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The present study is concerned with the elastic/plastic buckling of thin rectangular plates under
various loads and boundary conditions. The in-plane loads are placed uniformly and linearly varying
in the uniaxial compression and biaxial compression/tension. The equilibrium and stability equations are
derived and analyses are carried out based on two theories of plasticity, i.e. deformation theory (DT)
and incremental theory (IT). The elastic/plastic behavior of plates is described by the Ramberg–Osgood
model. Generalized Differential Quadrature (GDQ) discretization technique is used to solve the buckling
of plate equation. To examine accuracy of the present formulation and procedure, several convergence
and comparison studies are investigated and new results are presented. The differences between the IT
and DT results increase by increasing loading parameter in linearly varying in-plane loading. Some new
consequences are achieved regarding the validation range of two theories. Furthermore, effects of aspect,
thickness to length and loading ratios, boundary condition, type of plasticity theory and linearly varying
in-plane loading on the buckling coefficient are discussed. Contour plots of buckling mode shapes for
various loading parameters are also illustrated.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The elastic/plastic buckling of plate, widely used in aerospace,
mechanical, civil and marine engineering structures are concerned
by many of the engineers. Moreover, plates are extensively used
in structures such as aircraft wings and bridges. Then it is im-
portant to know buckling capacities of the structures in order to
avoid premature failure. For large amounts of loading the buckling
phenomena may occur in the plastic range. This phenomenon may
be likely to occur in the cases of plates whose materials posses a
low proportional limit when compared to the nominal yield stress,
for example aluminum alloy and stainless steel. Researchers have
given considerable attention to the buckling of plates issue numer-
ically and analytically in both elastic and plastic buckling modes.
They have investigated the plastic buckling behavior of plates sub-
jected to uniaxial and biaxial compression loadings using two the-
ories of strain-hardening plasticity, incremental and deformation
theories. It would be useful for the design profession if a sim-
ple computing algorithm is available, that is rapidly adaptable to
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specific problems in determining the plastic bifurcation buckling
loads.

Ilyushin [15], Handelman and Prager [13], Stowell [26] and
Pride and Heimerl [18] carried out the plastic buckling analy-
sis with incremental and deformation theories, respectively. They
showed that the results attained by DT are close to the experi-
mental results. Tugcu [28] illustrated that the analysis based on
IT is more sensitive than DT with the test parameters. Geier
and Singh [11] presented a simple analytical solution for com-
puting bifurcation buckling loads of thin and moderately thick
orthotropic cylindrical shells and panels subjected to axial com-
pression and normal pressure. The analysis was based on the
governing nonlinear equations. Durban [8] found out that the IT
could predict more buckling load in comparison with DT, and
that the experimental data had more congruence with DT. Of
course, there are some cases where the critical stresses obtained
from two theories are nearly equal. A typical example is fur-
nished by axially symmetric buckling of axially compressed cir-
cular cylindrical shells. Durban and Zuckerman [9] carried out
the analysis of rectangular plates under uniaxial loading for sev-
eral various modes with the separation of variables solution.
However, the limited boundary conditions consisting of clamped
and simply supported have limited the obtained data in that re-
search. If all boundary conditions are clamped, then it would

1270-9638/$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved.
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Nomenclature

a,b Plate lengths in x- and y-directions, respectively
C (1)

i j , C (2)
i j , C (3)

i j , C (4)
i j The weighting coefficients of the first, sec-

ond, third and fourth-orders
n,k Ramberg–Osgood parameters
D Flexural rigidity of plate [≡ Eh3/12(1 − υ2)]
E Young’s modulus of elasticity
G Effective shear modulus
h Thickness of plates
h/a Thickness to length ratio
K Buckling coefficient [≡ Pa2h/π2 D]
Nx, N y Number of grid point in the x- and y-directions, re-

spectively
P0 The maximum intensity of compressive force at the

edge of plate in Eq. (29)
P x In-plane compressive forces per unit length of the

plate in the x direction in Eq. (29)

Sij Stress deviator tensor
S(Es) Secant modulus
T (Et) Tangent modulus
U Strain energy
V Potential energy
w Transverse deflection of the plate
X, Y , W Non-dimensional parameters

Greek symbols

α,β,γ ,χ,μ, δ Parameters used in stress–strain relations
η Loading parameter in Eq. (29)
εe Total effective strain
ε Total strain
λ Aspect ratio [≡ a/b]
υ Poisson’s ratio
σe Effective stress
ξ Loading ratio

be difficult to solve the problem and other numerical meth-
ods have to be used. In the present study, it is aimed to solve
all these restrictions through generalized differential quadrature
method.

Betten and Shin [6] showed that if the plate is slender, the
buckling is elastic. However, if the plate is sturdy, it buckles in
the plastic range and the instantaneous moduli in the constitu-
tive equations depend on the external loading. Wang et al. [31,
32,29] investigated the elastic–plastic buckling of thin and thick
plates based on deformation and incremental theories by use of
separation of variables and Ritz method. They came to the con-
clusion that the DT predicts less buckling stress factor, and as the
thickness and Ramberg–Osgood constant increase, the differences
between two theories increase. Smith et al. [25] studied the inelas-
tic buckling of steel plates based on classical theory under different
loading conditions by using Rayleigh–Ritz method. El-Sawy et al.
[10] have employed the finite element method (FEM) to determine
the elasto–plastic buckling stress of uniaxially loaded square and
rectangular plates with circular cutouts. They showed that the crit-
ical buckling stress for perforated plates always decreases as the
plate slenderness ratio increases and that this decrease becomes
steeper for larger values of plate slenderness ratios, especially for
small hole sizes where the failure changes from elasto–plastic into
pure elastic. Grognec and Van [12] used the 3D plastic bifurca-
tion theory assuming the incremental theory of plasticity with the
von Mises yield criterion and a linear isotropic hardening. Wang
et al. [30,34] studied the elastic/plastic buckling of thick and thin
plates by differential quadrature method and confirmed the results
of Refs. [9,31]. Aydin Komur [2] studied the effect of plate aspect
ratio, elliptical hole size, angle and location and slenderness ratio
on buckling behavior. He found that as the plate slenderness ratio
increases, the critical buckling stress decreases for all perforated
plates.

