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Abstract A modification to the nonlinear Pastor–Zie-

nkiewicz–Chan (PZC) constitutive model without any

change in the number of model parameters is introduced in

order to simulate stiffness degradation of dense sands at

dynamic loading. The PZC model is based on generalized

plasticity and was verified by good prediction of lique-

faction and undrained behavior of saturated sand. The PZC

is a robust model that can predict drained dynamic

behavior of sands, especially stiffness increase in loose

sand at reloading of dynamic loading. Yet, this model does

not show stiffness degradation of dense sand at reloading.

The modification is made through modifying the stress

memory factor, HDM, which is multiplied by the plastic

modulus, HL. This modification does not influence

reloading behavior of loose sand. The modified PZC model

is verified via results of drained cyclic tests. Two cyclic

triaxial tests on loose and dense specimens, along with two

cyclic plane strain tests on dense sand are utilized for

validation. The model simulation shows that the modified

PZC model is able to predict the stiffness degradation of

dense sand at reloading well.

Keywords Constitutive model � Dense sand � Dynamic

simulation � Reloading � Stress memory factor

1 Introduction

The generalized plasticity is a well-established nonlinear

framework of plasticity that has been formulated without

thermodynamic considerations and recourse to yield or

potential surfaces. These features bear some resemblance to

hypoplasticity, which is based on nonlinear tensorial func-

tions. Hypoplasticity provides an interesting alternative

approach to capture the complex behavior during cyclic

loadings [27]. The hypoplasticity theory was first intro-

duced by Kolymbas [15]. The general formulation of hyp-

oplasticity as nonlinear tensor functions was proposed by

Wu and Kolymbas [45]. An exhaustive review on hypo-

plasticity was given by Wu and Kolymbas [46]. This theory

was originally developed to predict the behavior of granular

materials such as sand or gravel. A major contribution was

made by Wu et al. [47] to introduce critical state into

hypoplastic model by including void ratio as an additional

state variable. Gudehus [12] presented a comprehensive

hypoplastic model and subsequently improved it using

viscous effects [13]. The hypoplastic constitutive laws were

widely used at Karlsruhe University [14, 16, 29, 42, 43, 44]

and at Grenoble University [3, 4, 7–9, 17]. Recently, the

hypoplastic models have been extended to cohesive soils.

Niemunis [28] introduced a rate-dependent visco-hypo-

plastic model for clays. Herle and Kolymbas [14] modified

the model by predicting the rate-independent behavior of

soils with low friction angles. Mašı́n [22] developed the

latter model through reducing the number of parameters

while improving fine-grained soil behavior. Other more

recent developments have also been made for hypoplastic

models. Osinov [30] used an extended hypoplastic model

for the cyclic deformation of granular soils with the purpose

of analyzing soil liquefaction around a vibrating pile toe.

Mašı́n [23] developed a hypoplasticity model for clay with
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explicitly defined asymptotic states. Fuentes et al. [11]

introduced a hypoplastic model for cyclic behavior of sand

with the incorporation of a loading surface. Zhang and

Wang [48] employed a bounding surface hypoplasticity

model for predicting post-liquefaction deformation of sat-

urated sand under undrained cyclic loading.

On the other hand, generalized plasticity theory was

introduced by Mroz and Zienkiewicz [26] and Zienkiewicz

and Mroz [51] and was extended by Zienkiewicz et al. [52]

and Pastor et al. [31–33]. This model is able to reproduce

the behavior of dense and loose sands under quasi-static

and dynamic loading. In the generalized plasticity theory,

the yield surface and plastic potential are not explicitly

defined. Instead, direction vectors are used. By applying

true laws to the direction of plastic flow, loading–unloading

directions and plastic moduli, reasonable behavior of soil

can be predicted. Thus, generalized plasticity provides a

relatively simple framework for the prediction of geoma-

terials behavior under different loading conditions [18].

Pastor, Zienkiewicz and Chan [33] developed this model to

a perfect level in p-q triaxial space. This model was utilized

for liquefaction and undrained simulation of saturated sand

successively.

Several modifications to the generalized plasticity model

have been proposed. Pastor et al. [34] implemented

anisotropy effect to the model. Sassa and Sekiguchi [37]

considered the effects of principle stress rotation, and

Bahda et al. [1] introduced a slightly different version of

the generalized plasticity model by employing a new state

parameter and double hardening rules. Zhang et al. [49]

developed generalized plasticity for use in partially satu-

rated soils by means of implicit integration method. In

other studies, shear-band-dominated process was simulated

in fully saturated and partially saturated sand by means of

dynamic strain localization and multiphase material model

with adaptation of the generalized plasticity in computa-

tional process [38, 50]. On the issue of the generalized

plasticity for unsaturated soils, Bolzon et al. [2] proposed a

model on the basis of the definition of the effective stress

tensor. This model was subsequently extended by Tamag-

nini and Pastor [39] using the same approach that was

introduced by Bolzon et al. [2]. Later, modification was

done by Santagiuliana and Schrefler [36]. Ling and Liu

[18] extended the generalized plasticity to include pressure

dependency as well as densification behavior of sand under

monotonic and cyclic loading. Merodo et al. [10] presented

an enhanced generalized plasticity that is able to reproduce

damage phenomena in geomaterials. Ling and Yang [19]

