
International Journal of Security and Its Applications

Vol.7, No.5 (2013), pp.53-66

http://dx.doi.org/10.14257/ijsia.2013.7.5.05

ISSN: 1738-9976 IJSIA

Copyright ⓒ 2013 SERSC

A Simple and Fast Technique for Detection and Prevention of SQL
Injection Attacks (SQLIAs)

Z. Lashkaripour1, * and A. Ghaemi Bafghi1
1Data and Communication Security Laboratory, Department of Computer, Faculty of

Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Zeinab.Lashkaripour@stu-mail.um.ac.ir (Z. Lashkaripour), ghaemib@um.ac.ir (A.

Ghaemi Bafghi).
* Corresponding author. Tel.: +98 511 8763306; fax: +98 511 8763306.

Abstract
In SQLIA, attacker injects an input in the query in order to change the structure of the

query intended by the programmer and therefore, gain access to the data in the underlying
database. Due to the significance of the stored data, web application’s security against
SQLIA is vital. In this paper we propose a new technique based on static analysis and
runtime validation for detection and prevention of SQLIAs. In this technique user inputs in
SQL queries are removed and some information is gathered in order to make the detection
easier and faster at runtime. Our experiments show that our proposed technique is fast, it has
a low error rate and its detection rate is nearly 100%.

Keywords: Web application; SQLIA; detection; prevention; static analysis; runtime
validation; security

1. Introduction

Nowadays web applications (applications with client/server model communication that are
accessed via internet or intranet [1]) are widely used in various applications due to the
accessibility and convenience they provide. This makes them a suitable target for attackers, so
their security becomes necessary. These kinds of applications have different sorts of attacks.
According to OWASP Top 10 in 2010 [2] and other related reports such as [3, 4]; SQLIA has
the highest frequency among web application attacks. This shows the significance of securing
web applications against it in order to protect the application and its data. Despite the
significance of web application security less attention has been considered which can have the
reasons given here. Web applications are written by developers that have less programming
and security skills, some of the web applications are produced by the integration of works
from several developers and therefore, it is not always possible to completely review and
verify the code and finally, many site owners ask the developers to focus on functionality
rather than security therefore, as a result we might have insufficient input validation [5].
SQLIA is the attempt of injecting data that part of it is treated as code and therefore, changes
the semantic of the intended query. The result of this attack is unrestricted access to the
database which is due to the reasons mentioned earlier.

In order to maintain the security of web applications against SQLIAs we have proposed a
technique that is a combination of static analysis and runtime validation. This technique is an
extension of [6] which would be explained in details later on. The remainder of the paper is
organized as follows: Section 2 is about different types of SQLIAs with an example for each
of them. Next section would introduce related works. In Section 4 our proposed technique

mailto:Zeinab.Lashkaripour@stu-mail.um.ac.ir
mailto:ghaemib@um.ac.ir

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

54 Copyright ⓒ 2013 SERSC

would be explained. Finally practical results of the technique are illustrated in Section 5 and
conclusion in the last section.

2. SQLIA Types

SQLIAs have different types [7, 8] that we would briefly define them based on [7] (for
more information, see the references mentioned earlier) and also give an example for each of
them in this section.

In all of the examples in this section we have used a query with three inputs which is given
below:

Query = "SELECT * FROM Accounts WHERE user=' " + username + " ' AND
pass=' " + password + " ' AND eid=" + id ;

2.1. Tautology

In tautology the attacker tries to use a field in the WHERE clause to inject and turn the
condition into a tautology which is always true. The simplest form of tautology is given in the
example below.

Example: attacker inserts “' or 1=1 --” into the user field and nothing for the other fields so
the result is:

SELECT * FROM Accounts WHERE user=' ' or 1=1-- ' AND pass=' ' AND eid=

The result would be all the data in Accounts table because the condition of the WHERE
clause is always true.

2.2. Illegal/Logically Incorrect

In this kind of attack the attacker gathers some important information about the type and
structure of the database. This information is obtained from error pages returned from default
servers and can be used for further attacks.

Example: attacker inserts “convert(int,(SELECT TOP 1 name FROM sysobjects WHERE
xtype='u'))” into the eid field and nothing for the rest of the fields so the result is:

SELECT * FROM Accounts WHERE user=' ' AND pass=' ' AND
eid=convert(int,(SELECT TOP 1 name FROM sysobjects WHERE xtype='u'))

In this example the attacker attempts to convert the name of the first user defined table in
the metadata table of the database to ‘int’. As you know this type conversion is not legal
therefore, the result is an error which reveals some information that should not be shown.