More recently, Robert et al. [20] compared the incremental and
deformation theories and flow rules in simulating the sheet-metal
forming processes. It can be concluded that the major advantage
of the new approach was the time benefit when the material
non-linearities were dominant. Weißgraeber et al. [33] studied the
buckling behavior of an orthotropic plate with elastic clamping
and edge reinforcement under uniform compressive load. Rahimi
et al. [19] analyzed the buckling behavior of thin-walled cylindri-
cal shells under axial force by finite element analysis method. They
showed that stiffening the shells increased the buckling load while
decreased the buckling load to weight ratio of an unstiffened shell.

Fig. 1. Geometry and loading conditions of a rectangular plate.

Ruocco and Mallardo [21] applied a model to predict the buck-
ling behavior of thin, orthotropic, stiffened plates and shells sub-
jected to axial compression. The equilibrium equations have been
solved applying the Kantorovich method. They showed that the
Von Karman model could sensibly overestimate the critical load.
Chakrabarty [7] pointed out the difference between bifurcation and
stability and presented the equations used for the analyses. How-
ever, the point that the differences between the obtained results
from two theories of deformation and incremental are observable
is still a paradox.

In this work, details of elastic/plastic buckling of thin rectangu-
lar plates using incremental and deformation theories of plasticity
are introduced first. An important criterion for sizing and certifica-
tion of aircraft fuselages is the local and global buckling behavior.
Therefore it is necessary to know the buckling behavior as accu-
rately as possible. The uniform and non-uniform in-plane axial
and biaxial tension/compression loadings with various boundary
conditions are considered for the first time. The material prop-
erties described by the stress–strain relationship proposed by the
Ramberg–Osgood stress–strain model. The GDQ method as an effi-
cient numerical tool is employed to establish an eigenvalue prob-
lem and to calculate the plate buckling coefficients. The validation
of the GDQ solutions by comparison with corresponding results for
a typical aerospace aluminum alloy (AL 7075-T6) material is de-
scribed. The numerical results are presented to show the effect of
aspect, thickness to length and loading ratios, boundary condition,
type of plasticity theory and linearly varying in-plane loading on
the buckling coefficient of plates.
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Fig. 2. The flow chart of calculation method.

2. Governing equations and boundary conditions

Fig. 1 shows the governing geometry on rectangular plates un-
der in-plane uniform compressive stress and shear stress where a
is the length, b is the width and h is the thickness of plate.

2.1. Equations from plasticity

The stress rate corresponding to strain rate in plate are given
by:⎧⎨
⎩

σ̇x

σ̇y

τ̇xy

⎫⎬
⎭ = E

⎡
⎣ α β χ

γ μ
sym δ

⎤
⎦

⎧⎨
⎩

ε̇x

ε̇y

γ̇xy

⎫⎬
⎭ , (1)

where E is the Young modulus and α, β , γ , δ, μ and χ depend
on the plasticity theory. There are two theories of plasticity used
in this paper, IT based on Prandtl–Reuss equation and DT based on
Hencky equation. The main difference between these two theories
is that IT depends on incremental plastic strain and DT depends on
total strain (see Appendix A).

According to incremental theory, the parameters α, β , γ , δ, μ,
χ and G are given by [29]:

α = 1

ρ

[
c22c33 − c2

23

]
, β = 1

ρ
[c13c23 − c12c33],

γ = 1

ρ

[
c11c33 − c2

13

]
, μ = 1

ρ
[c12c13 − c11c23],

χ = 1

ρ
[c12c23 − c13c22], δ = 1

ρ

[
c11c22 − c2

12

]
,

ρ = E

T

∣∣∣∣∣∣
c11 c12 c13
c21 c22 c23
c31 c32 c33

∣∣∣∣∣∣ , G = E

2(1 + υ)
, (2)

where
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E

)(
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y

4σ 2
e
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xy

σ 2
e

)
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T

E
− 3

(
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E

)(
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e
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xy
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)]
,
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2

(
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E

)(
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(
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E

)(
σ 2

x

4σ 2
e

+ τ 2
xy

σ 2
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,

c23 = 3
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(
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E

)(
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σe

)(
τxy
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)
,

c33 = 2(1 + υ)

(
T

E

)
+ 9

(
1 − T

E

)(
τ 2

xy

σ 2
e

)
. (3)

According to deformation theory, the parameters α,β,γ , δ,μ
and χ are calculated by employing Eqs. (A.3) and (2), and G in
this theory is given by [29]:
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G = E/

[
2 + 2υ + 3

(
E

S
− 1

)]
(4)

where

c11 = 1 − 3

(
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S

)(
σ 2
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e
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xy

σ 2
e

)
,
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)(
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,
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2

(
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)(
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)(
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,
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(
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S

)(
σ 2

x

4σ 2
e

+ τ 2
xy

σ 2
e
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,

c23 = 3

2

(
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S

)(
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)(
τxy
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,
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T

S
− (1 − 2υ)

(
T
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)
+ 9

(
1 − T

S

)(
τ 2

xy

σ 2
e

)
. (5)

