
Hindawi Publishing Corporation
ISRN Applied Mathematics
Volume 2013, Article ID 748417, 4 pages
http://dx.doi.org/10.1155/2013/748417

Research Article
A Computational Method for 𝑛-Dimensional Laplace Transforms
Involved with Fourier Cosine Transform

Jafar Saberi-Nadjafi1,2

1 Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2The Center of Excellence on Modeling and Control Systems (CEMCE), Ferdowsi University of Mashhad, Mashhad, Iran

Correspondence should be addressed to Jafar Saberi-Nadjafi; najafi141@gmail.com

Received 24 May 2013; Accepted 9 July 2013

Academic Editors: Y.-D. Kwon and G. Mishuris

Copyright © 2013 Jafar Saberi-Nadjafi.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In 2007, the author published some results on n-dimensional Laplace transform involved with the Fourier sine transform. In this
paper, we propose some new result in n-dimensional Laplace transforms involved with Fourier cosine transform; these results
provide few algorithms for evaluating some n-dimensional Laplace transform pairs. In addition, some examples are also presented,
which explain the useful applications of the obtained results. Therefore, one can produce some two- and three- as well as n-
dimensional Laplace transforms pairs.

1. Introduction and Preliminaries

Before a lunching into the main part of the paper, we
define some notations and terminologies which will remain
standard.The classification 𝑛-dimensional Laplace transform
under consideration for a function 𝑓(𝑡) is a function 𝐹(𝑠)

through the relation

𝐹 (𝑠) = L {𝑓 (𝑡) ; 𝑠}

= ∫

∞

0

∫

∞

0

⋅ ⋅ ⋅ ∫

∞

0

exp (−𝑠 ⋅ 𝑡) 𝑓 (𝑡) 𝑝
𝑛
(𝑑𝑡) ,

(1)

where 𝑡 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
), 𝑠 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
), 𝑠 ⋅ 𝑡 = ∑

𝑛

𝑖=1
𝑠
𝑖
𝑡
𝑖
,

and 𝑝
𝑛
(𝑑𝑡) = ∏

𝑛

𝑘=1
𝑑𝑡
𝑘
. The domain of definition of 𝐹 is

the set of all points 𝑠 ∈ C𝑛 such that the integral in (1) is
convergent. Instead of the 𝑛-dimensional Laplace transform
(1), sometimes we calculate the so-called 𝑛-dimensional
Carson-Laplace transform:

𝐹 (𝑠) = 𝑝
𝑛
(𝑠) ∫

∞

0

∫

∞

0

⋅ ⋅ ⋅ ∫

∞

0

exp (−𝑠 ⋅ 𝑡) 𝑓 (𝑡) 𝑝
𝑛
(𝑑𝑡) . (2)

Symbolically, we denote the pairs 𝐹(𝑠) and 𝑓(𝑥) by the
following operational relation:

𝐹 (𝑠)

𝑛

=
𝑛

𝑓 (𝑡) or 𝑓 (𝑡)

𝑛

=
𝑛

𝐹 (𝑠) . (3)

In this notation, some of the formulas become more simple.
We denote (3) in one-dimensional case by the following:

𝐹 (𝑠) ≑ 𝑓 (𝑥) . (4)

Now, if the 𝑛-dimensional Laplace transform is known, its
inverse is given by the following:

𝑓 (𝑡) =

1

(2𝜋𝑖)
𝑛
∫

Br
∫

Br
⋅ ⋅ ⋅ ∫

Br
exp (𝑠.𝑡) 𝐹 (𝑠) 𝑝

𝑛
(𝑑𝑠) . (5)

Herein, Br designates the appropriate Bromwich contour
integral in the plane of integration.

For brevity, we will also use the following notation
throughout this paper.

Let 𝑡] = (𝑡
]
1
, 𝑡

]
2
, . . . , 𝑡

]
𝑛
) for any real exponent ], and let

𝑝
𝑘
(𝑡) be the 𝑘th symmetric polynomial in the component 𝑡

𝑘

of 𝑡. Then we denote
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(i) 𝑝
1
(𝑡
]
) = ∑
𝑛

𝑖=1
𝑡
]
𝑖
,

(ii) 𝑝
𝑛
(𝑡
]
) = ∏

𝑛

𝑖=1
𝑡
]
𝑖
.

