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Abstract. This paper is devoted to suggest that the extensive theory of nilpotency,
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1. Introduction

In this paper, we intend to study more one of the most famous, fundamental
and oldest branches in group theory, namely the theory of nilpotency of groups,
but not in the usual aspect to the notion of nilpotency which generally has been
studied by authors. In other words, our main goal in this paper is to establish a
new notion of nilpotency which is lain between the usual notion of nilpotency for
a group and its subgroup. More exactly, for a group G and a normal subgroup
N of G, we introduce the concept of nilpotency for the pair (G,N) (the pair
(G,N) is known as a pair of groups). This new concept will be defined in such a
way that the nilpotency of G implies that of (G,N) and the nilpotency of (G,N)
forces N to be nilpotent.

Pairs of groups have been studied by many authors during these recent two
decades and has some applications in group theory. For instance Ellis introduced
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the Schur multiplier [2] and also capability [1] for a pair of groups and attained
some of their properties. In particular, he proved some group theoretic results
of pairs of groups (see [2, Section 7]). Also Salemkar, Moghaddam and Chitti [6]
obtained more properties of the Schur multiplier of a pair such as finding a cov-
ering pair for a pair of groups under some conditions. The notion of isoclinism
for pairs was introduced by Salemkar, Saeedi and Karimi [7] as well. Recently
Pourmirzaei, Hokmabadi and the last author [4] have attained a criterion for
characterizing the capability of a pair and also have given a complete classifica-
tion of finitely generated abelian capable pairs. Now, this paper verifies a new
notion of nilpotency for pairs of groups which has some interesting results in the
usual theory of nilpotency.

This article contains four sections. In the next section, we introduce the
notion of a central series and then the nilpotency for a pair of groups. The
concepts of lower, upper and derived series for a pair will be also introduced in
this section. Actually in Section 2, we shall be interested mainly in deriving var-
ious elementary properties required for subsequent investigations. In the third
section, a generalization of Robinson Theorem for a pair of groups plays an im-
portant role to find landmark theorems connecting to the idea of nilpotency in
category of groups and the same concept in the larger category of pairs. Further-
more, nontriviality of the center of a nilpotent group G is obtained by replacing
the nilpotency of G with the nilpotency for the pair (G,N), which shall be a
weaker condition. In the sequel of Section 3, using the new notion of nilpotency,
we can find both a criterion for nilpotency of G and a sufficient condition to
deduce the nilpotency of G from G′, where G′ is the derived subgroup of G. In
the last section, the Mal’cev Theorem will be extended to pairs of groups. In
addition, we define a residually nilpotent pair of groups and find a necessary and
sufficient condition for residually nilpotency of a pair. Using these results, we
are able to show that the residually nilpotency of the pair (G,G′) is equivalent
to that of G. Finally a Hopfian pair of groups is defined and a special type of
Hopfian pairs is introduced.

Now, in the rest of this section we try to introduce some notations which
shall be used throughout the paper. The class of all pairs forms a category
with the following morphisms. A morphism from a pair (G1, N1) to a pair
(G2, N2) is a group homomorphism from G1 to G2 which sends N1 into N2. The
pairs (G1, N1) and (G2, N2) are called equivalent and this notion is denoted by
(G1, N1) ∼= (G2, N2), if there exists an equivalence from (G1, N1) to (G2, N2).
For a family of pairs {(Gi, Ni)}i∈I , the pair (Πi∈IGi,Πi∈INi) of products of the
given groups, is a product in the category of pairs. This pair is called direct

product of the family {(Gi, Ni)}i∈I . If in addition Gi’s are subgroups of a group
G, then we refer to (Πi∈IGi,Πi∈INi) as the internal direct product of the family
{(Gi, Ni)}i∈I . If we identify the pair (G,G) by the group G, for any group G,
then the category of groups will be a subcategory of the pairs. Throughout this
paper, we assume that (G,N) is a pair of groups in which N is nontrivial. For a
pair (G,N), the pair (H,M) is called a subpair of (G,N) whenever H ≤ G and
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M ≤ N . The center of a pair (G,N) is also defined to be the subgroup

{n ∈ N ∣ng = n, ∀g ∈ G}

of N in which ng denotes the conjugate of n by g, and it is denoted by Z(G,N).