2.2. Governing equation elastic/plastic buckling of thin plate

The strain energy functional for the plate is given by [7]:

U = 1

2

∫
V

{σ̇xε̇x + σ̇y ε̇y + τ̇xyγ̇xy + τ̇xzγ̇xz + τ̇yzγ̇yz}dV . (6)

The potential energy V for the plate subjected to uniform in-plane
compressive and shear stress is given by:

V = −1

2

∫
A

(
σ̇xh

(
∂ w

∂x

)2

+ σ̇yh

(
∂ w

∂ y

)2

+ 2τ̇xyh

(
∂ w

∂x

)(
∂ w

∂ y

))
dA. (7)

Now, the principle of minimum total potential energy is used as:

δ(U + V ) = 0, (8)

Table 1
The computational convergence rate for SSSS square plates under equibiaxial load-
ing.

h/a Nx = N y

5 7 9 11 13 15

0.011 1.7832 2.0120 2.0010 2.0000 2.0000 2.0000
0.049 1.7375 1.8935 1.8880 1.8878 1.8878 1.8878

where δ represents the variational symbol. In order to simplify the
parameter studies, the following non-dimensional variables are de-
fined:

X = x

a
, Y = y

b
, λ = a

b
, W = w

a
. (9)

Here, in the interest of brevity, only the final forms of the equi-
librium equation for the elastic/plastic buckling of thin rectangular
plate are presented in the dimensionless form as:

α
∂4W

∂ X4
+ 4λχ

∂4W

∂ X3∂Y
+ 2(β + 2δ)λ2 ∂4W

∂ X2∂Y 2

+ 4μλ3 ∂4W

∂ X∂Y 3
+ γ λ4 ∂4W

∂Y 4

= −12a2

h2

σx

E

∂2W

∂ X2
− 12a2

h2
λ2 σy

E

∂2W

∂Y 2

− 24a2

h2
λ
τxy

E

∂2W

∂ X∂Y
, (10)

in which the parameters α, β , γ , δ, μ, χ are given by Eqs. (2)–(5).

2.3. Boundary conditions

To complete the formulation of the problem, the governing
equations are accompanied by a set of boundary conditions. The
boundary conditions are considered as follows.

– Simply supported edge (S)

The boundary conditions for simply supported edge X = 0, X = 1
are:

W = 0, α
∂2W

∂ X2
+ βλ2 ∂2W

∂Y 2
= 0 (11)

and in Y = 0, Y = 1

W = 0, γ λ2 ∂2W

∂Y 2
+ β

∂2W

∂ X2
= 0. (12)

– Clamped edge (C )

The boundary conditions for clamped edge X = 0, X = 1 are:

W = 0, W ,X = 0 (13)

and in Y = 0, Y = 1

W = 0, W ,Y = 0. (14)

Table 2
Comparison studies of buckling coefficient for SSSS square thin plates under uniaxial and equibiaxial loadings with IT and DT predictions.

Type of
loading

Sources h/a = 0.035 h/a = 0.049

IT DT IT DT

uniaxial Ilyushin [15] – 4.0000 – 2.8959
Handelman and Prager [13] 4.0000 – 3.5740 –
Stowell [26] – 4.0000 – 2.6151
Beleich [4] – 4.0000 – 2.6548
Kollbrunner [4] – 4.0000 – 2.5827
Shrivastava [22] 4.0000 4.0000 3.5278 2.8058
Wang et al. [31] 4.0000 4.0000 3.4955 2.7954
Wang and Aung [29] 4.0000 4.0000 3.4955 2.7954
Present study 4.0000 4.0000 3.4955 2.7954

equibiaxial Durban and Zuckerman [9] 2.0000 2.0000 1.8713 1.8649
Wang et al. [31] 2.0000 2.0000 1.8713 1.8649
Wang and Aung [29] 2.0000 2.0000 1.8713 1.8649
Present study 2.0000 2.0000 1.8713 1.8649
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– Free edge (F )

For a free X = 0, X = 1 edge, the boundary conditions are:

α
∂2W

∂ X2
+ βλ2 ∂2W

∂Y 2
= 0,

α
∂3W

∂ X3
+ (β + 2μ)λ2 ∂3W

∂ X∂Y 2
= −12σxa2

Eh2

∂W

∂ X
(15)

Fig. 3. Comparison of analytical results obtained by IT and DT with experimental
results for SSSS square plate under uniaxial compression.

and in Y = 0, Y = 1

γ λ2 ∂2W

∂Y 2
+ β

∂2W

∂ X2
= 0,

λ2γ
∂3W

∂Y 3
+ (β + 2μ)

∂3W

∂ X2∂Y
= −12σya2

Eh2

∂W

∂Y
. (16)

Durban and Zuckerman [9] have obtained analytical solutions
for SSSS, SCSC and CSCS thin plates. But for the CCCC thin plate it
was not possible to obtain a separation of variables solution. In the
current study, it is tried to investigate the plastic buckling CCCC
rectangular plate with various boundary conditions by using GDQ
method for the first time.

3. GDQ analogs of the governing equation and boundary
conditions

This method (GDQ) is practical and simple in solving engineer-
ing problems. It was used in 1971 by Bellman and Casti [3] as a
new technique for numerical solving of ordinary or partial equa-
tions. Their purpose was to present a new way for overcoming the
constant problems and amount of numerical problems. The first
widespread use of this technique in the field of engineering prob-
lems was given by Bert and Malik [5]. The benefit of accessing
to a new and exact solution with the least analyses in compari-
son to other numerical solutions like finite element and boundary
element causes the efficiency of this method to be revealed grad-
ually. This method can solve higher order differential equations
with selecting few grid spacing. Its other characteristics are sim-
ple application, programming and high convergence rate [23,35].

