼ 0.

Fig. 31. The angular error of FE for V ¼ 0.
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Fig. 32. The radial error of FE for V ¼ 0.

Fig. 33. The angular error of EX for V ¼ 0.

Fig. 34. The radial error of EX for V ¼ 0.

Fig. 35. The angular error of HXB for V ¼ 0.

Fig. 36. The radial error of HXB for V ¼ 0.

Fig. 37. The angular error of EXS for V ¼ 0.
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Fig. 38. The radial error of EXS for V ¼ 0.

Fig. 39. The angular error of HXF for V ¼ 0.

Fig. 40. The radial error of HXF for V ¼ 0.

Fig. 41. The angular error of BE for V ¼ 1.

Fig. 42. The radial error of BE for V ¼ 1.

Fig. 43. The angular error of FE for V ¼ 1.

Fig. 44. The radial error of FE for V ¼ 1.
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Fig. 45. The angular error of EX for V ¼ 1.

Fig. 46. The radial error of EX for V ¼ 1.

Fig. 47. The angular error of HXB for V ¼ 1.

Fig. 48. The radial error of HXB for V ¼ 1.

Fig. 49. The angular error of EXS for V ¼ 1.

Fig. 50. The radial error of EXS for V ¼ 1.

Fig. 51. The angular error of HXF for V ¼ 1.

Fig. 52. The radial error of HXF for V ¼ 1.
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HXB has the lowest angular and radial errors among the first-order
schemes regarding Figs. 35, 36, 39, 40, 47, and 48.

In sum, the second-order integrations, i.e. EXS and HXF, are in
much better precision than FE, BE, and EX, and to some extent
than HXB, mostly because of their convergence rate. HXF and EXS
have convergence rate of order 2 while the rest are first-order.
Generally, HXF presents better accuracy than EXS. Among the first
order schemes, HXB always is way more precise than FE, EX, and
BE either in V ¼ 0 or V ¼ 1.

9.2. Efficiency investigation

An undeniable fact of the numerical integrations is that for the
most part they could get to the same responses as each other but
at different efforts and times, some with less efforts and as a result
sooner and some later. At this study, for instance, the forward
Euler integration, which was demonstrated as the least accurate
one, could update the stresses with similar precision as others
only if the chosen load-step size was fine enough, for example
5 times smaller. Hence, it is crucial that both accuracy and
computational time be taken into account when examining a
numerical method. Consequently, the numerical integrations need
to be investigated in case of efficiency as a measure of effective-
ness with which the numerical integrations perform.

To assess the efficiency of the integrations in question, the
computational efforts are compared to each other when achieving
the same accuracy. Table 1 yields the comparison where the CPU
times recorded during the stress-updating procedures by each
scheme are presented for a given precision. Note that, the stresses

are updated for 60 cycles of strain histories 1 and 2 to more
accurately record the CPU times.

Based on the table, the EXS and HXF are much more efficient
than the first-order schemes mainly for their second-order con-
vergence rate. In their midst, the efficiency of HXF is about two
times more than the EXS owing to greater accuracy besides
superior speed. Among the first-order schemes, the HXB is way
more efficient than the others while BE displays a better perfor-
mance compared to the EX and FE having relatively equal
efficiency. The reason is the greater accuracy of HXB along with
its reasonable speed which is approximately 20% faster than BE.

9.3. Convergence rate

To best verify the convergence rate of the suggested algorithms,
first their stress relative errors are plotted for a succession of load-
step sizes from 0.1 to 0.0125 and then the average stress errors of
the new and classical schemes are logarithmically graphed against
each other. This way, the realms and rates of the convergence of

Table 1
Computational time of the schemes for 60 cycles of the strain Histories 1 and 2.

Integration scheme Stress History 1 Strain History 2

Total error CPU time (s) Total error CPU time (s)

HXF 0.149 1.66 0.299 1.62
EXS 0.148 3.63 0.297 2.98
HXB 0.147 35.44 0.291 26.62
BE 0.148 96.52 0.297 178.82
EX 0.149 132.69 0.297 274.81
FE 0.147 114.85 0.296 280.21

Fig. 53. Stress relative errors of EX in a succession of load step sizes for strain
History 1.

Fig. 54. Stress relative errors of HXB in a succession of load step sizes for strain
History 1.

