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Abstract

In this note, let G be a locally compact group and H be a compact
subgroup of G. We investigate the square integrable representations of
homogeneous spaces G/H and admissible wavelets for these representa-
tions. Also, we consider the relation between the square integrable rep-
resentations of locally compact groups and their homogeneous spaces.
Moreover, the connection between existence of admissible wavelets for
locally compact groups and their homogeneous spaces is described.
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1 Introduction and Preliminaries

For a locally compact group G with left Haar measure A it is well known that
a continuous unitary representation m of GG is called square integrable if there
exists a non-zero vector ¢ in Hilbert space H such that

/ | < 7(2)¢, ¢ > [PdA(z) < 00
G

Such a unital vector ( is called an admissible vector. The square integrable
representations on homogeneous spaces that admit G-invariant measure and
relatively invariant measure have been studied in [1, 5]. In this manuscript
we investigate the relation between square integrable representations of locally
compact group G and its homogeneous space GG/H, in which H is compact
subgroup of G. To be more precise we need to fix some notations and review
some basic concepts. For more details one may refer to [8, 6, 12, 3.

Let G be a locally compact group and H be a closed subgroup of G with
left Haar measures A and Ay , respectively. Consider G/H as a homogeneous
space on which G acts from left and the Radon measure p on G/H is said
to be G-invariant if u,(yH) = p(yH) for all z,y € G, where p, is defined by
te(E) = p(xE) (for Borel subset E of G/H). It is well known that there is
a G-invariant Radon measure p on G/H if and only if Ag|y = Ay, where
Ag, Ay are the modular functions on G and H, respectively. In this case we
have,

/G F@)dA(z) = /G Pt = /G . /H F(eh)dAg (h)dp(z ),
(1.1)

in which Pf(zH) = [,, f(zh)d\g(h) is surjective continuous map from C,(G)
onto C.(G/H).

The Radon measure p on G/ H is called strongly quasi invariant if there is a
positive continuous function o of Gx G/ H such that du,(yH) = a(z,yH)du(yH),
for all z,y € G. If the function a(z,.) reduce to constants, the measure p is
called relatively invariant measure.

A rho-function for the pair (G, H) is defined to be a continuous positive
function p from G which satisfies

_ Aulh)
A = 3l

In [10] it has been shown that the existence of a homomorphism rho-function
for the pair (G, H) is a necessary and sufficient condition for the existence of

p(z) (xe€G,heH).
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a relatively invariant measure p on G/H.

In this paper we introduce square integrable representations of homoge-
neous space GG/H equiped with a relatively invariant measure p. The main
aim in this paper is to compare square integrable representations of locally
compact groups and their homogeneous spaces. Finally we describe the rela-
tion between admissible wavelets on groups and their homogeneous spaces.

2 Main Result

Let G be a locally compact group and H be a Hilbert space. We recall square
integrable representations of locally compact groups.

An irreducible representation 7w of group G is said to be square integrable if
there exists a nonzero element ¢ in H such that

/G\ < ¢ ()¢ > PdM(r) < oo (2.1)

The condition (2.1) is known as the admissibility condition for the square
integrable representations of G on H. The element ¢ € H for which ||C]| = 1is
called admissible wavelet for the square integrable representation 7 of group
G. The wavelet constant associated to the admissible wavelet is denoted by c,
and defined as:

c :/G\ < (,m(x)¢ > [“dA\(x).

( For more details about admissible wavelets on locally compact groups the
reader can be consult with [13, 9]).

In [5], we have studied the squre integrable representations of homogeneous

spaces and admissible wavelets for these representations. Here we define rep-
resentations of homogeneous spaces which will be needed in the difinition of
square integrable representations of homogeneous spaces.
A unitary representation of the homogeneous space G/H is a map w from G/H
into the group U(H), of all unitary operators on some nonzero Hilbert space
H, for which the map xH +—< w(zH)(,£ > from G/H into C is continuous,
for each (,& € 'H and

w(zyH) = w(zH)w(yH), =z 'H)=w(zH)*,

for each x,y € G. It is worthwhile to note that this defines a unitary representa-
tion 7 of GG in which the subgroup H is contained in the kernel of 7. Conversely,
any unitary representation 7 of G which is trivial on H induces a unitary rep-
resentation w of G/H, by letting w(xH) = 7(x). Moreover, a closed subspace
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M of H is said to be invariant with respect to w if w(xH)M C M, for all
r € G. A unitary representation w is said to be irreducible if the only invari-
ant subspaces of H are {0} and H.

