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turbulence models to simulate cavitating flows 
behind a disk. We compared Kunz, Sauer and Zwart 
mass transfer models. We added the Zwart model to 
the OpenFOAM package.  
 
Governing Equations 
The vapor-liquid flow described by a single-fluid 
model is treated as a homogeneous bubble-liquid 
mixture, so only one set of equations is needed to 
simulate cavitating flows. Thus, starting from the 
incompressible Navier-Stokes (NS) equations: 
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Eqs. (1) are the governing continuity and 
momentum equations for a classical RANS and 
homogeneous mixture multiphase flow. Here, v is the 
velocity, p is the pressure, s = 2μD is the viscous 
stress tensor, where μ is the viscosity. The rate-of-
strain tensor is expressed as 
 

 TvvD 
2

1                                                            (2) 

 
Multiphase Flow Modeling 

As phase changes from liquid to vapor happens under 
cavitations, a multiphase flow model has to be 
employed to describe the flow. Usually, the two-
phase mixture governing equation is employed to 
describe the multiphase flow for cavitation. In this 
work, we consider a “two-phase mixture” method, 
which uses a local vapor volume fraction transport 
equation together with source terms for the mass 
transfer rate between the two phases due to 
cavitation.  

  .
. mvt  

                                                      (3)
 

The mixture density ߩ and viscosity ߤ	are defined by:  

  lv   1
                                                   (4) 

  lv   1
                                                      (5) 

where ݉. is the mass transfer rate between the 
phases. 
 

Mass Transfer Modeling  

In this work, we employed tree mass transfer models 
Kunz, Schnerr-Sauer and Zwart. Kunz et al. [12] 
proposed a semi-analytical cavitation model as 
follows: 
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The first  term  on the right-hand  is  steam produced 
and it Proportional pressure drop from vapor pressure 

and amount of liquid phase models, while second 
term is amount of condensation and Proportional to 
the third power of volume fraction. Cdest and Cprod are 
two empirical constants. lP  is liquid filtered pressure 

and vP  steam pressure. Kunz’s model reconstructs the 

cavity region quite accurately especially in the 
closure region of the cavity. Therefore we employed 
Kunz model in the current simulation. Mass transfer 
model was developed by Schnerr and Sauer [13] as: 

݉. ൌ െ
ሺଵିఊሻఘഛଷఊ

ோ್
݌ሺ݃݊݅ݏ െ ௦௔௧ሻට݌

ଶ

ଷ
ሺ݌ െ  (7)      ݈_ߩ/௦௔௧ሻ݌

this model is function of bubble numbers per volume 
unit and bubble diameter calculated. Where Rb  is the 
radius of a bubble, which can be expressed as:	
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                                                       (8) 

n0  is the initial number of bubbles per unit volume. 
 In Zwart cavitation model et al.[14] Equation (9) 

is used as a mass transfer equation. Equation divided 
into two parts, one part for converting liquid phase  
vapor phase and second part is reversed. 
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PV
 
vapor pressure, rnuc the volume fraction at the core 

formation, RB
 
radius of the core formation, Fe,Fc is 

two empirical coefficients, respectively. Based on 
reference [10] 
rnuc=5×10-4 ,RB=1×10-6,Fe=50,Fc=0.01 
 
VOF Model 
The interface between the liquid and vapor phases is 
captured by volume of fluid (VOF) method. The 
VOF equation can be developed from Eq. (3) and 
described as the following: 

.( ) .[ (1 )] 0ct

    
   


 (10) 

The last term on the left-hand side of the above 
equation is known as the artificial compression term 
and it is non-zero only at the interface. The 
compression term stands for the role to shrink the 
phase-inter phase towards a sharper one. The 
compression term does not bias the solution in any 
way and only introduces the flow of γ in the direction 
normal to the interface. In order to ensure this 
procedure, Weller suggested the compression 
velocity to be calculated as: 

 min[ | |, max(| |)]
| |c c

  






                      (11) 

 
In other words, the compression velocity is based on 
the maximum velocity at the interface. The limitation 
of vc is achieved through applying the largest value of 
the velocity in the domain as the worst possible case. 
The intensity of the compression is controlled by a 
constant Cγ, i.e., it yields no compression if it is zero, 



 

a conservative compression for Cγ=1 and high 
compression for Cγ >1. 
 