Fig. 55. Stress relative errors of EXS in a succession of load step sizes for strain
History 1.
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the schemes are clearly presented. Since the behavior is the same
for any kinds of loading histories regarding the test, the graphs are
drawn up only for one of the strain paths to avoid lengthening, see
Figs. 53–57. According to the diagrams, especially Fig. 57, the EX
and HXB illustrate a linear convergence rate the same as Euler's.
The FE displays some instability with large load increments, which
in this example ends at Δt ¼ 0:025, despite others. The quadratic
convergence rate for EXS and HXF is clearly descried contributing
to a very fast convergence to the exact solution.

10. Conclusion

In this study, two new hybrid integrations, HXB and HXF, were
proposed based on the exponential map and Euler's algorithms.
The schemes were developed for the general nonlinear plasticity
of Drucker–Prager yield criterion with Chaboche's nonlinear iso-
tropic and kinematic hardenings. Two exponential-based integra-
tions, EX and EXS, were also derived for the plasticity to be
compared to the suggested algorithms. Besides, dealing with the
apex of the Drucker–Prager cone was described for the generic
approaches of implicit and explicit integrations.

Subsequently, the derived integrations of EX and EXS along
with the proposed hybrid schemes were examined in a series of
numerical tests comprising accuracy, efficiency, and convergence
rate investigations. To expand the investigation to a more general
state, the classical integrations of Backward Euler, BE, and Forward
Euler, FE, were also included in the tests. The schemes in question
have two different rates of convergence; FE, BE, EX, and HXB are
first-order tactics while EXS and HXF are second-order. Among the
first-order schemes, the suggested HXB presents great accuracy
and efficiency, which is much better than FE, BE and EX. The BE
displays a better accuracy and efficiency than EX and FE. The
better precision of EX over FE is overshadowed by greater speed of
FE, which contributes to approximately the same efficiencies as
each other. Moreover, amid the second-order strategies, the HXF
demonstrates superior performance over EXS as it is nearly 25%
more precise and 200% more efficient than it. Regarding the first-
order and second-order methods, the HXF and EXS are uncondi-
tionally more accurate and efficient than the BE, FE, EX, and HXB.
Eventually, the stress relative errors of the schemes were graphed
for a succession of load-step sizes to verify the convergence rates
of the integrations under discussion.

Fig. 56. Stress relative errors of HXF in a succession of load step sizes for strain
History 1.

Fig. 57. The proof of convergence rate of the schemes in question.

Appendix A. Backward Euler integration

This is to briefly present the Backward Euler integration for the plasticity model. Following an implicit manner, the unknown quantities
at the end of the time step are used to draw the necessary relationships. First, an elastic trial as in the following equation is imposed which
is followed by deducting the plastic part if involves:

sTRnþ1 ¼ snþ2GΔe; αTR
nþ1 ¼ αn; p′TRnþ1 ¼ p′nþKΔεv

pTRnþ1 ¼ pn; τTRy;nþ1 ¼ τy;n ðA:1Þ
For the trial solution to be admissible, the condition,

jjs′TRnþ1jjrRTR
nþ1 ¼

ffiffiffi
2

p
ðτy;nþ1�βp′TRnþ1Þ; ðA:2Þ

must be satisfied. Otherwise, the tentative outcomes are rejected meaning a plastic corrector is required. In the latter case, coming
approach is executed to update the needed values. The following parameters are defined to simplify the equations to come:

C1;i ¼
Hkin;iHnl;i

1þHnl;iλ
; C2;i ¼

Hnl;i

1þHnl;iλ
ðA:3Þ

C3;i ¼
1

1þHnl;iλ
; C4;i ¼

Hkin;i

1þHnl;iλ
ðA:4Þ
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Equations Eqs. (7) and (14) are utilized to acquire the deviatoric back stress as

αnþ1 ¼ ∑
m

i ¼ 1
αnþ1;i with αnþ1;i ¼ C3;iαn;iþC4;iλs′nþ1 ðA:5Þ

Making use of this equality alongside Eq. (19) leads to the following shape for the deviatoric shifted stress:

s′nþ1 ¼ 1þ2Gλ�λ2 ∑
m

i ¼ 1
C1;i

 !�1

s′TRnþ1þλ ∑
m

i ¼ 1
C2;iαn;i

 !
ðA:6Þ

To obtain τy;nþ1, Eq. (16) is hired reading:

τy;nþ1 ¼ τy;0þτy;sð1�expð�bγnþ1ÞÞ with γnþ1 ¼ γnþλ ðA:7Þ
Employing the constitutive equality (23), the volumetric portion of the back stress is found as

pnþ1 ¼ ∑
m

i ¼ 1
pnþ1;i with pnþ1;i ¼ C3;ipn;iþ

2
3
C4;iλβðτy;nþ1�βp′nþ1Þ ðA:8Þ

Having used Eqs. (23) and (A.8), one can compute the hydrostatic shifted stress in the next form:

p′nþ1 ¼
p′TRnþ1�2βΚλτy;nþ1þλ ∑

m

i ¼ 1
C2;ipn;iþ 2

3 βλ
2τy;nþ1 ∑

m

i ¼ 1
C1;i

1�2β2Kλþ 2
3 β

2λ2 ∑
m

i ¼ 1
C1;i

ðA:9Þ

The equalities (A.5)–(A.9) give rise to the updated values of s′nþ1, p′nþ1, pnþ1, and τy;nþ1. The only remained step to have them all known
is the discrete plastic multiplier. For this purpose to happen, the yield function is utilized. This would bring us to the following nonlinear
equality from which the plastic multiplier is computed:

js′TRnþ1þλ ∑
m

i ¼ 1
C2;iαn;ij2

ð1þ2Gλ�λ2 ∑
m

i ¼ 1
C1;iÞ2

�2 τy;nþ1�
p′TRnþ1þτy;nþ1

2
3 βλ

2 ∑
m

i ¼ 1
C1;i�2βΚλ

 !
þλ ∑

m

i ¼ 1
C2;ipn

 !

β 1�2β2Kλþ 2
3 β

2λ2 ∑
m

i ¼ 1
C1;i

 !
2
66664

3
77775

2

¼ 0 ðA:10Þ

This massive equality is typically solved with Newton–Raphson method.

Appendix B. Forward Euler integration

Assuming that the stress state at time tn lies on the yield surface, the discrete plastic multiplier is attained using Eq. (57). The total
stress and its components are easily updated through constitutive Eqs. (7), (16), (20), (23), and the acquired λ. The following express them
in detail:

s′nþ1 ¼ s′nþ2GΔe�2Gλs′nþλ ∑
m

i ¼ 1
Hnl;iαn;i ðB:1Þ

p′nþ1 ¼ p′nþKΔεv�2βλΚðτy;n�βp′nÞþ ∑
m

i ¼ 1
Hnl;iλpn ðB:2Þ

τy;nþ1 ¼ τy;0þτy;sð1�expð�bγnþ1ÞÞ with γnþ1 ¼ γnþλ ðB:3Þ

pnþ1;i ¼ pn;iþ
2
3
Hkin;iλβðτy;n�βp′nÞ�λΗnl;ipn;i ðB:4Þ

αnþ1 ¼ αnþΔαnþ1 with Δαnþ1 ¼ ∑
m

i ¼ 1
ðHkin;iΔep�Hnl;iλαn;iÞ ðB:5Þ

Let's not forget that in this scheme the consistency condition is not automatically held. To impose the consistency a corrector vector is
added to the deviatoric shifted stress in the direction normal to the yield surface. The correcting vector, afnnþ1, is calculated through

Fðs′nþ1þafnnþ1; τy;nþ1�βp′nþ1Þ ¼ 0 with nnþ1 ¼
s′nþ1

‖s′nþ1‖

af ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnT

nþ1s′nþ1Þ2�jjs′nþ1jj2þ2ðτy;nþ1�βp′nþ1Þ2
q

�nT
nþ1s′nþ1 ðB:6Þ

Appendix C. Consistent tangent operator of the hybrid integration HXB

As discussed in Section 7, the components of Eq. (127) are needed in order to obtain the tangent modulus. What follows is the brief
presentation of the required relationships.
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The derivative of s′nþ1 with respect to enþ1 is calculated using Eq. (59) together with Eqs. (50) and (52) reading

∂s′nþ1

∂enþ1
¼ 1

X0
nþ1

∂Xs
nþ1

∂enþ1
� Xs

nþ1

ðX0
nþ1Þ2

∂X0
nþ1

∂enþ1
ðC:1Þ

∂Xs
nþ1

∂enþ1
¼ ðΔμ̂TXs

nÞΔμ̂
∂an

∂enþ1

� �T

þXR
nΔμ̂

∂bn
∂enþ1

� �T

þðan�1ÞΔμ̂ ∂Δμ̂
∂enþ1

Xs
n

� �T
þððan�1ÞðΔμ̂TXs

nÞþbnX
R
n Þ

∂Δμ̂
∂enþ1

ðC:2Þ

∂X0
nþ1

∂enþ1
¼ 1

Rnþ1

∂XR
nþ1

∂enþ1
þ XR

nþ1

R2
nþ1

∂Rnþ1

∂enþ1
ðC:3Þ

∂XR
nþ1

∂enþ1
¼ ðΔμ̂TXs

nÞ
∂bn

∂enþ1
þbn

∂Δμ̂
∂enþ1

Xs
nþXR

n
∂an

∂enþ1
ðC:4Þ

The derivatives in Eqs. (C.2)–(C.4) are attained through Eqs. (53), (54), and (25):