The difficulties in obtaining multiple direct or inver-
sion Laplace transforms (1) or (5) that appear in problems
of physics and engineering lead to continuous efforts in
expanding the transform tables for directs and designing
algorithms generating new inverses transforms from known
ones. While such tables are available, the actual evaluation of
the direct and inversion integral is obviated and the solution
of boundary value problems in several variables and some
partial differential equations is reduced to a relatively routine
procedure. For more details on this subject see [1–16].

2. The Main Results

In this section we state and give proof for our main theorems,
which give somenew 𝑛-dimensional Laplace transforms pairs
for arbitrary nonnegative integer 𝑛 ≥ 2.

Theorem 1. Suppose that

(i) L{𝑔(𝑥); 𝑠} = 𝐹(𝑠)

(ii) L{𝐹(𝑥); 𝑠} = 𝑓(𝑠)

(iii) L{𝑥
(𝑛−1)/2

𝑔(𝑥); 𝑠} = 𝜙
(𝑛−1)/2

(𝑠), 𝑛 = 2, 3, . . . , 𝑁.

Also, let 𝐹
𝑐
(𝑠) be the Fourier cosine transform of 𝑓(𝑥2), and let

exp(−𝑠𝑥 − 𝑥𝑡)𝑔(𝑥) belong to 𝐿
1
[(0,∞) × (0,∞)]. Then

L
𝑛
{𝑝
𝑛
(𝑥
−2/3

) 𝜙
(𝑛−1)/2

(

1

4

𝑝
1
(𝑥
−1
)) ; 𝑠}

= 2
𝑛+1

𝜋
(𝑛−2)/2

𝐹
𝑐
[𝑝
1
(𝑠
1/2
)] ,

(6)

provided the Laplace transform of functions 𝑔(𝑥), 𝐹(𝑥) and
𝑥
(𝑛−2)/2

𝑔(𝑥), 𝑛 ≥ 2, exist and the integrals in the left side of
(6) also exist in every variable.

Proof. By using the assumptions (i) and (ii) together, we get

𝑓 (𝑠) = ∫

∞

0

exp (−𝑠𝑥) [∫
∞

0

exp (−𝑥𝑡) 𝑔 (𝑡) 𝑑𝑡] 𝑑𝑥. (7)

Now, interchanging the order of the integrals on the right
side of (7) due to the Fubini’s theorem [17] evaluating the
inner integral and next by replacing 𝑠 by ]2 in the resulting
equation, we have

𝑓 (]2) = ∫

∞

0

𝑔 (𝑡)

1

]2 + 𝑡
𝑑𝑡. (8)

From (8) we can easily obtain

∫

∞

0

𝑓 (]2) cos (𝑠]) 𝑑] = ∫

∞

0

𝑔 (𝑡) [∫

∞

0

cos (𝑠])
]2 + 𝑡

𝑑]] 𝑑𝑡. (9)

Evaluating the inner integral in the rightside of (9), we get

∫

∞

0

𝑓 (]2) cos (𝑠]) 𝑑] = 𝜋

2

∫

∞

0

𝑡
−1/2

𝑔 (𝑡) exp (−𝑡1/2𝑠) 𝑑𝑡.

(10)

By the assumption, (10) can be rewritten as

𝐹
𝑐
(𝑠) =

𝜋

2

∫

∞

0

𝑡
−1/2

𝑔 (𝑡) exp (−𝑡1/2𝑠) 𝑑𝑡. (11)

Next, we replace 𝑠 by 𝑝
1
(𝑠
1/2
) in (11) and multiply both sides

of the resulting relation by 𝑝
𝑛
(𝑠), in order to obtain

𝑝
𝑛
(𝑠) 𝐹
𝑐
[𝑝
1
(𝑠
1/2
)]

=

𝜋

2

𝑝
𝑛
(𝑠) ∫

∞

0

𝑡
−1/2

𝑔 (𝑡) exp [−𝑡1/2𝑝
1
(𝑠
1/2
)] 𝑑𝑡.

(12)

Now, we use the following operational relation which is given
in [18], in (12)

𝑠
𝑖
exp [−𝑎𝑠1/2

𝑖
] ≑

𝑎𝑥
−3/2

1

𝜋
1/2

exp[− 𝑎
2

4𝑥
1

] , (13)

for 𝑖 = 1, 2, . . . , 𝑛, (12) reads

𝑝
𝑛
(𝑠) 𝐹
𝑐
[𝑝
1
(𝑠
1/2
)]

𝑛

=
𝑛

𝑝
𝑛
(𝑥
−3/2

)

2
𝑛+1

𝜋
(𝑛−2)/2

𝜙
(𝑛−1)/2

(

𝑝
1
(𝑥
−1
)

4

) .