2. Basic Definitions and Elementary Results

In this section, invoking the definition of a central series for a pair, the concept
of nilpotency for a pair of groups is introduced. The usual notions of lower and
upper central series are also generalized to a pair of groups. Using these new
concepts, some elementary results shall be given.

Definition 2.1. Let (G,N) be a pair of groups. A normal series 1 = N0 ≤ N1 ≤
. . . ≤ Nt = N is called a central series of the pair (G,N) if each Ni is a normal

subgroup of G and Ni+1/Ni is contained in the center of (G/Ni, N/Ni), for all i.
A pair of groups (G,N) is called nilpotent if it has a central series. The length

of a shortest central series of the pair (G,N) is called nilpotent class of (G,N).

The first important and fundamental note on the definition of nilpotency of
a pair (G,N) is the observation that the introduced notion of nilpotency lies
between the usual concept of nilpotency of G and N . In other words, if G
is nilpotent, then (G,N) is nilpotent and if (G,N) is nilpotent, then so is N .
This note helps us to improve some known results in nilpotent groups, with
considering weaker conditions (see Section 3). Finally one may easily see that
in a nilpotent pair of groups (G,N) of class 0, N has to be trivial, while for a
nilpotent pair of groups (G,N) of class at most 1, N is central in G.

The following statement provides some general information on the class of
nilpotent pairs.

Theorem 2.2. The set of nilpotent pairs of groups forms a class which is closed

under the formation of subpairs, and finite direct products.

Definition 2.3. Let (G,N)(1) = [N,G], and assume that for i ≥ 1, (G,N)(i) is

defined inductively. Then (G,N)(i+1) is defined to be the commutator subgroup

[(G,N)(i), (G,N)(i)], for all i ≥ 1. Assuming (G,N)(0) = N , we have the normal

series

N ≥ (G,N)(1) ≥ (G,N)(2) ≥ . . .

which we call it the derived series of (G,N).

The lower central series for a pair of groups is also defined inductively as
follows.
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Definition 2.4. Put 
1(G,N) = (G,N)(0) = N , and let 
i(G,N) be defined

inductively for i ≥ 1. Then 
i+1(G,N) is defined as the subgroup [
i(G,N), G].
The obtained series

N = 
1(G,N) ≥ 
2(G,N) ≥ . . .

is called the lower central series of (G,N).

Note that 
n(G,N)/
n+1(G,N) lies in the center of (G/
n+1(G,N), N/
n+1

(G,N)) and that each 
n(G,N) is a normal subgroup of G.

Also for a pair (G,N), there is an ascending series which is dual to the lower
central series in the sense that the center is dual to the first term of the derived
series. This is the upper central series

1 = Z0(G,N) ≤ Z1(G,N) ≤ Z2(G,N) ≤ . . .

which is defined by

Zn+1(G,N)

Zn(G,N)
= Z(

G

Zn(G,N)
,

N

Zn(G,N)
).

Note that this series need not reach N . One should also note that neither

n(G,N) is necessarily a fully-invariant nor Zn(G,N) is necessarily a charac-
teristic subgroup of N . A counterexample to both of these claims is (G,N),
where G is the dihedral group of order 8, and N is a Klein 4-group. Then

2(G,N) = Z1(G,N) = Z(G) which is not characteristic in N .

Some properties of these central series are displayed in the next result.

Theorem 2.5. Let 1 = N0 ≤ N1 ≤ . . . ≤ Nt = N be a central series of a nilpotent

pair of groups (G,N). Then

(1) 
i(G,N) ≤ Nt−i+1, so that 
t+1(G,N) = 1,

(2) Ni ≤ Zi(G,N), so that Zt(G,N) = N ,

(3) The nilpotent class of (G,N) = the length of the upper central series = the

length of the lower central series.

Proof. (1) The proof is based on induction. If i = 1, this is clear. Since the above
series is central, we have [Nt−i+1, G] ≤ Nt−i. Thus 
i+1(G,N) = [
i(G,N), G] ≤
[Nt−i+1, G] ≤ Nt−i as required.