∂an
∂enþ1

¼ 2G
Rn

sinh
2G
Rn

‖Δμ‖
� �

∂‖Δμ‖
∂enþ1

and
∂bn

∂enþ1
¼ 2G

Rn
cosh

2G
Rn

‖Δμ‖
� �

∂‖Δμ‖
∂enþ1

ðC:5Þ

∂‖Δμ‖
∂enþ1

¼ Iþ 1
2G

∑
m

i ¼ 1
Hnl;iαn;i

 !
∂λex

∂enþ1

� �T
" #

Δμ̂ and
∂Δμ̂
∂enþ1

¼ ∂Δμ
∂enþ1

� Δμ
‖Δμ‖

∂Δμ
∂enþ1

Δμ̂
� �T

" #
ðC:6Þ

∂Rnþ1

∂enþ1
¼

ffiffiffi
2

p ∂τy;nþ1

∂enþ1
�

ffiffiffi
2

p
β
∂p′nþ1

∂enþ1
ðC:7Þ

Referring to Eq. (57), ∂λex=∂enþ1 is computed as

∂λex

∂enþ1
¼ 2Gs′n

2ðGþβ2KÞR2
nþ

ffiffiffi
2

p
Rn bðτy;0þτy;s�τy;nÞ�β ∑

m

i ¼ 1
Hnl;ipn;i

" #
�s′Tn ∑

m

i ¼ 1
Hnl;iαn;i

ðC:8Þ

The derivative of s′nþ1 with respect to εv;nþ1 is also calculated utilizing Eq. (59) along with Eqs. (50) and (52) as

∂s′nþ1

∂εv;nþ1
¼ 1

X0
nþ1

∂Xs
nþ1

∂εv;nþ1
� Xs

nþ1

ðX0
nþ1Þ2

∂X0
nþ1

∂εv;nþ1
ðC:9Þ

∂Xs
nþ1

∂εv;nþ1
¼ ðΔμ̂TXs

nÞΔμ̂
∂an

∂εv;nþ1
þXR

nΔμ̂
∂bn

∂εv;nþ1
þðan�1Þ ∂Δμ̂

∂εv;nþ1
ðXs

nÞTΔμ̂þððan�1ÞðΔμ̂TXs
nÞþbnX

R
n Þ

∂Δμ̂
∂εv;nþ1

ðC:10Þ

∂X0
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∂εv;nþ1
¼ 1

Rnþ1

∂XR
nþ1

∂εv;nþ1
þ XR

nþ1
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nþ1

∂Rnþ1
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∂XR
nþ1
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nÞ
∂bn

∂εv;nþ1
þbn

∂Δμ̂
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� �T

Xs
nþXR

n
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ðC:12Þ

Using Eqs. (53), (54), (57) and (25) one can achieve

∂an
∂εv;nþ1

¼ 2G
Rn

sin h
2G
Rn

‖Δμ‖
� �

∂‖Δμ‖
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&
∂bn
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Rn
cos h

2G
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� �

∂‖Δμ‖
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ðC:13Þ
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∂λex
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� ∂Δμ
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 !
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∂Rnþ1
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2
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�
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2
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β
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2
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Furthermore, ∂αnþ1=∂enþ1 and ∂αnþ1=∂εv;nþ1 are also calculated using Eqs. (63)–(65) as

∂αnþ1

∂enþ1
¼ ∑

m

i ¼ 1

 
4þλH2

nl;ið1�λÞ�2Hnl;i
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∂αnþ1

∂εv;nþ1
¼ ∑

m

i ¼ 1

�4Hnl;i
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� �
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Since τy;nþ1, p′, p, and R are all updated through Backward Euler relationships, one needs referring to some equations in Appendix A for
obtaining their derivatives. Consequently, the derivatives of the defined factors Cj;i with respect to enþ1 and εv;nþ1 are required reading:

∂C1;i

∂enþ1
¼ �Hkin;iH

2
nl;i

ð1þλimHnl;iÞ2
∂λim

∂enþ1
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∂C1;i

∂εv;nþ1
¼ �Hkin;iH

2
nl;i

ð1þλimHnl;iÞ2
∂λim

∂εv;nþ1
ðC:19Þ

∂C2;i

∂enþ1
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∂C3;i

∂enþ1
¼ �Hnl;i
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∂enþ1
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∂C3;i
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∂εv;nþ1
ðC:21Þ

∂C1;i
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¼ �Hkin;iHnl;i
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∂C1;i

∂εv;nþ1
¼ �Hkin;iHnl;i

ð1þλimHnl;iÞ2
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∂εv;nþ1
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The following relationships are computed through Eqs. (A.1), (A.7) and (A.8):

∂s′TRnþ1

∂enþ1
¼ 2GI and

∂s′TRnþ1

∂εv;nþ1
¼ 0 and

∂p′TRnþ1

∂enþ1
¼ 0 and

∂p′TRnþ1

∂εv;nþ1
¼ Ki ðC:23Þ

∂τy;nþ1

∂enþ1
¼ τy;sbexpð�bγnþ1Þ

∂λim

∂enþ1
and

∂τy;nþ1

∂εv;nþ1
¼ τy;sbexpð�bγnþ1Þ

∂λim

∂εv;nþ1
ðC:24Þ
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∂enþ1
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m

i ¼ 1

∂pnþ1;i

∂enþ1
-

∂pnþ1;i

∂enþ1
¼ pn;i

∂C3;i

∂enþ1
þ

ffiffiffi
2

p

3
βRnþ1 λim

∂C4;i
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þC4;i
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 !
þ 2

3
βC4;iλ

im ∂τy;nþ1

∂enþ1
�β

∂p′nþ1

∂enþ1

� �
ðC:25Þ

Substituting ∂=∂εv;nþ1 for ∂=∂enþ1 in the preceding equation gives the ∂pnþ1=∂εv;nþ1. In addition, ∂p′nþ1=∂enþ1 and ∂p′nþ1=∂εv;nþ1 are
acquired via Eq. (A.9) in the following form where V and W , respectively, represent the numerator and denominator of Eq. (A.9) for the
sake of simplicity:

p′nþ1 ¼
V
W

-
∂p′nþ1

∂enþ1
¼ ð∂V=∂enþ1ÞW�ð∂W=∂enþ1ÞV

W2 and
∂p′nþ1

∂εv;nþ1
¼ ð∂V=∂εv;nþ1ÞW�ð∂W=∂εv;nþ1ÞV

W2 ðC:26Þ

∂V
∂enþ1

¼ 4
3
βλimτy;nþ1 ∑

m

i ¼ 1
C1;i�2βKτy;nþ1þ ∑

m

i ¼ 1
C2;ipn;i

 !
∂λim

∂enþ1
þ 2

3
βðλimÞ2 ∑

m

i ¼ 1
C1;i�2βλimΚ

 !
∂τy;nþ1

∂enþ1

þ λim ∑
m

i ¼ 1

∂C2;i

∂enþ1
pn;iþ

2
3
βðλimÞ2τy;nþ1 ∑

m

i ¼ 1

∂C1;i

∂enþ1
ðC:27Þ

∂W
∂enþ1

¼ �2β2 K� 2
3
λim ∑

m

i ¼ 1
C1;i

 !
∂λim

∂enþ1
þ 2

3
β2ðλimÞ2 ∑

m

i ¼ 1

∂C1;i

∂enþ1
ðC:28Þ

Here, ∂V=∂εv;nþ1 and (∂W=∂εv;nþ1) are easily obtained the same as Eqs. (C.27) and (C.28) only by replacing ∂=∂enþ1 with ∂=∂εv;nþ1 along
with adding the term ∂p′TRnþ1=∂εv;nþ1 to the acquired relation for ∂V=∂εv;nþ1. Note that, in the recent relationships λim is obtained via
Eq. (A.10). Moreover, ∂λim=∂enþ1 and ∂λim=∂εv;nþ1 are secured by taking the derivatives of Eq. (A.10) with respect to enþ1 and εv;nþ1 using
the same procedure as above. This will lead to two separate massive nonlinear equations for ∂λim=∂enþ1 and ∂λim=∂εv;nþ1, which are solved
by means of a numerical solver like the Newton–Raphson method.
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