An irreducible representation w of G/H on H, in which G is a locally com-
pact group and H is a compact subgroup of G, is said to be square integrable
if there exists a nonzero element ( € H such that

@ w(x 2du(x 50
/G/Hp(x) | < Gw(@H)C> Pdu(zH) < oo, (2.2)

where p is a relatively invariant measure on G/H which arises from a rho
function p : G — (0,00). If ¢ satisfies (2.2), it is called an admissible vector.
An admissible vector ¢ € H is called an admissible wavelet if ||(]| = 1. In this
case, we define the wavelet constant c; as

= & w(x 2du(z
= 5 1< Gt > P, 2.3

We call ¢, the wavelet constant associated to the admissible wavelet (. Note
that since H is compact subset of G, the definition (2.2) is well define.

In the sequle we intend to establish a relation between square integrable
representations of locally compact groups and their homogeneous spaces. We
recall that a unitary representation of homogenous space G/H is in one to
one correspondence to a unitary representation of G whose kernel 7, which is
denoted by N, contains H. We denote by qy, qu, p, the canonical mappings
of G onto G/N, of G onto G/H and of N onto N/H. Let Ay and Ay be the
left Haar measure on N and H, respectively. Then there exists a G-invariant
measure fy/g on N/H . On the otherhand, let A be a left Haar measure on G.
One can then form a left invariant mesures jic/n on quotient group G/N and
a relatively invarint measure pg iy on homogeneous space G/H which arises
from rho-function p of G. It is clear that, the mapping (z,n) — qg(an) of
G x N into G/H is continuous. Since gg(xnh) = qy(zn), for all h € H, this
mapping defines a continuous mapping of G x (N/H) into G/H. Whence for
each fixed z € G, the mapping v, of N into G such that v, (n) = xn, define a
mapping w, of N/H into G/H in which

wa(p(n)) = qu(¥a(n)) = qu(zn).

It is easy to show that 1., = 1,00n(n), thererfore that w,, = wy00n/H(n),
for all n € N, in which gn(n)(n’) = nn'. The following lemma shows that the
map w, is proper.
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Lemma 2.1. Let E be a compact subset of G/H and K be a compact sub-
set of G. Then Uzegw, '(E) is relatively compact in N/H. In particular,
Urexwy ' (E) is contained in a compact subset of N/H.

Proof. Let F' be a compact subset of G such that gg(F) = E. Let L be
the set of n € N such that Kn intersects F.. Then L is compact (see [2],
chapterIIl,§ 4.5, theoreml). Let n € N, such that p(n) € Uzegw, '(E). Thus
there exists € K such that w,(p(n)) € E. i.e. gu(zn) € E and since gy (F) =
E, there exists h € H, xnh € F. Then nh € L. So p(nh) = p(n) € p(L). That
is Uzexwy ' (F) C p(L). O

Let M(N/H) and M(G/H) be complex measure spaces on homogeneous
spaces N/H and G/ H, respectively, as introduced in [3, 12]. Lemma 2.2 shows
that the mapping w, is proper. Then w, extends continuously to a map from
M(N/H) into M(G/H) ([7], Section 4.5). Now let ¢ € C.(G/H). Define the
function ¥ of G into M(G/H) such that

U(z) =< ¢,ws(pym) >= /N/H p(wa(p(n))dpn/a(p(n)).
The function W is continuous and compact support. Morevere by G-invariant
measure fiy/r, we have
U(azn) = <@,wen(pn/m) >
= <@, w00n/(M)(1N/H) >
= [y elwzoonn(n)(p(n)))dpnyu (p(n'))
- fN/H p(we(nn'H))dpn m(p(n'))
= Jyym e(wo (W' H))dpnm(p(n'))
= o(wa(pun/m))
= ¥(x),
for n € N. Then the mapping ¥ of G/N into M(G/H) in which

U(gn(z)) =< @, wa(pn/m) >, (2.4)
is continuous with compact support, for all p € C.(G/H).
Proposition 2.2. Let p € C.(G/H). Then