(2) The proof is easy by induction.

(3) By (i) and (ii) the upper and lower central series are shortest central
series of G.

One may see that a pair of groups (G,N) is nilpotent if and only if the
lower central series reaches the identity after a finite number of steps, or equiva-
lently the upper central series after a finite number of steps reaches the normal
subgroup N .
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The following lemma is needed for the next result and its proof is straight-
forward.

Lemma 2.6. Let (G,N) be any pair of groups and let i and j be positive integers.

Then

(1) [
i(G,N), 
j(G,N)] ≤ 
i+j(G,N),

(2) 
i(
j(G,N)) ≤ 
ij(G,N),

(3) [
i(G,N), Zj(G,N)] ≤ Zj−i(G,N) if j ≥ i,

(4) Zi(G/Zj(G,N), N/Zj(G,N)) = Zi+j(G,N)/Zj(G,N).

Theorem 2.7. If (G,N) is any pair of groups, then (G,N)(i) ≤ 
2i(G,N). If

(G,N) is nilpotent of class c ≥ 1, its derived length is at most [log2 c] + 1

Proof. The first part follows on applying induction and Lemma 2.6 (i). Now
let (G,N) be nilpotent of class c ≥ 1. If d is the derived length of (G,N) then
(G,N)(i) ≤ 
2i(G,N) ≤ 
c+1(G,N) = 1 which implies 2i ≥ c+ 1. The smallest
such i is [log2 c] + 1. Therefore d ≥ [log2 c] + 1.

Remark 2.8. Note that if (G,N) is a nilpotent pair of groups of class greater
than 1 and n ∈ N , then the nilpotency class of ⟨n, [N,G]⟩ is smaller than that of
(G,N). We can now deduce that (G,N) can be expressed as an internal product
of some nilpotent subpairs of smaller classes.

3. Further Properties of Nilpotent Pairs of Groups

We shall now embark on investigation some more properties of nilpotent pairs
of groups. Let us begin with a well known property of a nilpotent group. A
nontrivial normal subgroup of a nilpotent group G intersects nontrivially the
center of G. Now, this property can be proved with the weaker condition than
the nilpotency for an arbitrary pair adopted of G.

Theorem 3.1. If (G,N) is a nilpotent pair of groups and M is a nontrivial

normal subgroup of G such that M ∩N is nontrivial, then M ∩ Z(G,N) ∕= 1.

Proof. Since (G,N) is nilpotent there exists a positive integer c such that N =
Zc(G,N). Let i be a least integer such that M ∩ Zi(G,N) ∕= 1. Now, [M ∩
Zi(G,N), G] ≤ M ∩Zi−1(G,N) = 1 and M ∩Zi(G,N) ≤ M ∩Z1(G,N). Hence
M ∩ Z1(G,N) = M ∩ Zi(G,N) ∕= 1.

The interesting point in Theorem 3.1 and in the two following statements is
that, with a weaker condition we reach to a sharper conclusion. This happens
since the center of a pair lies in the center of the group itself.
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Corollary 3.2. If (G,N) is a nilpotent pair of groups with N ∕= 1, then Z(G,N) ∕=
1.

Theorem 3.3. Let (G,N) be a nilpotent pair of groups and N has an element of

prime order p, then so does Z(G,N).

Proof. Since N is nilpotent, the subgroup

H = {x ∈ N ∣ xp�

= 1, for some �}

is fully-invariant in N (see [5]). Thus H⊴G and H ∩Z(G,N) ∕= 1. So the result
holds.

Now we state several theorems in which the nilpotency of a pair (G,N)
provides some properties for the group G and its subgroups. First recall that a
subnormal subgroup of G is a subgroup which has a subnormal series begin by
it and reaches G.

Theorem 3.4. If (G,N) is a nilpotent pair of groups, then every maximal sub-

group of G which does not contain N is normal.

Proof. Since Zc(G,N) = N , for some c, thus for every maximal subgroup M of
G, the following series is a subnormal series for M .

