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Abstract— With the development of computer networks, 

security devices produce a large volume of low-level alerts. 
Analysis and management of these intrusion alerts is 

troublesome and time consuming task for network 

supervisors and intrusion response systems. The alert 

correlation methods find similarity and causality 

relationships between raw alerts to reduce alert redundancy, 
intelligently correlate security alerts and detect attack 

strategies. Several different approaches for alert correlation 

have been proposed which are desired for detecting known 

attack scenarios. This paper presents a new alert correlation 

framework without using predefined knowledge. For this 
purpose, we define the concept of partial entropy for each 

alert to find the alert clusters with the same information. 

Then we represent the alert clusters by intelligible notation 

called hyper-alert.  Finally a subset of hyper-alerts is selected 

based on the entropy maximization. The results of 
experiments clearly show the efficiency of the proposed 

framework. We achieved the promising reduction ratio of 

99.83% in LLS_DDOS_1.0 attack scenario in DARPA2000 

dataset while the constructed hyper-alerts have the enough 

information to discover the attack scenario. 

Keywords-intrusion detection; alert correlation; entropy; 

hierarchical clustering method. 

I. INTRODUCTION 

In recent years, the security threats such as worms and 

distributed denial of service (DDoS) attacks are increasing. 
To protect networks and hosts on the Internet, many 

security devices such as intrusion detection systems (IDSs) 

are widely deployed. There are two kinds of IDSs: 
signature based and anomaly based. The former uses a 

database of known attack signatures for detection while the 
latter uses a model of normal behaviors. If an intrusion is 

detected, an IDS generates a warning known as alert or 
alarm [1]. IDSs could generate overwhelming number of 

alerts per day, among which  false alerts are mixed with 

true ones. Analysis and management of these intrusion 
alerts is troublesome and time consuming task for network 

supervisors or intrusion response frameworks. To improve 
the representation of security threats, alert correlation is a 

necessary and critical process in intrusion detection and 
response [2]. 

Alert correlation is defined as a process that contains 
multiple components with the purpose of analyzing alert 

and providing high-level insight view on the security state 

of the network under surveillance. Researches on alert 
correlation are classified to the following techniques [3]: 

 Alert Correlation Based on Feature Similarity 

 Alert Correlation Based on Known Scenarios  

 Alert Correlation Based on Prerequisite and 

Consequence Relationship 
The similarity correlat ion methods correlate alerts 

based on the similarities of some selected features, such as 

source IP addresses, destination IP addresses, protocols, 
and port numbers. Alerts with higher degree of overall 

feature similarity will be correlated. The common 
weakness of these approaches is that they cannot fully 

discover the causal relationships between related alerts [3]. 

The Known Scenarios correlation methods correlates 

alerts based on the known attack scenarios. An attack 
scenario is either specified by an attack language such as 

STATL [4] or LAMDBA [5], or learned from train ing data 

sets using data min ing approach [6]. Whenever a new alert 
is received it is compared with the current existing 

scenarios and then added to the most likely candidate 
scenario [7]. A common weakness of the scenarios 

correlation techniques is that they are all restricted to 
known situation. In other words, the scenarios have to be 

predefined by a human expert or learned from labeled 

training examples [3].  

The Prerequisite and Consequence Relationship Alert 

Correlation is based on the assumption that most alerts are 
not isolated, but related to different stages of attacks, with 

the early stages preparing for the later ones. Intuitively, the 
prerequisite of an attack is the necessary condition to 

launch an attack successfully, and the consequence of an 

attack is the possible outcome if an attack succeeds [8]. 
This kind of approach requires specific knowledge about 

the attacks in order to identify their prerequisites and 
consequences. Based on this  information, alerts are 

considered to be correlated by matching the consequences 
of some previous alerts and the prerequisites of later ones 

[9]. However, the major limitation of this class of 

approaches is that they cannot correlate unknown attacks 
since its prerequisites and consequences are not defined. 

Even for known attacks, it is difficu lt to define all 
prerequisites and all of their possible consequences [3]. 

This paper proposes a new similarity correlation 
framework based on entropy. The main idea of this paper 

is that the huge number of raw alerts contains some 
information which can be displayed by fewer hyper-alerts. 

At first we defined the concept of partial entropy for each 

alert to find the alert clusters with the same information. 
Then we represent the alert clusters by intelligib le notation 

called hyper alerts. Finally the hyper alerts are reduced 
based on their entropy maximization.  