also extended this model using a nonlinear critical state

line. They modified the plastic modulus, loading vectors

and plastic flow direction vectors, which are dependent on

the state parameter. This model includes 12 and 17 con-

stants for simulation of monotonic and dynamic loading,

respectively. Tonni et al. [41] developed the basic gen-

eralized plasticity by introducing a state-dependent dilat-

ancy and adjusting plastic modulus via developments on

isotropic compression and modeling softening of dense

sands. The latter work was done with the aim of improving

the prediction of silty soil behavior. Other developments on

this issue were employed by Cola and Tonni [5] and Cola

et al. [6]. Liu and Ling [20] used the modified generalized

plasticity for soil-structure interface subjected to dynamic

loading. The critical state soil mechanics was modified to

describe soil-particle breakage and also degradation during

cyclic shearing. Mira et al. [25] introduced contribution of

hyperelastic formulation to explain reversible component

of the soil response instead of hypoelastic formulation that

was introduced in the original model. Manzanal et al. [21]

modified the generalized plasticity by reformulation of

flow rule, loading–unloading discriminating direction and

plastic modulus, which are dependent on state parameter.

Loose sand and dense sand show different behaviors at

reloading stage. Loose sand shows stiffness increase at

reloading. This phenomenon has been considered at the

PZC model. Yet, dense sand sample reveals stiffness

decrease and dilative behavior at reloading because of high

relative density. PZC model does not show this behavior,

and a modification seemed necessary. The modification

proposed in this paper does not increase the number of

model parameters despite most of previous modifications

in which model parameters’ increase made it more difficult

to use. The present paper describes this modification.

Drained condition is assumed at the simulations.

2 Pastor–Zienkiewicz–Chan model description [18, 33]

The PZC model is defined in p-q triaxial space. This model

is formulated in p-q-h space and subsequently is extended

to three-dimensional Cartesian coordinate system that is

appropriate for model implementation and numerical sim-

ulations. This model requires seven parameters at mono-

tonic loading, one of them, a, being constant, and ten

parameters at dynamic loading.

The relation between the increments of stress and strain

for a material can be expressed as:

_r ¼ Dep : _e ð1Þ

where _r, _e and Dep represent stress rate, strain rate and

elasto-plastic tensor, respectively. The elasto-plastic tensor

in generalized plasticity is as follows:

Dep ¼ De �
De : ngL=U : nT : De

HL=U þ nT : De : ngL=U

ð2Þ

where n, ngL=U and HL=U represent loading direction vector,

plastic flow direction vector under loading and unloading
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condition, and plastic modulus for loading and unloading,

respectively.

The elastic behavior is Hoek elasticity that defines the

shear and bulk moduli (G and K), which are dependent on

the stress level (p). The mean effective stress (p) is nor-

malized by atmospheric pressure (pa). Shear modulus and

bulk modulus are expressed as:

G ¼ G0

p

pa

� �
ð3aÞ

K ¼ K0

p

pa

� �
ð3bÞ

where G0 and K0 represent shear and bulk modulus number

and pa atmospheric pressure that is equal to 101.325 kPa. P

represents the mean stress that is expressed as p = I1/3. I1

is the first stress invariant. In ðp; q; hÞ space, the relations

between stress rate and elastic strain rate are: _q ¼ 3G _es and

_p ¼ K _ev, yet, for numerical aims, it is better to use elastic

tensor in Cartesian space.

Pastor et al. [32] adopted the following generalized

expression for stress–dilatancy relationship:

dg ¼
dep

v

dep
s

¼ 1þ að ÞðMg � gÞ ð4Þ

where dep
v and dep

s represent incremental plastic volumetric

and plastic deviatoric strains, respectively. Mg is the slope

of the critical state line on p-q plane, gð¼ q=pÞ is the stress

ratio, and a is a model parameter. Mg is dependent on the

angle of internal friction at the critical state, /c, and Lode’s

angle, h:

Mg ¼
6 sin /c

3� sin /c sin 3h
ð5Þ

sin 3h ¼ 3
ffiffiffi
3
p

2

j3ffiffiffiffi
j3
2

p ð6Þ

where j2 and j3 represent second and third deviatoric stress

invariants, respectively.

In PZC model, yield and potential surfaces are not

defined explicitly. Instead, gradient vectors of these sur-

faces are used. Gradient vector of yield surface is known as

loading direction vector, i.e., n, and gradient vector of

potential surface as plastic flow direction vector, ng.The

flow rule is assumed to be nonassociated so the afore-

mentioned two vectors are not same:

n ¼ of

op
;
of

oq
;
of

oh

� �
¼ ðdf ; 1;�qMf cos 3h=2Þ ð7Þ

ng ¼
og

op
;
og

oq
;
og

oh

� �
¼ ðdg; 1;�qMg cos 3h=2Þ ð8Þ

where f and g represent yield and plastic potential surfaces,

respectively, Mf is a model parameter and df ¼
1þ að ÞðMf � gÞ.