Fig. 4. Variations of buckling coefficient with loading and thickness to length ratios for SSSS square plates under IT and DT predictions.
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Fig. 5. The locations of IT and DT results on stress–strain curve for SSSS square plate under, (a) uniaxial compression, (b) equibiaxial compression and (c) equibiaxial
tension/compression loadings (0.0001 � h/a < 0.05).

The GDQ discretization method has been adopted for the solution
of elastic/plastic buckling of thin rectangular plate equations. The
distributions of grid spacing of Chebyshev–Gauss–Lobatto (C-G-L)
have the best convergence and highest accuracy [24]. In this study,
the following relations are used:

xi = 1

2

(
1 − cos

i − 1

Nx − 1
π

)
, i = 1,2, . . . , Nx,

y j = 1

2

(
1 − cos

j − 1

N y − 1
π

)
, j = 1,2, . . . , N y . (17)

According to the GDQ method, the governing Eq. (10) should also
be re-written in discretized form. In terms of generalized differ-
ential quadrature, the governing differential equation at inner grid
point is expressed by:

α

Nx∑
k=1

C (4)

ik Wkj + 2(β + 2δ)λ2
N y∑

m=1

C (2)
jm

Nx∑
k=1

C (2)

ik Wkm

+ 4χλ

N y∑
m=1

C (1)
jm

Nx∑
k=1

C (3)

ik Wkm

+ 4μλ3
N y∑

m=1

C (3)
jm

Nx∑
k=1

C (1)

ik Wkm + γ λ4
N y∑

k=1

C (4)

jk W ik

= −12a2

h2 E

(
σx

Nx∑
k=1

C (2)

ik Wkj + λ2σy

N y∑
k=1

C (2)

jk W ik

+ 2λτxy

N y∑
m=1

C (1)
jm

Nx∑
k=1

C (1)

ik Wkm

)
,

i = 3,4, . . . , Nx − 2, j = 3,4, . . . , N y − 2 (18)

where C (1)
i j , C (2)

i j , C (3)
i j and C (4)

i j are the weighting coefficients of
the first, second, third and fourth-order derivatives with respect to
x and y, W is the value of deflection and Nx , N y are the number
of grid points in the x and y-directions, respectively. Application
of the GDQ method to the governing equations leads to a set of
(Nx − 2)2 × (N y − 2)2 equations with the same number of un-
knowns for all nodes of the domain. With the aid of GDQ, the
boundary conditions of Eqs. (11)–(16) can be shown as follows:

– Simply supported edges in X = 0, X = 1

W1 j = W Nx j = 0, j = 1,2, . . . , N y,

α

Nx∑
k=1

C (2)

ik Wkj + βλ2
N y∑

n=1

C (2)
jn W in = 0, i = 1,2, . . . , Nx (19)

and in Y = 0, Y = 1

W i1 = W iN y = 0,

γ λ2
N y∑

n=1

C (2)
jn W in + β

Nx∑
k=1

C (2)

ik Wkj = 0. (20)
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Fig. 6. Tangent modulus versus loading ratio by, (a) IT and (b) DT in various thick-
nesses parameters for SSSS square plate.

– Clamped edges in X = 0, X = 1

W1 j = W Nx j = 0,

Nx∑
k=1

C (1)

ik Wkj =
Nx∑

k=1

C (1)

Nxk Wkj = 0 (21)

and in Y = 0, Y = 1

W i1 = W iN y = 0,

N y∑
k=1

C (1)

k1 W ik =
N y∑

k=1

C (1)

kN y
W ik = 0. (22)

– Free edges in X = 0, X = 1

α

Nx∑
k=1

C (2)

ik Wkj + βλ2
N y∑

n=1

C (2)
jn W in = 0,

(β + 2μ)λ2
N y∑

m=1

C (2)
jm

Nx∑
k=1

C (1)

ik Wkm + α

Nx∑
k=1

C (3)

ik Wkj

Fig. 7. Tangent modulus versus loading ratio by, (a) IT and (b) DT in various thick-
nesses parameters for CCCC square plate.

= −12a2σx

h2 E

(
Nx∑

k=1

C (1)

ik Wkj

)
(23)

and in Y = 0, Y = 1

β

Nx∑
k=1

C (2)

ik Wkj + γ λ2
N y∑

n=1

C (2)
jn W in = 0,

(β + 2μ)

N y∑
m=1

C (1)
jm

Nx∑
k=1

C (2)

ik Wkm + λ2γ

N y∑
k=1

C (3)

jk W ik

= +12a2σy

h2 E

( N y∑
k=1

C (1)

jk W ik

)
. (24)

Assume that σx = −ξ P , σy = P and τxy = 0. It is easily seen that
the final equations of matrices, Eqs. (18)–(24), are a set of nonlin-
ear eigenvalue equations with the size of (Nx)

2 × (N y)
2. Eq. (18)

yield the buckling coefficient (the lowest eigenvalue) by solving the
generalized following eigenvalue problem:

[M][W ] = 12Pa2

Eh2
[N][W ], (25)

where M and N are matrices derived from the governing equa-
tion (18). Now, the non-dimensional buckling coefficient, K can be
defined as:

K = Pa2h

π2 D
, (26)
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Fig. 8. Buckling coefficient versus loading ratio for SSSS rectangular plates subjected
to various aspect ratios in h/a = 0.035.

where D = Eh3/12(1 − ν2), is the plate flexural rigidity. Here the
GDQ method as an efficient numerical tool is employed to solve
these equations. Moreover, an iterative method should be used
to solve the system of nonlinear eigenvalue Eq. (25). A computer
program EBITP (Elastic/plastic Buckling of Isotropic Thin Plates)
is developed based on the above mentioned formulation which
is very quick and easy to generate elastic/plastic buckling coeffi-
cient of plate. The flow chart of GDQ method is briefly outlined in
Fig. 2.