In Section 2 some of the related works in alert 
correlation are reviewed. The detail of proposed 

correlation framework is presented in Section 3, whilst its 
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performance in alert correlation is discussed in Section 4. 

Finally, the conclusions and some suggestions for future 
work are given in Section 5. 

II. RELATED WORKS 

Here, we review the related work in the literature, 

which address alert correlating techniques. In the similarity 
correlation methods alerts are put into a group based on the 

similarity of their corresponding features. The most 
common attributes of alerts are Source IP, Destination IP, 

Source Port, Destination Port, Attack Class and 
Timestamp. According to Valdes et al. a probabilistic 

approach to alert correlation correlates attacks over time, 

over multip le attempts and from mult iple sensors. Their 
used features are based on alert content that anticipates 

evolving IETF standards. Their probabilistic approach 
provide a unified  mathematical framework for correlating 

alerts that match closely but not perfectly, where the 
minimum degree of match required  to fuse alerts is 

controlled by a single configurable parameter. Only 

features in common are considered in the fusion algorithm. 
For each feature they define an appropriate similarity 

function. The overall similarity is weighted by a 
specifiable expectation of similarity [10]. 

Julisch proposed a clustering technique for grouping all 
the alerts which share the same root causes. The clustering 

technique proposed by Julisch has hierarchy structures 
which decompose the attributes of the alerts from the most 

general values to the most specific ones. These 

generalization hierarchies are later used for measuring the 
distance between alerts in a clustering algorithm [11]. We 

use the Julisch's generalization hierarchies to represent the 
hyper-alerts in our correlation method. Siraj et al. proposed 

a hybrid clustering model based on Improved Unit  Range 
(IUR), Principal Component Analysis (PCA) and 

unsupervised learning algorithm to aggregate similar alerts 

and to reduce the number of alerts [12]. Perdisci et al. 
proposed a new on-line alarm clustering framework to 

introduce a concise view about attacks and to reduce the 
volume of alarms. Their proposed framework consist of 

three main modules, namely an alarm management 
interface (AMI), an alarm classifier and an alarm 

clustering module. The AMI receives alarms from multiple 

IDS and translates them in a standard format. Then, the 
alarm classifier assigns a class label to the received alarms 

and sends them to the alarm clustering module, where the 
alarms are fused to obtain meta-alarms [13].  

In the known scenarios correlation methods, whenever 
a new alert is received it is compared with the current 

existing scenarios and then added to the most likely 
candidate scenario. Some of the previous works in this 

category have used formal models for specifying attack 

scenarios, like LAMBDA, STATL, ADeLe [4, 5, 14]. 
However, some correlation research works are based on 

pre-defined attack scenarios. For example, Dain et al. 
proposed a real-time alert clustering scheme which fuses 

the alerts produced by multip le intrusion detection systems 
into scenarios. In this framework, they use a probabilistic 

algorithm that a new alert belongs to a given scenario (the 

scenario constructed by their algorithm does not 
necessarily indicate malicious behavior). Whenever a new 

alert is received it is compared with current existing 

scenarios and then assigned to the scenario that yields 
highest probability score [15].  

In the prerequisite and consequence relationship alert 
correlation, we require specific knowledge about the 

attacks in order to identify their prerequisites and 
consequences. Based on this information, alerts are 

considered to be correlated by matching the consequences 

of some previous alerts and the prerequisites of later ones. 
Ning et al. [16] proposed an alert correlation method to 

identify the prerequisites (e.g., existence of vulnerable 
services) and the consequences (e.g., d iscovery of 

vulnerable services) of each type of attacks and correlate 
the attacks by matching the consequences of some 

previous attacks and the prerequisites of some later ones. 
For example, if a  UDP port scan followed by a buffer 

overflow attack against one of the scanned ports, they can 

be correlated as the same series of attacks. They introduce 
the notion of hyper-alert type, which is used to represent 

the prerequisite and consequence of each type of alerts. A 
hyper-alert type T is a triple (fact, prerequisite, 

consequence) where fact is a set of attribute names, each 
with an associated domain of values, prerequisite is a 

logical formula whose free variables are all in fact, and 

consequence is a set of logical formulas such that all the 
free variables in consequence are in fact.  