2.3. Union

As it can be inferred from the name, the result of the attack is some data from the database
which is the union of the main query and the injected one together. So in this type of attack
the data returned from the query is changed.

Example: attacker inserts “' UNION SELECT * FROM Students --” into the user field and
nothing for the other fields so the result is:

SELECT * FROM Accounts WHERE user=' ' UNION SELECT * FROM Students -- ' AND
pass=' ' AND eid=

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 55

The result of the first query in the example above is null and the second one returns all the
data in Students table so the union of these two queries is the Students table.

2.4. Piggy Backed

In piggy backed the attacker attempts to inject an extra query in the main one so that beside
the main query the injected one is also executed.

Example: attacker inserts “'; drop table Accounts --” into the user field and nothing for the
two remaining fields so the result is:

SELECT * FROM Accounts WHERE user=' '; drop table Accounts -- ' AND pass=' ' AND
eid=

The result of the above example is losing the credential information of the Accounts table
because it would be dropped.

2.5. Blind Injection

As inferred from the name, the attacker is blind so he tries to attack the web application by
asking true/false questions therefore, depending on the reply of the web application he can
gain information about the database although no error message is shown.

Example: attacker inserts “user1' AND 1=1 --” into the user field and nothing for the rest
of them so the result is:

SELECT * FROM Accounts WHERE user='user1' AND 1=1-- ' AND pass=' 'AND eid=

The injected part is always evaluated to true so if there is no login error message, the
attacker realizes that the attack has passed and the user parameter is vulnerable to injection.

2.6. Timing Attacks

In timing attacks, attacker gains information depending on the delays of the database
responses.

Example: attacker inserts “user1' AND ASCII(SUBSTRING((SELECT TOP 1 name
FROM sysobjects),1,1)) > X WAITFOR DELAY '000:00:07' --” into the user field and
nothing for the other fields so the result is:

SELECT * FROM Accounts WHERE user='user1' AND ASCII(SUBSTRING((SELECT
TOP 1 name FROM sysobjects),1,1)) > X WAITFOR DELAY '000:00:07' -- ' AND pass=' '
AND eid=

In the above example the attacker is trying to find the first character of the first table by
comparing its ASCII value with X. If there is a 7 second delay he realizes that the answer to
his question is yes, so by continuing the process the name of the first table would be
discovered (with similar attacks attacker can obtain other information about the database).

2.7. Alternate Encoding

In this type, the injected text is changed in order to evade detection by defensive coding
practices and most of the automatic prevention techniques. Encodings such as hexadecimal,
ASCII and Unicode character encoding can be used for attack strings.

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

56 Copyright ⓒ 2013 SERSC

Example: attacker inserts “user1'; exec(char(0x73687574646f776e)) --” into the user field
and nothing for the rest so the result is:

SELECT * FROM Accounts WHERE user='user1'; exec(char(0x73687574646f776e)) -- '
AND pass=' ' AND eid=

In the above example char() function and ASCII hexadecimal encoding are used. The
function gets an integer number as a parameter and returns a sample of that character. In this
example the function will return “SHUTDOWN”, so whenever the query is interpreted the
SHUTDOWN command is executed.

2.8. Stored Procedure

This type of SQLI executes the stored procedures available at the underlying database.
Many databases have built in stored procedures in addition to user defined stored procedures.
The built in stored procedures are used for extending the functionality of the database and
interacting with the operating system. Thus, once the attacker has identified the underlying
database he tries to execute these built in stored procedures in order to exploit information.

Example: attacker inserts “'; exec xp_logininfo 'BUILTIN\Administrators'; --” into user
field and nothing for the pass and eid fields:

SELECT * FROM Accounts WHERE user=' '; exec xp_logininfo
'BUILTIN\Administrators'; -- ' AND pass=' ' AND eid=

In this example the built in stored procedure “xp_logininfo” is executed in order to get the
information about the BUILTIN\Administrators Windows group.

On the other hand the user defined stored procedures are coded by the programmer and
therefore vulnerable. It should be mentioned that all of the SQLIAs can take place at the
stored procedures of the underlying database by means of their parameters as well as the web
application side. That means that stored procedures can be vulnerable to the same SQLIAs as
the web application code.

Example: attacker inserts “user1” into user field and “'; SHUTDOWN; --” into the pass
field and nothing for the eid:

CREATE PROCEDURE DBO.isAuthenticated
@userName varchar2, @pass varchar2, @pin int
AS

EXEC("SELECT * FROM Accounts
WHERE user='" + @username + "' and pass='" + @password +

"' and eid=" +@id);
GO

The resulted query would be:

SELECT * FROM Accounts WHERE user='user1' AND pass=' '; SHUTDOWN; -- ' AND
eid=

In the above example we have a piggyback attack where the injected part which is database
shutdown is executed beside the first query.