4. Mechanical properties of material and comparison studies

The material used in this study is a typical aerospace aluminum
alloy (AL 7075-T6). The strain hardening plastic behavior of most
structural materials used in aerospace and off-shore applications
can be adequately described by the Ramberg–Osgood stress–strain
relationship as follows:

ε = σe

E
+ k

(
σe

E

)n

(27)

where ε is the total strain and k and n are the material parameters.
The tangent and secant moduli used in the equation are calculated
as follows:

E

T
= 1 + nk

(
σe

E

)n−1

,
E

S
= 1 + k

(
σe

E

)n−1

. (28)

Consider a case that exhibits elastic/plastic material behavior, with
the following parameters, Eq. (27): E = 72.4 GPa, n = 10.9, k =
3.94 × 1021 and Poisson’s ratio ν = 0.32 [9]. To increase the accu-
racy of the analysis the grid spacing has to be selected properly.

Fig. 9. Buckling coefficient versus loading ratio for SSSS rectangular plates subjected
to various aspect ratios for h/a = 0.049.

Table 1 shows the convergence study for SSSS square plates un-
der equibiaxial loading. If the grid points are increased from 11
to 15, the GDQ results will have no changes. Therefore, the num-
bers of grid points are selected as 11 (Nx = N y). It is seen that the
convergence rate of GDQ method is excellent. Table 2 shows the
comparison studies of buckling coefficient for uniaxial and equibi-
axial SSSS square plates. The present results for thickness to length
of h/a = 0.035 and h/a = 0.049 were compared with results of
other researchers. They are in good agreement and it is verified
that the present GDQ solution is correct and accurate. A compari-
son between the obtained results and experimental data for rect-
angular plates under uniaxial compression are presented in Fig. 3.
It can be seen that the results attained by DT which violates the
fundamental rule of plastic flow of metal are close enough to the
experimental ones.

5. Numerical results and discussions

In this section, the close form solutions of Eq. (10) for two types
of uniform and linearly varying in-plane loadings are presented.
Moreover, the effects of aspect, thickness to length and loading
ratios, boundary conditions, type of plasticity theory and linearly
varying in-plane loading on the buckling coefficient are discussed.
Contour plots of buckling mode shapes for various loading param-
eters are also displayed.

5.1. Uniaxial and biaxial loadings

As it is shown in Fig. 1, when σx = −ξ P , σy = P and τxy = 0,
the loading ratio ξ = 1 for biaxial compression/tension and ξ = −1
for the equibiaxial compression are considered. Moreover, if we
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Fig. 10. Buckling coefficient versus loading ratio for SCSC rectangular plates sub-
jected to various aspect ratios for h/a = 0.049.

have σx = −ξ P , σy = 0, τxy = 0 and ξ = −1 the uniaxial compres-
sion is occurred.

5.1.1. Effect of loading ratio on the buckling coefficient
Firstly to verify the current study, some obtained results are

compared with those of Ref. [9] and then some new results are
presented. The buckling coefficient (K ) in terms of loading ratio
(ξ ) for different thickness to length ratios (h/a) are calculated by
incremental and deformation theories for SSSS plate, and it is ob-
served that there is a good consistency between the current results
and those of Ref. [9] for square plate, Fig. 4. In the case of square
plate under biaxial compression, buckling occurs in elastic mode
when h/a = 0.011 and the obtained results from incremental and
deformation theories are in agreement with those of Ref. [9]. In
this case and for all boundary conditions, the results for buckling
coefficients are close to elastic buckling theory. When h/a = 0.035,
ξ < 0.1 and h/a = 0.049, ξ < −0.3, there would be a good congru-
ence between two theories of plasticity. However, with increasing
the loading ratio in biaxial compression/tension, the differences in-
crease too, Fig. 4.

In transverse tension and using DT, with increasing the loading
ratio, the buckling coefficient decreases. In addition, the results ob-
tained by IT and DT are closer to each other in biaxial compression,
−1 � ξ < 0 rather than biaxial compression/tension, 0 < ξ � 1.5.
Furthermore, the differences between the results of two theories
become more when the thickness to length ratio increases. In some
cases, the elastic/plastic buckling coefficient predictions are not
placed on stress–strain curve which are shown by dash lines. The
results of IT placed on stress strain curve are shown by square
lines. Therefore, the IT predicts some incorrect results.

Fig. 5 illustrates the locations of IT and DT results on stress–
strain curve for SSSS square plate under (a) uniaxial compression,

Fig. 11. Variations of buckling coefficient with loading and thickness to length ratios for CCCC square plates under IT and DT predictions.
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Fig. 12. Buckling coefficient versus loading ratio for CCCC rectangular plates sub-
jected to various aspect ratios for h/a = 0.035.

Fig. 13. Buckling coefficient versus loading ratio for CCCC rectangular plates sub-
jected to various aspect ratios for h/a = 0.049.

Fig. 14. Variations of buckling coefficient with loading and thickness to length ratios for CFCF plates under IT and DT predictions.
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Fig. 15. Variations of buckling coefficient, Phb2/π2 D , with aspect and thickness to
length ratios for rectangular plate under various boundary conditions, uniaxial load-
ing and IT and DT predictions.