 

Generally, the scenario-based and prerequisite-
consequence methods are limited to a predefined 

knowledge base, whereas the similarity techniques are 

capable of correlating alerts that may contribute to 
unknown attacks. On the other hand, the common 

weakness of the similarity approaches is that they cannot 
fully discover the causal relationships between related 

alerts. 

III. THE PROPOSED ALERT CORRELATION FRAMEWORK 

In this section we proposed a new similarity correlation 
framework based on entropy. The main idea of this work is 

that the massive number of alerts correlated, so that the 
correlated alerts have the same quantity of informat ion as 

the original. Fig. 1 shows the architecture of framework 

which has the following procedure: 

Input: Raw alerts 

Output: Correlated alerts (hyper-alerts), Selected hyper- 

alerts 
 

Step 1: the partial entropy of alerts is calculated for any 

alert. 

Step 2: h ierarch ical clustering algorithm is used to cluster 

the raw alerts based on their obtained partial 

entropy. 

Step 3: d isplay the alert  clusters by intellig ible  notation 

called hyper-alert. 

Step 4: the network supervisor select a subset of hyper-

alerts with the desired number o f elements. He 

uses the principle of maximum entropy to find a 

subset of hyper-alerts that contain the most of 

information about the set of alerts. 
 

We will describe the component of proposed correlator 

framework in greater detail in the following subsections. 
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Figure 1: The proposed alert correlation framework 

 

A. Calculation of  Partial entropy  for each alert  

We first introduce the concept of entropy, which is a 

measure of the uncertainty of a random variable. Let X be a 
discrete random variable with alphabet X and probability mass 

function P(x) = Pr{X = x}, x∈X. The entropy of a this random 

variable with the probability mass function P(x) is defined as 

[17]: 





Xx

xPxPXH )(log)()( 2  
(1) 

According to this equation each value x∈X has its portion 

in obtained entropy. We named each of these portions as partial 
entropy. The formal defin ition of partial entropy is given 

below. 

Definition 1. Consider a d iscrete random variable with 

alphabet X and probability mass function P(x). Let  H(X) be its 

entropy. The partial entropy of X  is the portion of each value  

x∈X in H(X), it can be written as: 

)(log)()( 2 xPxPxXHP   (2) 

Now we use this concept as a similarity measure for alert 

correlation process. Suppose that the set of alerts is defined as 

 nAAA ,...,, 21 , and the set of alert features such as source 

IP address, destination IP address, protocol, source port 
number, destination port number, time, duration and etc., is 

shown by  kFFFF ...,,, 21 . Each feature jF  is a discrete 

random variable with the set of value }{ jf  and the probability 

mass function of
 

)( jj fP . Hence, we can calculate the entropy 

of feature
 

jF  as the following equation:  






jj Ff

jjjjj fPfPFH )(log)()( 2  (3) 

According to Eq. 2, the partial entropy of feature  jF  for 

jj Ff  is defined as: 

)(log)()( 2 jjjjjjP fPfPfFH   (4) 

 

Definition 2. Suppose that we have the set of alerts 

 nAAA ,...,, 21 , and the set of alert features is shown 

by  kFFFF ...,,, 21 . For each alert ]...,,,[ 21 ikiii fffA   its 

partial entropy is a vector which is defined as: 

 
)](...,),(),([

]...,,,[]...,,,[)(

2211

2121

ikkPiPiP

ikiikPiP

fFHfFHfFH

fffFFFHAH




 

(5) 

Whereas jij Ff  and, 

)(log)()( 2 ijjijjijjP fPfPfFH   (6) 

So we can calculate the partial entropy of alerts and fill the 

following matrix from the set of alerts: 

























)()()(

)()()(

)()()(

2211

2222211

1122111

2

1

nkkPnPnP

kkPPP

kkPPP

n fFHfFHfFH

fFHfFHfFH

fFHfFHfFH

A

A

A










 

The alerts with the same informat ion have the similar part ial 

entropy. Hence we find the unique rows of above matrix to 

construct the hyper-alerts. We can also reduce the number of 

hyper-alerts by a simple clustering algorithm.  