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 57

3. Related Work
In this section we have divided the related works into three groups: static analysis,

dynamic analysis and combinational. Each of them has their own advantages and
disadvantages that would be mentioned in this part.

3.1. Static Analysis

These techniques can be used in the application’s development and debugging phases
(before deployment) and also in protecting existing web applications therefore, they do not
have any runtime overhead. They help developers to identify the weaknesses and
vulnerabilities that invite attackers so as to reduce and/or remove them in order to make
applications more reliable. Despite their advantages their shortcomings are: developer needs
to manually alter the vulnerable parts, which is tedious and time consuming [6], not being
successful in identifying stored procedure attacks [9] and not paying attention to dynamic
queries because their structures are not specified till runtime.

SQL DOM [10] and Safe Query Objects [11] change the process of creating a query from
an irregular concatenation process to a systematic process that uses a type checking API in
order to make the database access secure and reliable. On the other hand they have
disadvantages such as the need of learning a new API by the developer and being expensive
for legacy codes [7].

Penetration testing tools such as MySQLInjector [12], V1p3R (Viper) [13] and Sania [14]
also lye in the static group. At first these tools gather information from the web application
and after that inject attacks according to the information gathered in order to analyze the
application’s response. V1p3R uses the stored patterns in its error pattern library and Sania
uses SQL parse tree comparison for SQLIA detection while in MySQLInjector the output is
the results of the attacks. Success in these tools depends on the completeness of the injected
attacks and this is a shortcoming but, their advantage is identifying vulnerabilities without
any modifications to the web application.

3.2. Dynamic Analysis

These kinds of techniques use a model for SQLIA detection. They generate the model at
runtime and because of that they are called dynamic techniques. Due to runtime generation of
the model they do pay attention to dynamic queries which are generated at runtime but on the
other hand they have the overhead of generating the model at runtime.

SQLGuard [15] and CANDID [16] are based on the runtime comparison of the parse tree
intended by the programmer with the runtime parse tree. So that whenever they do not match
the query would not be sent to the database for execution and therefore SQLIA is prevented.
The runtime comparison of parse trees has an overhead which is a disadvantage for them
both. The advantage of SQLGuard is partially covering dynamic queries due to making the
parse tree at runtime. On the other hand its shortcomings are not being capable of identifying
stored procedure attacks [9] and the need for the developer to change the code. But the
advantage of CANDID is no need for changing the code manually, but its disadvantage is
partial (not complete) detection of different kinds of attacks [9].

3.3. Combinational

Combinational techniques have two phases: static analysis and dynamic analysis. Due to
fulfilling part of the operations in the static phase there is no overhead at runtime for them
and this is the benefit of these techniques. In the static phase first of all the hotspots are

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

58 Copyright ⓒ 2013 SERSC

identified, after that a model is created indicating all the valid queries that can be made at that
hotspot. Finally at runtime, the runtime queries are examined to see whether they match their
model or not. If not, the query would not be sent to the database for execution and therefore
SQLIA is prevented. None of the techniques mentioned below are capable of identifying
stored procedure attacks except [6] that can identify them partially, and because of generating
the model at the first phase none of them pay total attention to dynamic queries.

AMNESIA [17] creates an NDFA for each hotspot. After that the web application is
adjusted so that the call to the runtime monitor is added before the query execution. At
runtime, the runtime query is compared against the static model and if the automaton does not
accept the query, it would not be executed.

SQLCHECK [18] marks the input with a key. The query made with such an input is called
augment query. In order to prevent SQLCIAs in these queries an augment grammar is
generated therefore, only the queries that are parsed by this grammar are valid. Valid queries
are then sent to the database without the keys for execution. The security of SQLCHECK
dependents on the attacker not being able to discover the key, another shortcoming is the need
to manually alter the code in order to insert the keys in SQL queries which has the problem of
incompleteness [20].

In [19] the behavior of SQL queries is represented in the form of a SQL-graph which is
produced by static code analysis. This graph is used so that there would be no need to modify
the code of the web application, which makes it an advantage because it will spare money and
time. Furthermore, in the static phase, a Finite State Automata (FSA) is generated for each
hotspot. Since inspecting all the queries at runtime is time consuming [19] uses the SQL-
graph so that only those SQL queries that are supersets of other queries in the graph are
inspected and their static and dynamic SQL-FSMs are compatible. Another advantage of [19]
is that it has used a parallel implementation to decrease runtime execution.