Turbulence model  
1. LES Model 
Large eddy simulation (LES) is based on computing 
the large, energy-containing structures that are 
resolved on the computational grid, whereas the 
smaller, more isotropic, sub-grid structures are 
modeled. In contrast to RANS approaches, which are 
based on solving for an ensemble average of the flow 
properties, LES naturally and consistently allows for 
medium to small scale, transient flow structures. 
When simulating unsteady, cavitating flows, it is an 
important property in order to be able to capture the 
mechanisms governing the dynamics of the formation 
and shedding of the cavity [15-16]. The LES 
equations are theoretically derived, following e.g. 
Sagaut [17] from Eq. (1). In ordinary LES, all 
variables, i.e., f, are split into grid scale (GS) and sub 

grid scale (SGS) components, f f f   , where 

*f G f  is the GS component, G = G(X, Δ) is the 

filter function, and Δ=Δ(x) is the filter width. The 
LES equations result from convolving the NS with G, 
viz, 
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Bspvvv

t

t
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            (12) 

Where over-bar denotes filtered quantity. Equation 
(3) introduces one new term when compared to the 
unfiltered Eq. (1): the unresolved transport term B, 
which is the sub grid stress tensor. Following Bensow 
and Fureby [18], B can be exactly decomposed as 

 Bvvvv
~

.  B                                      (13) 

, Where now only B
~

needs to be modeled. The most 
common subgrid modeling approaches utilizes an 
eddy or subgrid viscosity, νSGS, similar to the 
turbulent viscosity approach in RANS, where νSGS 
can be computed in a wide variety of methods. In 
eddy-viscosity models often, 

2
2

3 DB kI Dk                                                 (14) 

Where k is the SGS kinetic energy,  the SGS eddy 

viscosity, and DD the SGS eddy diffusivity. In the 

current study, sub-grid scale terms are modeled using 
“one equation eddy viscosity” model. In order to 
obtain k, one-equation eddy-viscosity model 
(OEEVM) uses the following equation: 

  . . .(μ k)k k v B D  
 

       
 

            (15) 

3/2 /c k                                                           (16) 

kμ kc k                                                         (17) 
 
2.   SST model 
In addition to LES, the shear stress Transport (SST) 
   model is utilized for turbulence modeling. The 

  SST model was developed be Menter to 
effectively blend the robust and accurate formulation 
of the    model in the near-wall region with the 
free-stream independence of the    model in the 
far field. To achieve this, the    model is 
converted into a    formulation. The governing 
equations are as follow: 
 
Turbulence Kinetic Energy: 
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Specific dissipation rate: 
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Where the coefficients of the model are a linear 
combination of the corresponding coefficients of the 
   and modified    models as: 
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The model combines the advantages of the Wilcox 
   and the Launder-Spalding    models, but 
still fails to properly predict the onset and amount of 
the flow separation from smooth surfaces, due to the 
over-prediction of the eddy-viscosity (the transport of 
the turbulence shear stress is not properly taken into 
account). The proper transport behavior can be 
obtained by a limiter added to the formulation of the 
eddy-viscosity: 

 2

,
max ,t

k

SF
 


                                             (20) 

Where F2 is blending function, which restricts the 
limiter to the wall boundary layer, as the underlying 
assumptions are not correct for free shear flow. S is 
an invariant measure of the strain rate. The blending 
functions F1 and F2 are critical to the success of the 
method. 
 
Simulation Set-up 
The total 3D computational domain and boundary 
conditions are shown in Fig 1. The disk is placed at 
the center of water tunnel. The two important non-
dimensional numbers used are the Reynolds number 
(Re) and cavitation number σ. U∞ is the free stream 
velocity which is imposed 20 m/s. we have 



 

considered different data such as σ=0.2 and 
Re=5×105. 
 
Computational Configuration 
The simulation is performed in three dimensions to 
get a cavitation shape like the experimental data. As 
the disk is not geometrically complex, we used 
structured quadrilateral meshes  and To save the 
computational cost , one quarter of the Geometry was 
considered.  Mesh size near the disk is more 
concentrated. The dimensions of the computational 
domain are considered according to the experimental 
data.  Tree kinds of grid compared with total 
400,000, 900,000, 1,500,000 cells in the domain. Fig. 
2 illustrates the mesh which is produced around the 
disk. The distance between disk and outlet is set as 
12D in order to prepare a suitable distance between 
the outlet and cavity region. 
 