B. Review of hierarchical clustering method 

After calculating the mentioned matrix, we need a method 
to cluster the alerts based on their partial entropy. Hierarchical 

clustering procedures are the most commonly used method of 
summarizing data structure. A hierarchical tree is a nested set 

of partitions represented by a tree diagram or dendrogram. 
Sectioning a tree at a particular level produces a partition into g 

disjoint groups. If two groups are chosen from different 
partitions (the results of partitioning at different levels) then 

either the groups are disjoint or one group wholly contains the 

other [18]. The hierarchical algorithm contained the following 
procedure, where c is the desired number of final clusters. If 

c=1 then the dendrogram could be created. 
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Algorithm (Agglomerative hierarchical clustering) 

Inputs: c , }...,{ 21 nxxx  

Outputs : }...,,{ 21 cDDD  
 

Begin 

initialize nc 


 

for i = 1,…, n 

}{ ii xD   

do  1


cc  

Find nearest clusters according to single-link or complete-link methods , 
say, Di and Dj 

Merge Di and Dj 

until 


 cc  

return c clusters of }...,,{ 21 cDDD  

end 
 

By this technique we will draw cluster’s dendrogram and 
use it to specify clusters. So at first, dissimilarity matrix is 

created. This matrix shows distances between each pair of 
samples. Suppose that at the beginning, every sample is a 

cluster with one sample. Then in each step two clusters that are 
closer to each other get selected and joined as a new cluster. At 

the end, we have a nested set of clusters that can be analyzed.  

In the hierarchical method we use several mechanisms to 
obtain the distance of two clusters. One of which is single-link 

method. In this method the distance between two clusters is 
defined as the distance between their closest members of two 

clusters. In other words the distance between two groups, A and 
B, is defined as: 

)(min
,

ij
BjAi

AB dd


  (7) 

Another mechanism is complete-link. In this method the 
distance of two clusters is defined as the distance between their 

furthest members of two clusters, i.e., the distance between two 
groups, A and B, is: 

)(max
,

ij
BjAi

AB dd


  (8) 

In this method, we make sure that other samples of two  

clusters are closer than the distance between of them. 

C. Display the hyper-alerts 

In this section we want to display the alerts located in a 

cluster by intelligible notation called hyper-alert. For this 
reason we define a meaningful hierarchy for each alert' feature. 

A hierarchy defines a sequence of mappings from a set of 
concepts to their higher-level correspondences [19]. A good 

example of this technique proposed by Pietraszek [20] as 

generalization hierarchies . He labeled the IP addresses 
according to their role (Workstation, Firewall, HTTPServer, 

etc.), then grouped according to their network location 
(Intranet, DMZ, Internet, etc.) with a final top-level generalized 

address AnyIP (see Fig. 2). When these classification 
hierarchies are not known, the IP addresses can be generalized 

according to the hierarchies in the addressing structure; For 

example, an IP address 195.176.20.45 can be generalized to the 
corresponding class C network: 195.176.20.0/24, fo llowed by 

the class-B generalization 195.176.0.0/16, class-A 

generalization 195.0.0.0/8 and finally AnyIP.  

Furthermore, the other attributes will have different 

generalization hierarch ies, depending on the type and our 
interests. For example, the source and destination ports of port-

oriented IP connections can be generalized into Priv ileged (0-
1023) and Non-Privileged (1024-65535), with a top-level 

category of AnyPort. In addition, the well-known destination 

ports (0-1023) can comprise a number of hierarchies describing 
their function, e.g., httpPorts (80, 443, 8080, 9090), mailPorts 

(25, 110, 143, 993, 995), chatPorts (194, 258, 531, 994). By 
this generalization hierarchy, the hyper-alerts can be 

constructed from the set of alert clusters.  

 
Figure 2: A Sample generalization hierarchies for IP address. 

D. Select the best hyper-alerts with the maximum entropy 

Now, we want to reduce the displayed hyper-alerts by 

selecting the specified number of hyper-alert that contain the 
most of information about the set of alerts.  According to the 

principle of maximum entropy, when estimating the probability 
distribution, you should select that distribution which leaves 

you the largest remain ing uncertainty consistant with your 

constraints.  

Here we want to estimate the hyper-alerts probability 

distribution. So we should select a subset of hyper-alerts with 
the maximum entropy subject to the constraint that the number 

of desired hyper-alerts is fixed. In other words, we have the 
following optimization problem: 

xshyperalertdesiredofnumber

ts

shyperalertEntropy



..

)(max

 

(9) 

We can use the genetic algorithm to solve the above 
optimization problem. But before that the entropy of hyper-

alerts should be defined. 