WASP [20] is based on positive tainting. Before sending queries to the database WASP
performs automatic syntax aware validation. In other words the query is tokenized into a
sequence containing SQL keywords, operators and literals. Then it checks that all of the
tokens except the literals are made from trusted data. If all the tokens pass this check, the
query is safe and can be executed by the database. The disadvantage of WASP is the need of
specifying trusted external data sources because they are not hard coded in the application’s
code (if not specified false positive is generated).

In [6] the opinion of removing attribute values is used to detect and prevent SQLIAs. In
order to detect, attribute values are removed from both of the static and dynamic queries and
for comparison they are XORed. If the result of the comparison is equal to zero the query is
safe for execution. Simplicity is the advantage of [6] but its disadvantages are doing
unnecessary inspections at runtime which leads to overhead increase and also considering
simple conditions where the operator is equality whereas other operators need to be
considered.

4. Proposed Technique

As mentioned earlier our proposed technique works in two phases. Figure 1 shows them
which the first phase is done statically and the second one at runtime. At the first phase we
have an instrumentation module that gets as input the original web application and outputs the
instrumented web application. The web application is used for generating query structures
(models of valid queries) and gathering information that are all needed for the latter phase.
The web application is changed according to our needs to result the instrumented web
application. The second phase works with the instrumented web application obtained from the
previous phase and contains a dynamic validation checker which would generate the

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 59

structures of the dynamic queries and compare them with their corresponding static models so
that whenever identical, the query is allowed to be executed but if not, SQLIA is detected and
the malicious query would be prevented in order to preserve the security of the web
application and its underlying database. Each of these two phases would be explained in the
following section.

4.1. Static Analysis

In static analysis we need to instrument the original web application to be able to approach
to our goal. The instrumentation operation is done by means of our instrumentation module
that contains a scanner and an analyzer. In this phase first of all, hotspots should be identified.
As you know hotspots are those spots in a web application that have interaction with the
underlying database. After that, we can access the query of that hotspot which is needed for
generating the static model. These operations are done by the scanner. When the query is
obtained, static analysis is done in order to generate the static model and also gather the
information needed for runtime so as to simplify and speedup SQLI detection. For the static
model that indicates the structure of a valid query, all user inputs surrounded by ‘’ need to be
removed and besides that some information which contains the location of the inputs are
gathered in order to be used later on. Finally at this phase calls to the dynamic validation
checker are added before the execution of the queries so that whenever the runtime query
does not contain any malicious input it is handed to the database for execution.

Figure 1. Proposed Technique Architecture

4.2. Runtime Validation

In the second phase named runtime validation, user inputs of the dynamic queries are
removed according to the information gathered at the first phase by the dynamic validation
checker in order to obtain the structure of the dynamic query. Dynamic validation checker

Instrumentation
Module

Dynamic
Validation

DB HTTP
Request

Scanner

Analyzer

Original
Web Application

Instrumented
Web Application

Dynamic Phase
(Runtime Validation)

Static Phase
(Static Analysis)

Instrumented
Web Application

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

60 Copyright ⓒ 2013 SERSC

checks the location of the inputs based on the information gathered in the static phase. This
inspection is done for each input in the query. At this point two situations might occur for
malicious inputs: 1) in one of the checks mentioned earlier it would be detected because of
the changes it has made to the query, or 2) would not be detected in these checks. In the first
one whenever detected no further validation is taken place and because of being malicious the
query would not be executed and therefore SQLIA is prevented. In the other condition we
need to do a final check which is checking the equality of the static (obtained from the first
phase) and dynamic (obtained from the second phase) structures of the related query. So
when the two models in hand have the same structure the query is valid and can be sent to the
database for execution but if not, the query is malicious and should not be executed, which
prevents SQLIAs.

We would give an example to demonstrate our technique. Consider the query below as the
query intended by the programmer:

Original Query:"SELECT * FROM Accounts WHERE user=' "+ username +" 'AND
pass=' "+ password + " '"

where the inputs submitted by the user are:

user: user1' or 'sqli' like '%sq%' --

pass: null
As you can see the "user" input contains SQLI of type tautology that our technique should

be able to detect it as follows.
The static query model after using the proposed technique and the dynamic query obtained

by including the user inputs are:

Static query model: “SELECT * FROM Accounts WHERE user=' ' AND pass=' ' ”

Dynamic query: “SELECT * FROM Accounts WHERE user='user1' or 'sqli' like '%sq%'
-- ' AND pass=' ' ”

At runtime our technique would go to the place of the inputs one by one based on the static
information to check their locations and after that remove the input values. Therefore, in this
example the first step is checking the location of the first input (user) and removing its value
which is bolded. The outcome of this operation would be the dynamic query model given
below:

Dynamic query model: “SELECT * FROM Accounts WHERE user=' ' or 'sqli' like '%sq%'
-- ' AND pass=' ' ”

Up to now no problem exists but, when we want to repeat the same steps for the second
input (pass) we would recognize that our input is not in its place due to the injection of the
first input. Without further inspection our technique would identify that injection has taken
place and would not let the query to be executed in order to prevent SQLIA and preserve the
security of the web application and its underlying database.