(b) equibiaxial compression and (c) equibiaxial compression/ten-
sion loadings in 0.0001 � h/a < 0.05. As it is seen, the IT and DT
results coincide on stress–strain curve of AL 7075-T6 in uniaxial
and equibiaxial loadings, Figs. 5(a) and 5(b). It has to be mentioned
that unlike the uniaxial and equibiaxial loadings, the results stand

Fig. 16. Variations of buckling coefficient, Phb2/π2 D , with aspect and thickness to
length ratios for rectangular plate under various boundary conditions, equibiaxial
loading and IT and DT predictions.

out of stress–strain curve with increasing the thickness to length
ratio in biaxial compression/tension loading and IT has predicted
invalid data.

The behavior of the tangent modulus, T , against loading ratio,
ξ , for the SSSS square plate is shown in Fig. 6 for various thickness
to length ratios and incremental and deformation theories. While
the thickness to length ratio is h/a = 0.011, elastic buckling and
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Fig. 17. Mixed boundary conditions under various loadings.

when they are h/a = 0.035 and 0.049, elastic–plastic and plastic
buckling occur, respectively. Increasing of plastic zone leads to re-
duction of plate stiffness and decreases the buckling coefficient.
It can be figured out from Fig. 6 that with increasing of thick-
ness to length and loading ratios in biaxial compression/tension,
the tangent modulus, T , becomes zero under incremental predic-
tion which shows the results obtained from this theory cannot be
admissible. Comparing Figs. 6 and 7 shows that with increasing
thickness to length ratio in CCCC square plate the plastic buck-
ling occurs earlier. Hence, in SSSS and CCCC square plates when
h/a = 0.035 and −1 � ξ � −0.3 the elastic and plastic buckling
occur under IT and DT predictions, respectively. By increasing the
loading ratio and thickness of plate, the plasticity in plate increases
and the discrepancy between instantaneous moduli of two theories
increases.

5.1.2. Effect of aspect ratio on the buckling coefficient
Fig. 8 shows the curve of loading ratio in terms of buckling

coefficient in various aspect ratios for both incremental and defor-
mation theories in SSSS rectangular plate in h/a = 0.035. The re-
sults are the same as those reported by Durban and Zuckerman [9].
As aspect ratio increases, the buckling coefficient also increases.
Similar behavior is observed for different boundary conditions and
thickness to length ratio, Figs. 9 and 10. In analyses by DT, as the
thickness to length ratio increases, the effect of aspect ratio on
buckling coefficient in biaxial compression (−1 � ξ < 0) and biax-
ial compression/tension (0 < ξ � 1.5) decrease which is near to the
experimental results [26,4,22]. Moreover, in biaxial compression,
with increasing the thickness to length ratio the buckling coeffi-
cient decreases and the rate of reduction increases when higher
aspect ratio is used, Figs. 8 and 9.

Fig. 10 shows the variations of buckling coefficient with in-
plane load ratio for SCSC rectangular plate. It is seen that gen-
erally the buckling coefficient increases with increasing of aspect
ratio. In biaxial compression/tension loading, the buckling coeffi-
cient increases with increasing of loading ratio in IT and decreases
steadily in DT. When IT is used, the buckling coefficient tends
infinity with increasing the loading ratio as the in-plane load-
ing changes from biaxial compression to biaxial compression/ten-
sion which shows the results achieved from IT are not admissible.
For the CCCC rectangular plates, however, Durban and Zucker-
man [9] could not obtain a separation of variable solution for the
eigenmodes. The elastic/plastic buckling of CCCC plate is analyzed
here.

Table 3
Comparison studies of buckling coefficient for square plates with mixed boundary
conditions, h/a = 0.035.

Case δ
K

Mizusawa [17]
(Spline element)

Wang and Aung
[29] (Ritz method)

Present study
(GDQ)

(a) 0 4.000 4.000 4.0000
L/2 5.198 5.4654 5.4651
L 5.740 5.7401 5.7401

(b) 0 4.000 4.0000 4.0000
L/2 5.684 5.7252 5.7260
L 5.740 5.7401 5.7401

(c) 0 4.000 4.000 4.000
L/2 7.430 7.6217 7.6516
L 7.690 7.6911 7.6913

It is clearly seen from Fig. 11 that with applying the clamped
boundary conditions in all edges, the discrepancy between the
results obtained from two plastic theories increase. In the CCCC
boundary condition, when h/a = 0.011, elastic buckling and when
thickness to length ratio increases, plastic buckling occur. More-
over, when h/a = 0.0349 and ξ < −0.6, there is a good congruency
between two theories. But using clamped conditions increase the
stresses in the plates and the variations between two theories as
in h/a = 0.0493 no congruency can be observed. When clamped
boundary condition increases, buckling tends to happen in plastic
mode, Fig. 11. It is clearly seen that with increasing the clamped
boundary condition the range of valid data in IT prediction de-
creases, Figs. 4 and 11.

Figs. 12 and 13 show the variations of buckling coefficient ver-
sus aspect ratio for IT and DT results in CCCC rectangular plate
for h/a = 0.0349 and h/a = 0.0493, respectively. It is seen that us-
ing IT and clamped boundary condition, the buckling coefficient
increases sharply with increasing the aspect ratio.

Fig. 14 displays the comparison between the buckling coef-
ficient of incremental and deformation theories for CFCF square
plate with various thickness to length ratios. With increasing the
free boundary conditions, the discrepancy between the results of
IT and DT and the buckling coefficients decrease, Figs. 11 and 14.

Figs. 15 and 16 illustrate the variations of buckling coeffi-
cient with aspect and thickness to length ratios for uniaxial and
equibiaxial loadings under various boundary conditions. It can
be observed that there is a good agreement between the re-
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sults of IT and DT predictions in uniaxial loading for h/a = 0.011.
However, with increasing the thickness to length ration the dis-
crepancy increases. In equibiaxial loading, there are more agree-
ments between IT and DT results rather than in uniaxial loading,
Fig. 16.