(14)

Therefore,

L
𝑛
{𝑝
𝑛
(𝑥
−3/2

) 𝜙
(𝑛−1)/2

(

1

4

𝑝
1
(𝑥
−1
)) ; 𝑠}

= 2
𝑛+1

𝜋
(𝑛−2)/2

𝐹
𝑐
[𝑝
1
(𝑠
1/2
)] .

(15)

This completes the proof.

Theorem 2. Suppose all conditions given in Theorem 1 hold
true but replace the condition (iii) by the following:

(iii)L{𝑥
−1/2

𝑔(𝑥); 𝑠} = 𝜙
−1/2

(𝑠).

Then

L
𝑛
{𝑝
𝑛
(𝑥
−1/2

) 𝜙
−1/2

(

1

4

𝑝
1
(𝑥
−1
)) ; 𝑠}

=

𝜋
(𝑛−2)/2

2
1/2

𝑝
𝑛
(𝑠
−1/2

) 𝐹
𝑐
[𝑝
1
(𝑠
1/2
)] .

(16)

Proof. Theproof ofTheorem 2 is similar to that ofTheorem 1,
and we therefore omit it.

The following examples will illustrate the applications of
Theorems 1 and 2. We will consider the function 𝑔 to be
an elementary or some special function to construct certain
functions with 𝑛 variables, and we calculate their Laplace
transforms, using Theorems 1 and 2. The first two examples
are related to Theorem 1, and Examples 3 and 4 illustrate the
application of Theorem 2.
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3. n-Dimensional Examples

Example 1. Suppose 𝑔(𝑥) = 𝑥
−]/2 for −1 < Re ] < 0, so that

using [18] and assumptions (i)–(iii) in Theorem 1, we get the
following:

𝐹 (𝑠) =

Γ (1 − (]/2))

𝑠
1−(]/2)

, Re 𝑠 > 0,

𝑓 (𝑠) =

Γ (1 − (]/2)) Γ (]/2)

𝑠
]/2

, Re 𝑠 > 0,

𝜙
(𝑛−1)/2

(𝑠) =

Γ ((𝑛 − ] + 1) /2)

𝑠
(𝑛−]+1)/2

, Re 𝑠 > 0.

(17)

Next, using a formula given in [19], we obtain

𝐹
𝑐
(𝑠) =

𝜋
2

Γ (]) sin𝜋]
𝑠
]−1

. (18)

Hence fromTheorem 1, we have

L
𝑛

{

{

{

𝑝
𝑛
(𝑥
−3/2

)

[𝑝
1
(𝑥
−1
)]

(𝑛−]+1)/2
; 𝑠

}

}

}

=

2
𝑛−1

𝜋
(𝑛+2)/2

Γ (]) sin𝜋]
[𝑝
1
(𝑠
1/2
)]

]−1
,

𝑎 > 0, Re [𝑝
1
(𝑠
1/2
)] > 0.

(19)

Example 2. Let us assume 𝑔(𝑥) = 𝑥
1/4

𝐽
1/2
(2𝑎
1/2

𝑥
1/2

), 𝑎 > 0.
Using formulas given in [18], we obtain

𝐹 (𝑠) = 𝑎
1/4

𝑠
−3/2

𝑒
−𝑎/𝑠

, Re 𝑠 > 0,

𝑓 (𝑠) =

𝜋
1/2

𝑎
1/4

𝑒
−2𝑎
1/2
𝑠
1/2

, Re 𝑠 > 0,

(20)

𝜙
(𝑛−1)/2

(𝑠) =

𝑛Γ (𝑛) 𝜋
−1/2

𝑎
1/4

𝑠
(𝑛/2)+1

1
𝐹
1
[

𝑛

2

+ 1;

3

2

; −

𝑎

𝑠
1/2

] ,

Re 𝑠 > 0,

(21)

where by
1
𝐹
1
[⋅; ⋅; ⋅] we mean generalized hypergeometric

function.
Next, the formula given in [19] yields

𝐹
𝑐
(𝑠) =

2𝜋
1/2

𝑎
1/4

4𝑎 + 𝑠
2
. (22)

UsingTheorem 1, we get

L
𝑛

{

{

{

𝑝
𝑛
(𝑥
−3/2

)

(𝑝
1
(𝑥
−1
))

(𝑛/2)+1

×
1
𝐹
1

[

[

𝑛

2

+ 1;

3

2

; −

2𝑎

(𝑝
1
(𝑥
−1
))

1/2

]

]

; 𝑠

}

}

}

=

𝜋
𝑛/2

𝑛Γ (𝑛)

⋅

1

4𝑎 + [𝑝
1
(𝑠
1/2
)]

2
,

𝑎 > 0, Re [𝑝
1
(𝑠
1/2
)] > 0.