For those injections that are not identified in the steps mentioned above, the final step
which is checking the equality of the two query models in hand, would identify them. The
example below shows such a situation. Consider the submitted inputs as:

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 61

user: user1

pass: '; exec xp_logininfo 'BUILTIN\Administrators'; --
In this example the "pass" input contains SQLI of type stored procedure and our technique

will detect it as follows.
The static query model and also the dynamic query obtained by including the user inputs

are:

Static query model: “SELECT * FROM Accounts WHERE user=' ' AND pass=' ' ”

Dynamic query: “SELECT * FROM Accounts WHERE user='user1' AND pass=' '; exec
xp_logininfo 'BUILTIN\Administrators'; -- ' ”

At runtime our technique would go to the place of the inputs one by one based on the static
information to check their locations and after that remove the input values specified in bold.
Thus, the outcome of this operation which is the dynamic query model is given below:

Dynamic query model: “SELECT * FROM Accounts WHERE user=' ' AND pass=' '; exec
xp_logininfo 'BUILTIN\Administrators'; -- ' ”

Up to now no injection has been identified because, both of the inputs are in their own
places and this is due to the fact that injection has taken place in the last input. Therefore, the
last step which is checking the equality of the two query models (static and dynamic) would
detect and prevent SQLI since they are not identical.

Static query model ≠ Dynamic query model

5. Experiment and Evaluation
In order to evaluate our technique and show our expectations in practice we used the test

suite obtained from AMNESIA. For the input suite we have also used the ones from
AMNESIA’s test bed which contained both attack and legitimate (non attack) inputs for each
application. We have two types of inputs which are string or number and two types of queries
which are static or dynamic. The experiments are based on static queries containing number
or string and the inputs related to dynamic queries are not considered due to obtaining the
query structures statically. But, with extension the solution would be an effective method
against SQLIAs that no matter what the query (static or dynamic) or the input type (string or
number) is, it would be capable.

We implemented [6] and compared our proposed technique with it under the same
condition. For this purpose we ran the experiment on a system which had a Core Duo
2.00GHz CPU with Windows XP Professional SP2 OS and 512MB RAM.

It should be mentioned that as part of our evaluation we have used the experiment results
obtained by [7], [9] and [6] in order to be able to compare our proposed technique with
dynamic and combinational techniques introduced in Sections 3.2 and 3.3. The further details
are given in the Sections 5.1 through 5.3.

5.1. Detection and Prevention Rate Analysis

The experiment results are shown in Table 1 that we will discuss them briefly. In order to
start the test of our technique we ran the first phase as outlined in Section 4 and then after
getting the instrumented form of our web application we started the experiment. For
calculating the overhead of the techniques we used the legitimate inputs to get an accurate

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

62 Copyright ⓒ 2013 SERSC

result because our technique stops whenever an injection occurs; therefore, the execution time
for the attacks in our proposed technique would be less than what is shown in Table 1.

Table 1. Experiment Results

Legitimate inputs: As you can see our solution is faster than [6] and therefore can give

better service to legitimate users. It is important to protect our web applications with solutions
that have the least overhead which the ideal overhead is zero. Both techniques have errors and
that is because the inputs contain numbers and numbers are not surrounded by ' ' therefore,
both technique don't support them. Beside numeric variables there are inputs that although
legitimate, contain ' and both of the technique would consider them as attack and prevent their
execution. But, whenever the legitimate inputs use the value ' (escapes it with backslash) not
the operator ', our technique would not prevent their execution and consider them as non
attack inputs, resulting a lower error rate in comparison to the other technique.

Attack inputs: After using the techniques for protecting the web applications, the attacks
were injected to them in order to compute the detection rate. Both techniques detected and
prevented all of the attacks in two of the web applications resulting a 100% detection rate
while in the other one all of the attacks except the ones related to numeric variables where
detected and prevented therefore, the detection rate was less than 100%.