M ≤ MZ1(G,N) ≤ MZ2(G,N) ≤ . . . ≤ MZc(G,N) = MN = G

Since Zc(G,N) = N , for some c, thus for every maximal subgroup M of G, the
following series is a subnormal series for M .

M ⊴MZ1(G,N)⊴MZ2(G,N)⊴ . . .⊴MZc(G,N) = MN = G

If c = 1, obviously M ⊴ G. Otherwise by maximality of M there exists a least
positive integer j where MZj(G,N) = G. Then MZj−1(G,N) = M which
yields that M ⊴G.

Robinson showed how the first lower central factor Gab = G/G′ exerts a very
strong influence on subsequent lower central factors of a group G (for details see
[5, Theorem 5.2.5]). Now, we state another main theorem of this section which
is a wide generalization of Robinson Theorem for a pair of groups (G,N).

Theorem 3.5. [Generalized Robinson Theorem] Let (G,N) be a pair of groups

and let Fi = 
i(G,N)/
i+1(G,N). Then the map

Fi ⊗
G

[N,G]
→ Fi+1

n
i+1(G,N)⊗ g[N,G] 7→ [n, g]
i+2(G,N)
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is a well-defined epimorphism.

Note that in the above theorem we have faced to nonabelian tensor product
with trivial actions which is isomorphic to their abelian tensor product.

In the next two theorems and corollary, using Theorem 3.5, we intend to give
some sufficient conditions under which the second term of a pair of groups can
be finite or finite exponent.

Theorem 3.6. If (G,N) is a nilpotent pair of groups such that G/[N,G] is finite,
then N is finite.

Proof. Let Fi = 
i(G,N)/
i+1(G,N) be finite. Then by Theorem 3.5, Fi+1 is
also finite. Whence every lower central factor is finite. Since (G,N) is nilpo-
tent, then 
c+1(G,N) = 1, for some c. As finiteness is closed under forming
extensions, thus N is finite.

Theorem 3.7. Suppose that (G,N) is an arbitrary pair of groups such that

G/[N,G] has exponent m. Then for all positive integers n, 
n(G,N)/
n+1(G,N)
has exponent dividing m.

Proof. The result follows from Theorem 3.5 and from the fact that the exponent
of a tensor product divides the exponents of each of the factors.

Corollary 3.8. Suppose that (G,N) is a nilpotent pair of groups of class c such

that G/[N,G] has exponent m. Then N has finite exponent dividing mc.

Proof. This follows from the preceding theorem.

It is known that an extension of a nilpotent group by another nilpotent
group may not be nilpotent in general. P.Hall [3] obtained a criterion under
which such an extension can be nilpotent. In what follows we state a similar
theorem for pairs of groups. Note that the notion of a trivial G-module, that is,
each element of G acts like the identity automorphism, will be used in the proof.
Also by a polytrivial G-module we mean a G-module having a series with G-
trivial factors polytrivial. Note also that if A and B are polytrivial G-modules,
then A⊗B is also a polytrivialG-module (see [5, Theorem 5.2.11]). Furthermore,
one can easily see that a homomorphic image of a polytrivial G-module is again
polytrivial.

Theorem 3.9. Let M be a normal subgroup of G contained in N . If (N,M)
and (G/[M,N ], N/[M,N ]) are nilpotent pairs of groups, then the pair of groups

(G,N) is nilpotent.

Proof. Since (G/[M,N ], N/[M,N ]) is nilpotent, then it has a central series as
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follows:

1 =
H0

[M,N ]
≤

H1

[M,N ]
≤ . . . ≤

Ht

[M,N ]
=

N

[M,N ]
. (1)

Now we construct the following series for (N/[M,N ])ab = N/[M,N ]N ′:

1 =
H0N

′

[M,N ]N ′
≤

H1N
′

[M,N ]N ′
≤ . . . ≤

HtN
′

[M,N ]N ′
=

N

[M,N ]N ′
.