/ < oy walpny) > dpicyn(ax (@) = / o (g12(2))dpicya (g ().
G/N G/H

Proof. By (1.1), for ¢ € C.(G/H) we have

/ o (a () dpicym(an (x)) = / F(2)dA (@),
G/H a
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where ¢ = Pf and f € C.(G). Also,
fG/N < @, we(pnym) > dpgn(gn () =
Jayn Sy (P f(wa(p(n))dpnym (p(n))dpc v (gn () =
Jayn Sy (P f @ (an))dpn i (p(n))dpc v (gn () =
fg/N fN/H fH R, f(nh)dAg(h)dunsu(p(n))dupcn(gy(z)) =
Jayn Sy Flan)dAn(n)dpcn(an (x)) =
Jo f(z)d\(z).
0

Corollary 2.3. (i)) Let ¢ be a pic/u-integrable function on G/H. There
exists a jic/n-negligible subset E of G/N having the following property: if v €
G is such that qn(x) ¢ E, then the function pow, on N/H is pn,p-integrable.
The integral fN/H O(wz(p(n))dpn/u(p(n) is a pe/n-integrable function and

dicyn (an (@) / (wa(p(n))dpin i (p(n)).

/G | plan)di () = / »
(2.5)

G/N

(ii) suppose that there exists a bounded positive measure fic/g on homogenous
space G/H . Then there ezists a bounded positive measure on homogeneous
space N/H.

Proof. (i) By proposition 2.2 we have,

/ (g1 (@))dpicym(an(z) = / < v walpnym) > dncyn(qu())
G/H G/N

B /G/N /N/H(SD(% (p(n))dpnym(p(n))dpcn (gn ().

(i) The function 1 on G/H is pug/p- integrable. By the part (i), the function
1 on N/H is pn/p-integrable. Thus py/ g is bounded. O

As before we mention, a unitary representation w of homogeneous space
G/H define a representation 7 of G such that kerm = N contains H. Consider
7, the representation of G/N by letting 7(z/N) = m(x). The following theorem
show that the representation @ of G/H is square integrable if and only if the
representation 7 of quotient group G/N is square integrable.

Theorem 2.4. Let w be a unitary representation of G/H. The unitary rep-
resentation w of G/H is square integrable if and only if the representation 7
of quotient group G/N is square integrable.
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Proof. Assume that the representation w is an irreducible. Let 7 the asso-
ciated representation of GG and let N be the kernel of representation 7. The
representation w is irreducible if and only if 7 is irreducible or equivalently, if
the representation 7 is irreducible. Then, by the corollary 2.3 and since the
G-invariant measure py,y is finite [11], we have

/G/HSO(xH)dMG/H(xH) :u(N/H)/ o(zN)dugn(zN).

G/N
Here o(zH) = | < w(zH)(,( > |[*. So, the representation w is a square
integrable of G/H if and only if 7 induce a representation 7 of quotient group
G/N where 7 is square integrable. O

We can conclude that there exsits an admissible wavelet for representation
w of homogeneous space G/ H if and only if there exists an admissible wavelet
for induced representation 7 of quotient group G/N.

Corollary 2.5. A unital vector ¢ in Hilbert space H is an admissible wavelet
for representation w of homogeneous space G/H if and only if ¢ in H is an
admissible wavelet for representation 7 of qoutient group G/N.

The following example support our tecnical considerations in this note.

Example 2.6. Consider Euclidean group G = SO(n) x, R™ with group op-
erations

(Ri1,p1).(Ra,p2) = (RiRa, Rips +p1), (R,p)~' = (R, =R 'p).

Put n =2 in G, i.e. G = SO(2) x, R? and H = L*(S') ~ L*[—7, 7. In this
setting any R € SO(2) and s € S! are given explicitly by

cost)  sinb
R= ( —sinfl  cos6 )

. ( siny )
cosvy
The representation 7w on G, is defined as

(0, 1, pa) () = /PIImIEPOTY (y — ),

for all (0, p1,p2) € G, € L*(S'). Since this representation of G is not square
integrable [4], we are looking for suitable representation of its homogeneous
space. Consider H = {(0,0,p2) € G}. Thus the representation of G/H is
square integrable [5]. By theorem 2.4 the representation w of homogeneous
space G/H is square integrable if and only if the representation 7 of qoutient
group G/N is square integrable, where N = kerm = {(0, —pacotg~y, ps), p2 €
R}.
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