5.2. Comparison of Techniques with Respect to SQLIA Types

As it is shown in Table 2 (AMNESIA, SQLCheck and SQLGuard are from the results
obtained by [7], CANDID is from [9] and RemovingAttributeValues is from [6]), the
techniques have been compared by the type of SQLIAs they can support. As we can see in
Table 2 three different symbols have been used so as to be able to show the capabilities of
various techniques against SQLIA types. The symbol “•” indicates that a technique can
prevent all attacks of that type and thus this kind of attack is impossible. On the other hand
the symbol “×” is used for indicating that a technique cannot prevent any of the attacks of this
kind which means that the attacks are totally possible. The last symbol used is “◦” and is used
for indicating attacks that are partially possible.

Subject Technique

Legitimate Queries Attack Queries

Attempt/Allowed
Timing

Avg
(ms)

Error
Rate
(%)

Attempt/Prevented Detection
Rate (%)

Employee
Directory

[6] 290/320 0.0450 9.38 3707/3707 100

Proposed 300/320 0.0341 6.25 3707/3707 100

Events
[6] 290/328 0.0453 11.59 3212/3220 99.75

Proposed 300/328 0.0364 8.54 3212/3220 99.75

Classifieds
[6] 116/128 0.0432 9.38 3295/3295 100

Proposed 120/128 0.0344 6.25 3295/3295 100

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 63

Table 2. Comparison of Techniques with Respect to SQLIA Types

Technique Tautologies Illegal/Incorrect
queries

Union
queries

Piggy-
Backed
Queries

Stored
procedures Inference Alternate

encodings

AMNESIA [17] • • • • × • •

CANDID [16] ◦ ◦ ◦ ◦ ◦ ◦ ◦

SQLCheck [18] • • • • × • •

SQLGuard [15] • • • • × • •

RemovingAttributeValues[6] • • • • ◦ • •

Proposed technique • • • • ◦ • •

Symbols •: impossible ◦: partially possible ×: totally possible

Among the techniques CANDID is able to detect and prevent all of the attack types

partially, whereas other techniques can detect and prevent all the attack types except stored
procedures. Attacks through the stored procedure are critical because all of the techniques are
unable to stop them either partially or at all. That is because of only considering the queries
generated within the web application. Therefore, these types of attacks (which consist of all
the SQLIA types) make serious problem for the techniques. Between the rest of the
techniques only RemovingAttributeValues and our proposed technique are partially
vulnerable to this type of attack where partially means that they cannot prevent all of the
attacks that occur through the stored procedures due to the fact that both of them focus on
SQLIAs in the application layer and therefore, SQLIAs through the stored procedures of the
database layer still exist. But, we are planning to improve our solution in order to be able to
cover these types of attacks as well. From this table we can conclude that except CANDID all
the other techniques are somehow suitable. That is because at least they can protect the web
applications against the mentioned SQLIAs totally, although that is not enough because as we
know all SQLIA types are possible through stored procedures.

5.3. Comparison of Techniques with Respect to Deployment Requirements

Table 3 shows the deployment requirements of different techniques. It shows if any code
modification is needed by the developer, if the detection and prevention of the attacks is done
automatically or not and finally if any additional infrastructure is needed. In this table
AMNESIA, SQLCheck and SQLGuard are from [7], CANDID is from [9] and
RemovingAttributeValues is from [6]. Among the techniques, only SQLCheck and
SQLGuard need code modification which can be time consuming, expensive and also error
prone due to human effort. Attack detection is automatic in all of them except SQLCheck and
SQLGuard, whereas attack prevention in all of them is automatic. Having a detection or
prevention which is automatic would simplify the usage of the technique and therefore
become an advantage. Finally the last column shows that only SQLCheck needs an additional
infrastructure which is key management whereas other techniques do not need any. The result
of this comparison is that SQLCheck has the most development requirements, after that
becomes SQLGuard while the rest of the techniques require none.

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

64 Copyright ⓒ 2013 SERSC

Table 3. Comparison of Techniques with Respect to Deployment Requirements

Technique Modify code
base Detection Prevention Additional

infrastructure

AMNESIA [17] Not needed Automatic Automatic None

CANDID [16] Not needed Automatic Automatic None

SQLCheck [18] Needed Semi automatic Automatic Key management

SQLGuard [15] Needed Semi automatic Automatic None

RemovingAttributeValues[6] Not needed Automatic Automatic None

Proposed technique Not needed Automatic Automatic None

5.4. Discussion

In our proposed technique user inputs of SQL queries are removed and some information is
gathered in the static phase, which makes the attack detection easier and faster than [6] at
runtime (the overhead improvement for the web applications listed in Table 1 respectively
are: 24.22%, 19.65% and 20.37%). Therefore, whenever the input is not in its location,
injection has taken place and before further inspection we can detect and also prevent it. It has
to be mentioned that because most of the attackers try to inject through the first input so that
later parts of the query are commented and have no impact, the attack is identified on the
initial steps. Another advantage related to the previous one is that we only traverse the input
which is a small fraction of the total query while in [6] the entire query is traversed. In this
way we give a faster solution for SQLIAs which is a very important issue in real world web
applications that need a real time interaction between the users and web applications that
makes it another advantage of the proposed technique.