It is routine to check that by the above central series N/[M,N ]N ′ is a polytrivial
G-module. Put Fi = 
i(N,M)/
i+1(N,M). Now by induction we prove that
every lower central factor of (N,M) is a polytrivial G-module. Since M is
nilpotent, M/M ′ is polytrivial and since a homomorphic image of a polytrivial
G-module is again polytrivial, thus F1 = M/[M,N ] is polytrivial. Suppose
that Fi is a polytrivial G-module, then Fi ⊗ N/[M,N ]N ′ is polytrivial (see [5,
5.2.11]). As we know Fi ⊗ N/[M,N ]N ′ ∼= Fi ⊗ N/[M,N ] and the property of
being polytrivial G-module is closed under the image of tensor product, thus it
will follow by Theorem 3.5 that Fi+1 is polytrivial. By nilpotency of (N,M),
there exists a positive integer c such that 
c+1(N,M) = 1. Now, combining the
lower central series of (N,M) and (1) we obtain

1 = 
c+1(N,M) ≤ . . . ≤ 
2(N,M) = [M,N ] = H0 ≤ . . . ≤ Ht = N.

By the fact that Fi is a polytrivial G-module, there is a series

1 = Ki1 ≤ . . . ≤ Kir = Fi

such that Kij+1
/Kij is a trivial G-module. By considering the preimage of each

term of the latest series under the canonical homomorphism 
i(N,M) → Fi,
we obtain a central series of (G,N) which provides the nilpotency of (G,N), as
required.

As it is shown, if G is nilpotent, then so is (G,N) and the nilpotency of
(G,N) implies nilpotency of N . But the interesting questions that usually arise
in such situations are knowing the conditions under which the inverse of the
mentioned statements might be true. Theorem 3.9 provides some simple but
useful conclusions related to the reverse statements.

Corollary 3.10. If (G,N) and G/[N,G] are nilpotent, then so is G. In particular,

G is nilpotent if and only if (G,G′) is nilpotent.

Corollary 3.11. Let N and (G/N ′, N/N ′) be nilpotent. Then so is (G,N).

Corollary 3.12. Let G′ be nilpotent. Then G is nilpotent if (G/G′′, G′/G′′) is

nilpotent.

In the next theorem, invoking the notion of nilpotency for a pair, a sufficient
condition will be provided for a group to be nilpotent. Although the theorem
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may be concluded from Corollary 3.10, we can also prove it by constructing a
central series for G using the nilpotency properties for (G,N) and G/N .

Theorem 3.13. Let (G,N) be a pair of groups. If both (G,N) and G/N are

nilpotent, then so is G.

4. Nilpotent Pair of Finitely Generated Groups

It is a well known fact that finitely generated abelian groups satisfy the maximal
condition. This result was generalized to nilpotent groups by Baer (for exam-
ple see [7, Theorem 5.2.17]). In this section we prove a generalization of Baer
Theorem to a pair of groups. A generalization of Mal’cev Theorem for a pair
of groups shall also be stated. In the sequel, introducing a residually nilpotent
and a Hopfian pair of groups, we show that a residually nilpotent pair of finitely
generated groups is Hopfian.

Theorem 4.1. [Generalized Baer Theorem] If (G,N) is a nilpotent pair of groups

such that (G/[N,G], N/[N,G]) is a pair of finitely generated groups, then N
satisfies the maximal condition.

Proof. Assume Fi = 
i(G,N)/
i+1(G,N). Since the tensor product of two
finitely generated groups is finitely generated, then by the Generalized Robinson
Theorem each lower central factor is finitely generated. It follows that such
factors satisfy the maximal condition. Since maximal condition is closed with
respect to extension, the theorem holds.

Theorem 4.2. A nilpotent pair of finitely generated groups (G,N) has a central

series whose factors are infinite cyclic or cyclic of a prime order.

Proof. Use Theorem 4.1 and refine the lower central series.

Theorem 4.3. [Generalized Mal’cev Theorem] Let (G,N) be a pair of groups

such that Z(G,N) be torsion free. Then each upper central factor is torsion

free.

Proof. Let Z(G,N) = Z1(G,N) be torsion free. By Lemma 2.6 (iv) it is enough
to show that Z2(G,N)/Z1(G,N) is torsion free. Suppose that x ∈ Z2(G,N) and
xm ∈ Z1(G,N) where m > 0. So we have [xm, g] = 1. Since Z1(G,N) is torsion
free, then [x, g] = 1, for all g ∈ G and x ∈ Z1(G,N).

