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Abstract

In this paper, first we present some preliminaries about
graphs, core graphs, and combinatorial algebraic topology.
Using these tools, and specially using immersions and cov-
ering maps, we establish our main theorem. Indeed, we can
prove the Burnside condition for the intersection of those
subgroups of free groups satisfying the Burnside condition.

1 Introduction

All our conceptions come from [1], [2] and [3]. A graph X consists of two sets E and
V (edges and vertices), with three functions −1 : E −→ E and s, t : E −→ V such
that (e−1)−1 = e, e−1 ̸= e, s(e−1) = t(e) and t(e−1) = s(e). We say that the edge
e ∈ E has initial vertex s(e) and terminal vertex t(e). The edge e−1 is the reverse
of e.

Amap of graphs f : X −→ Y is a function which maps edges to edges and vertices
to vertices. Also we have f(e−1) = f(e)−1, f(s(e)) = s(f(e)) and f(t(e)) = t(f(e)).

A path p in X of length n = |p|, with initial vertex u and terminal vertex v, is an
n-tuple of edges of X of the form p = e1...en such that for i = 1, ..., n − 1, we have
t(ei) = s(ei+1) and s(e1) = u and t(en) = v. For n = 0, given any vertex v, there
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is a unique path Λv of length 0 whose initial and terminal vertices coincide and are
equal to v. A path p is called a circuit if its initial and terminal vertices coincide.

If p and q are paths in X and the terminal vertex of p equals the initial vertex
of q, they may be concatenated to form a path pq with |pq| = |p|+ |q|, whose initial
vertex is that of p and whose terminal vertex is that of q.

A round-trip is a path of the form ee−1. A reduced path is a path in X containing
no round-trip. An elementary reduction is insertion or deletion a round-trip in a
path. Two paths p and q are homotopic (written p ∼ q) iff there is a finite sequence
of elementary reductions taking one path to the other. Homotopic paths must have
the same start and terminal vertices and also, homotopy is an equivalence relation
on the set of paths in X. Moreover, any path in X is homotopic to a unique reduced
path in X.

Let v be a fix vertex in X, π1(X, v) is defined to be the set of all homotopy
classes of closed paths with initial and terminal vertex v. Then π1(X, v) together
with the product [p][q] := [pq] forms a group with identity [Λv] and inverse element
[w]−1 = [w−1].

For a fix vertex v in X, the star of v in X is defined as follows:

St(v,X) = {e ∈ E : s(e) = v}.

A map f : X −→ Y yields, for each vertex v ∈ X, a function fv : St(v,X) −→
St(f(v), Y ). If for each vertex v ∈ X, fv is injective, we call f an immersion. If
each fv is bijective, we call f a covering.

The theory of coverings of graphs is almost completely analogous to the topolog-
ical theory of coverings. Immersions have some of the properties of coverings. One
of them which is more important, and we also need it more, is the following one:

”For a given finite set of elements {α1, ..., αn} ⊆ π1(X,u), there is a connected
graph Y and an immersion f : Y −→ X such that f∗(π1(Y )) = S, in which S is the
subgroup of π1(X,u) generated by {α1, ..., αn}”.

If G is a group, a G-graph X is a graph with an action of G on the left on X by
maps of graphs, such that for all g ∈ G and every edge e, ge ̸= e−1. In this case, the
quotient graph X/G, and the quotient map of graphs X → X/G can be defined. It
is easy to see that, in general X → X/G is locally surjective.

It is said that G acts freely on X when, whenever v is a vertex of X, g ∈ G,
and gv = v, then g = 1, the identity element of G. In this case, X → X/G is an
immersion, and hence is a covering.

A ttranslation of a map of graphs f : X → Y is a map g : X → X which is an
isomorphism of graphs and for which fg = f . The set of all translations of f forms
a group G(f) which acts on X. If f is an immersion, and X is connected, then G(f)
acts freely on X.
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The universal cover f : X̃ → X, of a connected graph X, is a covering with (X̃
is connected and π1(X̃) trivial. In this case, G(f) ∼= π1(X) which acts freely, by
covering translations, on X̃, and f is isomorphic to the quotient map X̃ → X̃.

Theorem 1.1. [4] Let

be a pullback diagram of graphs, where f1 and f2 are immersions. Let v1 and v2 be
vertices in Z1 and Z2 that f1(v1) = f2(v2) = w. Let v3 be corresponding vertex in
Z3. Define f3 = f1g1 = f2g2 : Z3 → X, and Si = fi∗(π1(Zi, vi)), for i = 1, 2, 3. Then
S3 = S1 ∩ S2.

Theorem 1.2. [4] Let f : X −→ Y be an immersion of graphs. Suppose that Y has
only one vertex and X has only finitely many vertices. Then there exists a graph
X́ containing X such that X́ − X consists only of edges, and there exists a map
f́ : X́ −→ Y extending f such that f́ is a covering.

2 Main results

In this section, we deduce our main result. before it, we recall some notes from [4]
which are essential in the proof of the main theorem. First, we note to the core
graphs whose roles are more important.

A cyclically reduced circuit in a graph X is a circuit p = e1...en, which is reduced
as a path and for which e1 ̸= e−1

n . A graph X is said to be a core-graph if X is
connected, has at least one edge and every edge belongs to at least one cyclically
reduced circuit.

If X is a connected graph with non-trivial fundamental group, an essential edge
of X is an edge belonging to some cyclically reduced circuit. The core of X consists
of all essential edges of X and all initial vertices of essential edges.

If X is a connected graph with non-trivial fundamental group and X́ is the core
of X, then X́ is a core-graph. If v is a vertex of X́, then the inclusion π1(X́, v) −→
π1(X, v) is an isomorphism.

Another notion, we are dealing with, is the Burnside condition for subgroups. If
S is a subgroup of a group G, we say that S ⊆ G satisfies the Burnside condition
when, for every g ∈ G, there exists some positive integer n such that gn ∈ S.
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Lemma 2.1. [4] (a) Let f : X −→ Y be a finite-sheeted covering of connected
graphs, v a vertex of X. Then f∗(π1(X, v)) ⊆ π1(Y, f(v)) satisfies the Burnside
condition.

(b) Let f : X −→ Y be an immersion of connected graphs. Suppose that Y
is a core-graph; v a vertex of X, f∗(π1(X, v)) ⊆ π1(Y, f(v)) satisfies the Burnside
condition. Then f is a covering.

Finally, using all the above notes, we establish the following theorem, which is
our main result in this paper.

Theorem 2.2. Let S1 and S2 be finitely generated subgroups of a free group F .
Suppose that S1 ∩ S2 satisfies the Burnside condition both in S1 and S2. Then
S1 ∩ S2 satisfies the Burnside condition in the join S1 ∨ S2, the subgroup generated
by A ∪B.
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