Despite the advantages of our proposed technique there are some shortcomings. Not being
capable of totally identifying stored procedure attacks, not working for numeric variables and
dynamic queries, and having false positives when the legitimate input contains operator ’. The
first problem is because stored procedures are at the database layer and the query structures
inside them are not available at the application server, but the second one is because numeric
variables are not surrounded by ‘’ to be able to use our technique, for dynamic queries
because we generate the structure of queries statically we are not capable of managing them,
and finally the last problem is due to the strategy that we have in generating the query models.

6. Conclusion

In this paper we propose a new technique based on static analysis and runtime validation
for detecting and preventing SQLIAs. Therefore, as a result the security of the web
application and the underlying database that contains valuable data is preserved. In this
technique user inputs in SQL queries are removed and some information gathered in order to
make the detection easier and faster at runtime. Furthermore we evaluated the performance of
our proposed technique and compared it with other techniques. The evaluation showed that
beside the benefits, our proposed technique is not capable of totally identifying stored
procedure attacks, it also does not work for dynamic queries and numeric variables and
finally considers legitimate inputs containing operator ’ as attacks. These shortcomings can be
solved and thus we are planning to work on them as a future work to improve the method.

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 65

References
[1] M. Monga, R. Paleari and E. Passerini, “A hybrid analysis framework for detecting web application

vulnerabilities”, Proceedings of the 2009 ICSE Workshop on Software Engineering for Secure Systems,
IEEE Computer Society, Vancouver, Canada, (2009) May 19.

[2] OWASP Top 10-2010, (2010).
[3] B. Martin, M. Brown, A. Paller and D. Kirby, 2011 CWE/SANS Top 25 Most Dangerous Software Errors,

(2011).
[4] C. Anley, “Advanced SQL Injection in SQL Server Applications”, Next Generation Security Software Ltd,

(2002).
[5] G. Lawton, J. Computer, vol. 40, no. 13, (2007).
[6] I. Lee, S. Jeong, S. Yeo and J. Moon, J. Mathematical and Computer Modelling, vol. 55, no. 58, (2011).
[7] W. G. J. Halfond, J. Viegas and A. Orso, “A Classification of SQL Injection Attacks and Countermeasures”,

Paper presented at the Proceeding on International Symposium on Secure Software Engineering, Arlington,
VA, USA, (2006) March.

[8] C. Song, “SQL Injection Attacks and Countermeasures”, California State University, Sacramento, (2010).
[9] A. Tajpour, S. Ibrahim and M. Sharifi, International Journal of Computer Science Issues, vol. 9, no. 332,

(2012).
[10] R. A. McClure and I. H. Kruger, “SQL DOM: compile time checking of dynamic SQL statements”, Paper

presented at the Proceedings of the 27th international conference on Software engineering. IEEE, St. Louis,
Missouri, USA, (2005) May 15-21.

[11] W. R. Cook and S. Rai, “Safe Query Objects: Statically Typed Objects as Remotely Executable Queries”,
Paper presented at the Proceedings of the 27th International Conference on Software Engineering, IEEE, St.
Louis, Missouri, USA, (2005) May 15-21.

[12] A. B. M. Ali, A.Y. I. Shakhatreh, M. S. Abdullah and J. Alostad, J. Procedia Computer Science, vol. 3, no.
453, (2011).

[13] W. Jie, R. C. W. Phan, J. N. Whitley and D. J. Parish, “Augmented attack tree modeling of SQL injection
attacks”, Paper presented at the Information Management and Engineering (ICIME), The 2nd IEEE
International Conference on. IEEE, Chengdu, (2010) April 16-18.

[14] Y. Kosuga, K. Kernel, M. Hanaoka, M. Hishiyama and Y. Takahama, “Sania: Syntactic and Semantic
Analysis for Automated Testing against SQL Injection”, Paper presented at the Computer Security
Applications Conference, ACSAC, Twenty-Third Annual, Miami Beach, FL, (2007) December 10-14.