5.1.3. Effect of boundary conditions on the buckling coefficient
A plate under mixed boundary conditions is shown in Fig. 17.

In order to verify the correctness of the method, comparison stud-
ies are shown in Table 3 for three different cases. The value of
h/a = 0.035 is adopted in the analyses in order to compare the re-
sults with the existing elastic buckling ones. The elastic buckling
analysis can readily be obtained from a plastic buckling analysis
by setting (E = T = S). It is obvious that the present buckling
coefficients agree very well with the analytical results. Fig. 18
shows the variations of the buckling coefficient K against the load-
ing ratio, ξ , for square plates under mixed boundary conditions
(Figs. 17(d) to 17(f)) for h/a = 0.049. It is seen that with increasing
of clamped boundary conditions in any edges, the buckling coeffi-
cient increases. The increase is more observable in IT rather than
DT.

5.2. Linearly varying in-plane loading

Plates are a part of complex structural system loads may not be
always uniform, i.e. the load exerted on the aircraft wings usually
is non-uniform. To the best of author’s knowledge, no work has
been reported concerned with the plastic buckling of plate under
linearly varying in-plane loading. Hence, this part of present pa-
per is concerned with this type of loading. Related to the in-plane
stresses (σx, σy, τxy), P x = σxh, P y = σyh and P xy = τxyh. Let us
assume P y = P xy = 0 and express P x by:

P x = −P0

(
1 − η

y

b

)
, (29)

where P x is the in-plane compressive forces per unit length of the
plate in the x-direction, P0 is the maximum intensity of compres-
sive force at the edge of plate and η is the loading parameter. By
changing η, one can obtain various particular cases, as shown in
Fig. 19, i.e. η = 0 for uniaxial compressive force, η = 1 for com-
pressive force, force varies linearly from −P0 at y = 0 to zero at
y = b, and η = 2 for pure in-plane bending, occurs. For other val-
ues of η taken within 0 and 2, there is a combination of bending
and compression. In order to check the accuracy of the results,
comparison studies are shown in Table 4 against existing elas-
tic buckling results because there was no plastic buckling results
available.

Table 5 indicates the results of analysis of buckling coefficients
for plates under different thickness to length ratios and subjected
to various in-plane loadings. As it is shown, the maximum vari-
ation of buckling coefficient occurs in thin plate under different
loading parameters for h/a = 0.011. Moreover, as it is observed
from Table 5, with increasing the loading parameter the buckling
coefficient increases for various boundary conditions.

5.2.1. Effect of aspect ratio on the buckling coefficient
Figs. 20 to 22 show the variations of aspect ratio against

buckling coefficient for different values of thickness to length ra-
tios for η = 0 to η = 2 and various boundary conditions shown
with solid and short dash lines for IT and DT, respectively. The
buckling coefficient increases as the loading parameter changes
from uniaxial compressive (η = 0) to pure in-plane bending
(η = 2). As it is clear, the more variations occur in the inter-
val of a/b < 1, however; for the values of a/b > 1 the buckling
coefficients remain almost constant. Moreover, the concurrence

Fig. 18. Variations of buckling coefficient with loading ratio for SSSS square plates
under mixed boundary conditions with the aid of IT and DT.

Fig. 19. Example of in-plane loading Px = −P0(1 − η y
b ) along the edges X = 0, 1.
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Table 4
Comparison studies of the buckling coefficient for SSSS and SCSC square thin plates h/a = 0.011 subjected to various in-plane loadings.

B.C Sources Method η

0 0.5 1 1.5 2

SSSS Leissa and Kang [16] Exact solution 4.0000 5.3183 7.8118 13.3743 25.5329
Timoshenko and Gere [27] Energy 4.0000 – 7.8017 – 25.6342
Hosseini et al. [14] Ritz 4.0000 – 7.8119 – 25.528
Present study GDQ 4.0000 5.3183 7.8121 13.5139 25.5291

SCSC Leissa and Kang [16] Exact solution 7.6913 – 14.7118 – 39.6672
Timoshenko and Gere [27] Energy 7.6902 – 14.6915 – 39.7179
Present study GDQ 7.6913 10.2019 14.7131 23.4962 39.6748

Table 5
Comparison studies of the elastic/plastic buckling coefficient for square thin plates
subjected to various in-plane loadings under different boundary conditions.

B.C h/a η

0 0.5 1 1.5 2

SSSS 0.011 4.0000 5.3183 7.8121 13.5139 25.5291
0.035 3.9027 4.7459 5.6338 6.0661 7.8952
0.049 2.8396 3.0582 3.0834 4.3938 7.0690

SSSC 0.011 5.7404 7.3488 10.1070 15.5600 25.5340
0.035 4.8884 5.3324 5.6192 5.1690 7.9017
0.049 2.9718 2.4442 3.2628 4.3432 7.0715

SCSS 0.011 5.7404 7.9472 12.6839 23.3048 39.6739
0.035 4.8884 5.4206 5.2280 7.0062 7.3779
0.049 2.9718 2.3531 3.4063 4.3358 7.3401

SCSC 0.011 7.6913 10.2019 14.7131 23.4962 39.6748
0.035 5.1476 5.5688 4.5959 7.0230 7.3801
0.049 2.3072 3.0312 2.9343 4.3478 7.3423

of the buckling coefficients predicted by two theories decreases
as loading parameter increases which is more obvious for η =
1.5, 2.