Definition 3.  Suppose that the set of hyper-alerts is defined as 

 lhhh ,...,, 21 , and the set of hyper-alert features such as 

source IP address, destination IP address, protocol, source port 

number, destination port number, t ime interval, duration, 

contained number of alerts  and etc.,  is shown by 

 m ...,,, 21 . So each hyper-alert ih is displayed by a 

vector with m d ifferent features ( ]...,,,[ 21 imiiih  ). Now 

suppose that each feature j  is a discrete random variable on  

the set    qjjjpjjjj gggvvv ...,,,...,,, 2121  so that 

 pjjj vvv ...,,, 21  is the non-generalized value set and 

 qjjj ggg ...,,, 21  is the generalized one for feature j . First 

we should find the generalized value for  pjjj vvv ...,,, 21  to 
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calculate the probability of each value of j with more 

accurately. Hence, j  is distributed on the set of 

     ....,,,)(...,),(),(...,,, 212121 qjjjpjjjpjjjj gggvgvgvgvvv 

 where )( ljvg is the generalized value for ljv . Now we can  

calculate the entropy of j as the following equation:  






jj

jjj PPH


 )(log)()( 2  (10) 

IV. EXPERIMENTS 

In this section, we test the proposed entropy based 

correlator by using DARPA2000 [21] dataset to demonstrate 

how it works. Even after thirteen years of its generation, it has 
been used in many papers since it was introduced and it is the 

only choice to compare alert correlation methods [3, 22-25]. 

A. DARPA2000 dataset 

DARPA 2000 is a well-known IDS evaluation dataset 
created by MIT Lincoln Laboratory. There are two attack 

scenarios in DARPA2000 dataset, LLS_DDOS_1.0 and 
LLDOS2.0.2. In the both scenarios, the attacker tries to install 

components necessary to run a Distributed Denial of Service, 
and then launch a DDoS at a US government site. The main 

difference between them is that the attacker uses IPSweep and 

Sadmind Ping to find out the vulnerable hosts in 
LLS_DDOS_1.0 while DNS HInfo is used in LLDOS2.0.2; 

second, the attacker attacks each host individually in 

LLS_DDOS_1.0, while in LLDOS2.0.2, the attacker breaks 

into one host first and then fans out from it. 

In this paper we only show the results of evaluation on 

LLS_DDOS_1.0. In this scenario, the attacker first sends 
ICMP echo-requests to many IP addresses and listens for 

ICMP echo-replies to determine which hosts are “up”, then 
uses the “ping” option of the sadmind exploit program to 

determine which of the discovered hosts are running the 

sadmind service. In the next phase, the attacker tries to break 
into the hosts found to be running the sadmind service in the 

previous phase, and launches the sadmind Remote-to-Root 
exp loit several times  against each host, each time with 

different parameters. After gaining root access in each host, the 
attacker uses telnet, rcp and rsh to install a  DDoS program in 

the compromised machines.  

Here we have performed the experiments, with the DMZ 

network traffic of LLS_DDOS_1.0 that contains 34819 alerts 

which is indicated the five steps of DDoS attack on the target 
IP address 131.84.1.31. The mentioned alert correlation 

framework is applied to this set of alerts. The results in Table I 
show the promising reduction ratio of 99.83% in 

LLS_DDOS_1.0 attack scenario before running Step 4, 
whereas Sadoddin [26] achieved the reduction ratio of 96% in 

his experiments.  Moreover the obtained 58 hyper-alerts cover 

the general informat ion existed in each of the five phases of 
attack scenario and provides a more global view of what is 

happening in the network. The network supervisor can also 
select a subset of hyper-alerts with the desired number of 

elements by running Step 4.  
 

T ABLE I: T HE RESULT OF PROPOSED ALERT CORRELATION FRAMEWORK ON LLS_DDOS 1.0 ALERTS. 