[15] G. Buehrer, B. W. Weide and P. A. G. Sivilotti, “Using parse tree validation to prevent SQL injection
attacks”, Paper presented at the Proceedings of the 5th international workshop on Software engineering and
middleware, Lisbon, Portugal, (2005) September.

[16] P. Bisht, P. Madhusudan and V. N. Venkatakrishnan, J. ACM Trans. Inf. Syst. Secur, vol. 13, (2010).
[17] W. G. Halfond and A. Orso, “AMNESIA: analysis and monitoring for neutralizing SQL-injection attacks”,

Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, Long
Beach, California, USA, (2005) November 7-11.

[18] Z. Su and G. Wassermann, “The essence of command injection attacks in web applications”, SIGPLAN Not,
Charleston, South Carolina, USA, vol. 41, no. 1, (2006) January 11-13.

[19] M. Muthuprasanna, W. Ke and S. Kothari, “Eliminating SQL Injection Attacks-A Transparent Defense
Mechanism”, Web Site Evolution, WSE '06, Eighth IEEE International Symposium on, Philadelphia, PA,
(2006) September 23-24.

[20] W. G. J. Halfond, A. Orso and P. Manolios, J. Software Engineering, IEEE Transactions on, Software
Engineering, vol. 34, no. 65, (2008).

Authors

Zeinab Lashkaripour received her BS degree in computer

engineering from the University of Sistan and Baluchestan, Iran in 2009.
She is currently working toward the MS degree in computer engineering
in Ferdowsi University of Mashhad, Iran. Her research work is web
application and security and she is a member of Data and
Communication Security Laboratory of Ferdowsi University. Other areas
of interest include Database Security and Cryptography.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

66 Copyright ⓒ 2013 SERSC

Abbas Ghaemi Bafghi received his BS degree in Applied
Mathematics in Computer from Ferdowsi University of Mashhad, Iran in
1995, and MS degree in Computer engineering from Amirkabir (Tehran
Polytechnique) University of Technology, Iran in 1997. He received his
PhD degree in Computer engineering from Amirkabir (Tehran
Polytechnique) University of Technology, Iran in 2004. He is a member
of Computer Society of Iran (CSI) and Iranian Society of Cryptology
(ISC). He is an assistant professor in Department of Computer
Engineering, Ferdowsi University of Mashhad, Iran. His research
interests are cryptology and security. It should be mentioned that he has
published more than 50 conference and journal papers.

	Abstract
	2.1. Tautology
	2.2. Illegal/Logically Incorrect
	2.3. Union
	2.4. Piggy Backed
	2.5. Blind Injection
	2.6. Timing Attacks
	2.7. Alternate Encoding
	2.8. Stored Procedure
	3.1. Static Analysis
	3.2. Dynamic Analysis
	3.3. Combinational
	4.1. Static Analysis
	4.2. Runtime Validation
	user: user1' or 'sqli' like '%sq%' --
	pass: null
	Static query model: “SELECT * FROM Accounts WHERE user=' ' AND pass=' ' ”
	Dynamic query: “SELECT * FROM Accounts WHERE user='user1' or 'sqli' like '%sq%' -- ' AND pass=' ' ”
	Dynamic query model: “SELECT * FROM Accounts WHERE user=' ' or 'sqli' like '%sq%' -- ' AND pass=' ' ”
	user: user1
	pass: '; exec xp_logininfo 'BUILTIN\Administrators'; --
	Static query model: “SELECT * FROM Accounts WHERE user=' ' AND pass=' ' ”
	Dynamic query: “SELECT * FROM Accounts WHERE user='user1' AND pass=' '; exec xp_logininfo 'BUILTIN\Administrators'; -- ' ”
	Dynamic query model: “SELECT * FROM Accounts WHERE user=' ' AND pass=' '; exec xp_logininfo 'BUILTIN\Administrators'; -- ' ”
	Subject
	Technique
	Legitimate Queries
	Attack Queries
	Attempt/Allowed
	Timing Avg (ms)
	Error Rate (%)
	Attempt/Prevented
	Detection Rate (%)
	Employee Directory
	[6]
	290/320
	0.0450
	9.38
	3707/3707
	100
	Proposed
	300/320
	0.0341
	6.25
	3707/3707
	100
	Events
	[6]
	290/328
	0.0453
	11.59
	3212/3220
	99.75
	Proposed
	300/328
	0.0364
	8.54
	3212/3220
	99.75
	Classifieds
	[6]
	116/128
	0.0432
	9.38
	3295/3295
	100
	Proposed
	120/128
	0.0344
	6.25
	3295/3295
	100

	5.3. Comparison of Techniques with Respect to Deployment Requirements
	5.4. Discussion

	References