(23)

Example 3. Assuming 𝑔(𝑥) = sin 𝑎𝑥1/2, 𝑎 > 0, and using
formulas given in [18], we get the following:

𝐹 (𝑠) =

𝑎𝜋
1/2

2

𝑠
−3/2

𝑒
−𝑎
2
/4𝑠

, Re 𝑠 > 0,

𝑓 (𝑠) =

4

𝑎
2
𝑒
−𝑎𝑠
1/2

, Re 𝑠 > 0,

𝜙
−1/2

(𝑠) =

𝜋
1/2

𝑠
1/2

𝑒
−𝑎
2
/4𝑠erfi( 𝑎

2𝑠
1/2

) , Re 𝑠 > 0,

(24)

where

erfi (𝑥) = −𝑖 erfi (𝑖𝑥) = 2

𝜋
1/2

∫

𝑥

0

𝑒
𝑡
2

𝑑𝑡. (25)

Afterward, with a formula given in [19], we obtain

𝐹
𝑐
=

𝑎
3

4 (𝑎
2
+ 𝑠
2
)

. (26)

Therefore, fromTheorem 2, we have

L
𝑛

{

{

{

𝑝
𝑛
(𝑥
−1/2

)

(𝑝
1
(𝑥
−1
))

1/2

𝑒
(−𝑎
2
/𝑝
1
(𝑥
−1
))erfi

×
[

[

𝑎

(𝑝
1
(𝑥
−1
))

1/2

]

]

; 𝑠

}

}

}

=

𝑎
3

𝜋
(𝑛−2)/2

2
5/2

⋅

𝑝
𝑛
(𝑠
1/2
)

𝑎
2
+ 𝑝
2

1
(𝑠
1/2
)

,

𝑎 > 0, Re [𝑝
1
(𝑠
1/2
)] > 0.

(27)



4 ISRN Applied Mathematics

Example 4. Suppose that𝑔(𝑥) = 𝑥
−1/4 exp(𝑎𝑥).Thenwith the

aid of formulas given in [18, 20], we obtain

𝐹 (𝑠) =

Γ (3/4)

(𝑠 − 𝑎)
3/4

=

𝜋√2

Γ (1/4) (𝑠 − 𝑎)
3/4

, Re 𝑠 > 𝑎,

𝑓 (𝑠) =

1

√2𝜋𝑠
1/4

exp (−𝑎𝑠) , Re 𝑠 > 0,

𝜙
−1/2

(𝑠) =

Γ (1/4)

(𝑠 − 𝑎)
1/4

, Re 𝑠 > −𝑎.

(28)

Now, by using a formula given in [19], we get

𝐹
𝑐
(𝑠) =

√𝑠

4√𝑎

exp(− 𝑠
2

8𝑎

) 𝐼
−1/4

(

𝑠
2

8𝑎

) , (29)

where by 𝐼
−1/4

(⋅) we mean the modified Bessel function of
the first kind.

Putting the above relations into (16), we arrive at the
following:

L
𝑛

{

{

{

𝑝
𝑛
(𝑥
−1/2

)

[(1/4)𝑝
1
(𝑥
−1
) − 𝑎]

1/4

; 𝑠

}

}

}

=

𝜋
(𝑛−1)/2

4Γ (1/4)√2𝑎

𝑝
𝑛
(𝑠
−1/2

)√𝑝
1
(𝑠
1/2
)

× exp[

[

−

𝑝
2

1
(𝑠
1/2
)

8𝑎

]

]

𝐼
−1/4

[

[

𝑝
2

1
(𝑠
1/2
)

8𝑎

]

]

,

𝑎 > 0.

(30)

4. Conclusion

In this paper, we presented and proved two main theorems
concerned with 𝑛-dimensional Laplace transform involved
with the Fourier cosine transform. These theorems provide
few algorithms for evaluating some 𝑛-dimensional Laplace
transform pairs. The formulas are obtained in Examples 1–
4 all of which are new results both in two-dimensional
and in the corresponding results in 𝑛-dimensional Laplace
transform pairs. Several other new results can be obtained
using these algorithms.
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