The following consequence is deduced from Theorems 4.2 and 4.3.

Corollary 4.4. A nilpotent pair of finitely generated groups (G,N) with torsion

free center has a central series whose factors are infinite cyclic.
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Theorem 4.5. Let (G,N) be a nilpotent pair of groups.

(1) If exp(Z(G,N)) = e, then exp(N)∣ec, where c is the nilpotency class of

(G,N).

(2) If (G,N) is a pair of infinite finitely generated groups, then its center has

an element of infinite order.

Proof. (1) Assume that N ∕= Z(G,N). Let x ∈ Z2(G,N) and g ∈ G. Then
[x, g] ∈ Z(G,N) and 1 = [x, g]e = [xe, g], whence xe ∈ Z1(G,N). Thus
Z2(G,N)/Z1(G,N) has finite exponent dividing e. By induction N/Z1(G,N)
has finite exponent dividing ec−1 and N has exponent dividing ec.
(2) If Z(G,N) is a torsion group, then it is finite, since N satisfies maximal
condition. So Z(G,N) has finite exponent e. By (1), exp(N)∣ec. Theorem 4.2
implies that N is finite which is a contradiction.

Definition 4.6. A pair of groups (G,N) is residually nilpotent if for every 1 ∕=
x ∈ N , there exists a normal subgroup Mx of G contained in N such that x /∈ Mx

and (G/Mx, N/Mx) is nilpotent.

Note that the residually nilpotency property of G carries over to (G,N) and
that of (G,N) forces N to be residually nilpotent.

Theorem 4.7. A pair of groups (G,N) is residually nilpotent if and only if

∩∞
n=1
n(G,N) = 1.

Proof. Let ∩∞
n=1
n(G,N) ∕= 1. Then there exists 1 ∕= x ∈ ∩∞

n=1
n(G,N) and
Mx ⊴G contained in N such that x /∈ Mx and (G/Mx, N/Mx) is nilpotent. So

i(N/Mx, G/Mx) = 1 for some i, that is a contradiction. The ”only if” part is
obvious.

We have already known that a free group is residually nilpotent. This fact
together with Theorem 4.7 imply that a pair of free groups (F,E) is residually
nilpotent. The following corollary gives us a criterion for a group to be residually
nilpotent.

Corollary 4.8. A pair of groups (G,G′) is residually nilpotent if and only if G
is.

We close this section by the definition and determining a Hopfian pair.

Definition 4.9. A pair of groups (G,N) is Hopfian if (G,N) is not isomorphic

to (G/K,N/K), for every K ∕= 1.

It is obvious that for N = G, Definition 4.9 reduces to the usual definition of
Hopfian for groups.
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Theorem 4.10. A residually nilpotent pair of finitely generated groups (G,N) is

Hopfian.

Proof. Assume that (G,N) ∼= (G/K,N/K), for some normal subgroup K of G.
Since (G,N) ∼= (G/K,N/K) and the terms of the lower central series are verbal
subgroups, then


n(G,N)


n+1(G,N)
∼=


n(G/K,N/K)


n+1(G/K,N/K)

and 
n(G/K,N/K) = 
n(G,N)K/K, 
n+1(G/K,N/K) = 
n+1(G,N)K/K.

If K ∕= 1, then there is a smallest integer n such that K ⊂ 
n(G,N), but K
is not a subgroup of 
n+1(G,N). Therefore


n(G,N)


n+1(G,N)
∼=


n(G/K,N/K)


n+1(G/K,N/K)
=

K
n(G,N)/K

K
n+1(G,N)/K

∼=
K
n(G,N)

K
n+1(G,N)
=


n(G,N)

K
n+1(G,N)

∼=

n(G,N)/
n+1(G,N)

K
n+1(G,N)/
n+1(G,N)
.

Since 
n(G,N)/
n+1(G,N) is a finitely generated abelian group, then it can not
be isomorphic to a proper quotient group of itself. Therefore K = 1 and (G,N)
is Hopfian.
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