Results and Discussions 
 Figures 3-5 illustrate a 3D view of the cavitating 
flow over the disk in 0.2  , 0.1, and 0.05 with LES 
turbulence model using Kunz and Zwart mass 
transfer models. Decreasing the cavitation number 
causes cavity shape shows steady behavior. Length 
and diameter of cavity increases as cavitation number 
increases. Kunz model predicts unsteady behavior of 
cavitation while the Zwart model predicts smooth and 
regular shape for the cavity.  

The contour of volume fraction is illustrated in 
Figs. 6-8 as a 2D section in the z-plane at 0.2  , 
0.1, and 0.05  respectively. Kunz, Sauer and Zwart 
mass transfer models are compared. The main 
difference between the models is their re-entrant jets. 
Length of the re-entrant jet in the Kunz model is 
shorter than the length in Sauer and Zwart models. 
Reducing the cavitation number decreases the effect 
of reentrant jet.  

Figure 9 illustrate the contour of pressure, 
pressure increases at the front of disk due to flow 
stagnation on the disk, but behind the disk, the flow 
separates at the sharp edge and the resultant drop in 
pressure creates a vaporous cavity region. A pressure 
gradient appears at the interface of vapor phase and 
liquid phase. This is created due to pressure 
difference between two phases and is normal to the 
interface. On the other hand, cavity shedding and 
condensation of cavity bubbles cause a high pressure 
variation at the end of cavity region. A sharp 
interface is visible around the cavity domain which is 
the result of using VOF model. Pressure levels in 
Sauer and Zwart models are similar. 

Three dimensionless parameters are compared 
from our simulation with those of experiments and 
analytical relations, see Tables 1-2 and Figs. 10-12. 
For validating the present results, the Richardt’s 
semi-empirical relations are selected as the non-
dimensional characteristics of the cavity. The 
relevant formulas for these characteristics are 
presented by Eqs. (21)-(23). The cavitation number is 
the main factor in the following formulas [19] 

 
0.008
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L d

d D


 

      
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   

                                  (22) 

 
0

1D DC C                                                     (23) 

L/d and D/d are the ratio of cavity length and cavity 
diameter to the cavitator diameter, respectively. 
There are good agreement between the numerical and 
experimental results in three simulated cavitation 
numbers. The numerical results have a better 
agreement with the experimental data comparing 
with the theoretical predictions. Additionally, drag 
coefficient (CD) obtained from the pressure 
distribution over the disk surface has a good accuracy 
comparing with the theoretical and experimental 
results. 
The results shows LES turbulence model with the 
Kunz mass transfer model  performs more accurately 
than     SST with Sauer, LES with Sauer and 
finally LES with Zwart. Considering the drag 
coefficient calculated for the four models, the 
minimum error is for the LES and Kunz model. 
Steady supercavity occurs at time of t=40, 60,120 
(ms) for cavitation number of σ=0.2, 0.1 respectively. 
But it occurs few second earlier in Zwart model. At 
the end of steady supercavity, two behavior are 
observed :(a) development of reverse liquid flow, (b) 
separation of very small vapor bubbles into the main 
stream because of the exit reverse flow into cavity 
cloud. 
 
Conclusion  
In the present study, a finite volume solver benefiting 
from the VOF interface capturing method , LES or k-
 SST turbulence model and Kunz, Sauer and Zwart 
mass transfer model  has been employed to capture 
unsteady cavitation and supercavitation flow behind a 
3-D disk cavitator in different cavitation numbers, 
i.e., σ=0.2, 0.1, and 0.05. The simulation is 
performed under the framework of OpenFOAM. The 
main innovation in this work is the addition of the 
Zwart mass transfer model in the OpenFOAM 
package. Our numerical results are validated with the 
experimental data and analytical relations for the 
cavity length, diameter and drag coefficient and 
suitable accuracy was observed. It is observed that 
the most accurate solutions will be obtained if we 
employ LES turbulence modeling with the Kunz 
mass transfer model. 
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Fig. 11: Comparison of the cavity diameter/cavitator 
diameter for different cavitation numbers. 

 
 
 

 
Fig. 12: Comparison of the drag coefficient for different 

cavitation number. 
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