5.2.2. Effect of loading ratio on the buckling coefficient
Figs. 23 and 24 display the variations of the buckling coeffi-

cient versus the loading parameter for SSSS and CCCC square plates
when h/a = 0.011,0.035 and 0.049 for IT and DT theories. It can
be seen that for h/a = 0.011 a good agreement occurs between
IT and DT results for various loading parameters for SSSS square
plate, Fig. 23(a). Moreover, with increasing the thickness to length
ratio, the discrepancy between IT and DT increases as the loading
parameter increases, Figs. 23(b), 23(c), 24(b) and 24(c).

With increasing the linear loading parameter, the discrepancy
between the results of two theories of plasticity increases. When
the thickness of CCCC plate increases, h/a � 0.035, no agreements
between the obtained buckling coefficients in various loading pa-
rameters are observed, Figs. 24(b) and 24(c). The discrepancy be-

Fig. 20. Variations of buckling coefficient with aspect and thickness to length ratios for a linearly varying in-plane loaded SSSS plates under IT (solid line) and DT (dash line)
predictions.
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Fig. 21. Variations of buckling coefficient with aspect and thickness to length ratios for a linearly varying in-plane loaded SCSC plates under IT (solid line) and DT (dash line)
predictions.

Fig. 22. Variations of buckling coefficient with aspect and thickness to length ratios for a linearly varying in-plane loaded CCCC plates under IT (solid line) and DT (dash line)
predictions.
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Fig. 23. Influence of loading factor on the buckling coefficient and thickness to
length ratio for a linearly varying in-plane loaded SSSS square plates under IT and
DT predictions.

tween IT and DT increases by applying the clamped boundary con-
ditions and increasing thickness to length ratio, see Figs. 23 and 24.

5.2.3. Analysis of buckling mode shapes
In order to understand the buckling mechanism more accu-

rately, the mode shapes of square plates for h/a = 0.035 are deter-
mined and depicted for SFSF, SSSS and CCCC boundary conditions
by the aid of deformation theory of plasticity, Fig. 25.

The buckling mode shapes are affected by increasing of loading
parameter significantly. As the loading parameter increases from
0 to 2, the bulges move toward the area of maximum compres-
sion of the plate, Fig. 25. For SSSS and CCCC plates, the buckling

Fig. 24. Influence of loading factor on the buckling coefficient and thickness to
length ratio for a linearly varying in-plane loaded CCCC square plates under IT and
DT predictions.

mode shapes in some cases have two or three longitudinal half-
waves. One-half of the plate bulges out while the other half bulges
in.

6. Conclusions

In the present paper, the equilibrium and stability equations
for thin rectangular plate in plastic mode under various load-
ings were obtained. The constitutive equations were obtained
based on IT and DT and the formulations and procedures were
worked out in detail. The results were compared with previ-
ously published data to verify the established methodology and
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Fig. 25. Buckling mode shapes for SFSF, SSSS and CCCC square plates for various loading parameters.

procedures. The generalized differential quadrature method was
used to solve the obtained equations. Unlike most previous stud-
ies, the various boundary conditions and linearly varying in-
plane loading were considered in this study. The effects of as-
pect, thickness to length and loading ratios, boundary conditions,
deformation and incremental theories and linearly varying in-
plane loading on the buckling coefficient were studied in detail.
Based on the numerical results, the following conclusions are
reached:

• The aspect ratio has considerable effect on the buckling coef-
ficient in IT especially for biaxial compression/tension loading.

• Plastic buckling coefficients depend on boundary conditions,
thickness to length and aspect ratios, loading parameter and
type of theory of plasticity.

• In biaxial compression/tension loading, unlike the uniaxial and
equibiaxial loadings, with increasing the thickness to length
ratio the results of the IT stand out of stress–strain curve grad-
ually which shows this theory predicts invalid data.

• The variations of plastic buckling mode shape are less in
equibiaxial compression rather than in uniaxial loadings.
Moreover, the buckling mode shapes are more affected by
loading parameter.

• The discrepancy between IT and DT increases by applying
more clamped boundary conditions, increasing thickness to
length ratio and using linear loading parameter.

• The buckling coefficient increases as the loading parameter
changes from uniaxial compressive (η = 0) to pure in-plane
bending (η = 2).

• In equibiaxial loading, the agreement between IT and DT re-
sults are more rather than uniaxial loading.

• With increasing the loading ratio in biaxial compression/ten-
sion, the differences between theories increase.

Appendix A

A.1. Incremental theory (IT) based on Prandtl–Reuss equation

This theory was first discussed by Prager (1938), Handelman
et al. (1949), Hopkins (1949), Pearson (1950) and Besseling (1952)
[13,18,6]. The constitutive equation in this theory is given by [9]:

E ε̇i j = (1 + v)ṡi j +
(

1 − 2v

3

)
σ̇kkδi j + 3σ̇

2σe

(
E

T
− 1

)
si j, (A.1)

where si j is deviatoric stress tensor, T is tangential Young’s modu-
lus which is obtained from stress–strain curve and σe is the effec-
tive stress. The parameters T and σe are defined by

T = dσe/dεe, σ 2
e = σ 2

x − σxσy + σ 2
y + 3τ 2

xy. (A.2)

A.2. Deformation theory (DT) based on Hencky equation

This theory was first discussed by Kollbrunner (1946), Ilyushin
(1947), Stowell (1948), Bijlaard (1949) and Alghazaly (1986), [15,
26,9,6]. The constitutive equation in this theory is given by [9]:

E ε̇i j =
(

3E

2Es
− 1 − 2v

2

)
ṡi j + 1 − 2v

3
δi jσ̇kk + 3σ̇

2σe

(
E

T
− E

S

)
si j,

(A.3)
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where S is secant Young’s modulus determined by the uniaxial
stress–strain curve.
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