 Number of 

raw alerts 

Number of hyper-alerts in each phase  

(before running Step 4) 

Reduction 

Ratio (%) 

Number of hyper-alerts in each phase  

(after running Step 4 to find the 10 tops of hyper-alerts) 
Phase1 785 16    (1 of them is shared between Phase1 & Phase2) 98.09  2 

Phase2 25 15    (1 of them is shared between Phase1 & Phase2) 
        (2 of them are shared between Phase2 & Phase4) 
        (4 of them are shared between Phase2 & Phase3) 

44.00 1 

Phase3 80 13    (2 of them are shared between Phase3 & Phase4) 
        (4 of them are shared between Phase2 & Phase3) 

86.25  4 

Phase4 19 13    (1 of them is shared between Phase4 & Phase5) 

        (2 of them are shared between Phase3 & Phase4) 
        (2 of them are shared between Phase2 & Phase4) 

31.57  2 

Phase5 33910 11    (1 of them is shared between Phase4 & Phase5) 99.97  1 

The total of 
raw alerts 

34819 58 99.83  10 

 

 

 

T ABLE II: T HE RESULT OF SELECTED HYPER-ALERTS WITH MAXIMUM ENTROPY FOR ATTACK SCENARIO LLS_DDOS_1.0  IN DARPA 2000 DATASET  

SourceIP Fr 
Destination 
IP 

Fr Protocol Fr Sport Fr Dport Fr LTime UTime Duration 
Number 
of alerts 

202.77.162.213 391 
Zone3 
Zone4 

233 
158 

icmp-echo-request 391 -1 391 -1 391 ' 9:51:36 AM' ' 9:51:40 AM' 0 391 

Zone3 
Zone4 

1 
1 

202.77.162.213 2 icmp-echo-reply 2 -1 2 -1 2 ' 9:51:38 AM' ' 9:51:38 AM' 0 2 

202.77.162.213 4 
Zone2 

Zone3 

1 

3 
udp 4 privileged 4 111 4 '10:11:09 AM' '10:15:09 AM' 0 4 

172.16.112.50 2 202.77.162.213 2 tcp 2 1023 2 514 2 '10:50:38 AM' '10:50:38 AM' 0 2 

202.77.162.213 3 172.16.114.30 3 tcp 3 registered 3 23 3 '10:34:14 AM' '10:34:31 AM' 9.26E-05 3 
202.77.162.213 6 172.16.115.20 6 udp 6 privileged 6 dynamic 6 '10:33:09 AM' '10:33:09 AM' 0 6 

202.77.162.213 2 172.16.114.20 2 tcp 2 registered 2 23 2 '10:33:57 AM' '10:33:57 AM' 9.26E-05 2 

172.16.115.20 4 202.77.162.213 4 tcp 4 1023 4 514 4 '10:50:00 AM' '10:50:00 AM' 0 4 

172.16.115.20 1 202.77.162.213 1 tcp 1 1023 1 1022 1 '10:50:07 AM' '10:50:07 AM' 0 1 

Outside 75 131.84.1.31 75 tcp 75 registered 75 
invalid 
privileged 

 1 
74 

'11:27:55 AM' '11:27:55 AM' 0 75 
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To display the hyper-alert, we use a vector with 14 features 

(Source IP address, Frequency of source IP address, 
Destination IP address, Frequency of destination IP address, 

Protocol, Frequency of protocol, Source port number, 
Frequency of source port number, Destination port number, 

Frequency of destination port number, Time interval (Lower 
bound of time), Time interval (Upper bound of time), Duration 

and Contained number of alerts). According to the network 

topology used to capture the DARPA dataset, we suppose the 
following generalization hierarchies  for some of the mentioned 

features.  

 The IP addresses can be generalized into Zone1, Zone2, 

Zone3, Zone4, and outside.  

 The source and destination ports of port oriented IP 

connections can be generalized into privileged (1-1024), 

registered (1025-49151), and dynamic (49152-65535). 

The full list of generated hyper-alerts for LLS_DDOS_1.0 
is shown in Table II.  

V. CONCLUSION 

This paper presents a new alert correlat ion framework based 

on entropy. The main idea of the proposed framework is to 

correlate the raw alerts, so that the correlated alerts have the 

same quantity of informat ion as the original. For this purpose, 

we defined the concept of partial entropy for each of generated 

alerts. The alerts with the similar part ial entropy indicate the 

same information, hence we can correlate them into a specific 

cluster and report them by an intellig ible hyper-alert which is 

provide a more g lobal view of network status. By principle of 

entropy maximizat ion the network supervisor can also select a  

subset of hyper-alerts that has more in formation about the 

alerts. We validated the framework on attack scenario 

LLS_DDOS_1.0 in DARPA 2000 dataset. The reduction ratio 

with the experiments was 99.83% while the generated hyper-

alerts have the enough information to discover the attack 

scenario.  
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