By choosing Mf = Mg, an associated plasticity model

can be produced. Pastor et al. [33] suggested using the

approximate relation Mf/Mg = Dr in order to estimate Mf in

granular materials. It is worth noting that Mf/Mg ratio

should be constant.

The plastic modulus during virgin loading is as follows:

HL ¼ H0pHf Hv þ Hsf g ð9Þ

Hf ¼ ð1� g
�
gf Þ4 ð10Þ

gf ¼ 1þ 1=að ÞMf ð11Þ

Hv ¼ 1� g
�

Mg ð12Þ

Hs ¼ b0b1 exp �b0nð Þ ð13Þ

where HL represents the plastic modulus in loading, H0 the

plastic modulus number, and Hf , Hv and Hs the plastic

coefficients. gf is the stress ratio parameter. b0 and b1 are

material model constants, and n is the accumulated plastic

deviatoric strain: n ¼
R

dep
s

�� ��.
The reloading plastic modulus HL is given by:

HL ¼ H0pHf Hv þ Hsf gHDM ð14Þ

where HDM is a discrete memory factor defined by:

HDM ¼
fmax

f

� �c

ð15Þ

where c is a model constant that has to be calibrated to

provide the best prediction of loading–reloading

experiments. c changes at the range of 1.0–15.0. f is a

mobilized stress function defined by:

f ¼ p 1� a
1þ a

g
Mf

� ��1=a

ð16Þ

Therefore, the discrete memory factor, HDM, is unity

during virgin loading. Reloading takes place by a higher

plastic modulus with respect to the virgin loading. As

observed in drained cyclic triaxial experiments by Pradhan

et al. [35], dense sands show lower stiffness at reloading

rather than at virgin loading. The present model is not able

to reveal this phenomenon because HDM is always equal or

more than unity. To take into account stiffness decrease in

dense sand at reloading, it is useful to define HDM somehow

be able to distinguish between loose and dense state and

assume for to be in the range of 0:0\HDM� 1:0. For this

aim, c in Eq. 15 should be a negative value. Plastic

modulus, HL, in Eq. 14 is decreased at reloading with

respect to virgin loading by multiplying the new HDM by
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HL. The proposed modification will be discussed in more

detail in the next section.

Plastic modulus during unloading is defined by Hu as

follows:

Hu ¼ Hu0 Mg

�
gu

� �cu for Mg

�
gu

�� ��[ 1 ð17aÞ

Hu ¼ Hu0 for Mg

�
gu

�� ��� 1 ð17bÞ

where cu is a model constant, Hu0 is unloading plastic

modulus number, and gu is the stress ratio from which

unloading takes place. To determine the direction of plastic

flow produced during unloading, it should be noted that

irreversible strains are of a contractive (densifying) nature.

The direction ngu can thus be provided by:

ngu ¼ np
gu; n

q
gu; n

h
gu

	 
T

¼ n
p
gL

��� ���; nq
gL; n

h
gL

	 
T

ð18Þ

Indices u and L indicate unloading and loading

conditions. As observed above, volumetric component of

ngu, i.e., n
p
gL

��� ���, is always positive, which is indicative of the

contractive nature of volumetric plastic strain (compression

is assumed positive). nu is the same as n vector in loading:

nu ¼ np
u; n

q
u; n

h
u

� �T¼ ðnp
L; n

q
L; n

h
LÞ

T ð19Þ

2.1 Transforming PZC model from p; q; h space

to Cartesian 3D space [53]

To implement the constitutive models simply, it is useful to

transform the model to the general 3D space that requires

formulation of vectors n and ng at the latter space. The

transformation procedure of the vector ng is the same as n,

but g and Mg are used instead of f and Mf, respectively. n

can be expressed in terms of I1, J2 and h in the below form:

n ¼ of

or
¼ of

op

op

or
þ of

oq

oq

or
þ of

oh
oh
or

¼ of

oI1

oI1

or
þ of

oJ2

oJ2

or
þ of

oh
oh
or

ð20Þ

After some rearrangements, the expression for n is:

n ¼ B1n1 þ B2n2 þ B3n3

¼ of

oI1

oI1

or
þ of

o
ffiffiffiffiffi
J2

p � tan 3hffiffiffiffiffi
J2

p of

oh

� �
o
ffiffiffiffiffi
J2

p

or

þ
ffiffiffi
3
p

2 cos 3h
1

J
3=2
2

oJ3

or
of

oh
ð21Þ

Component description of vector n is:

n1 ¼
oI1

or
¼ 1; 1; 1; 0; 0; 0f gT ð22aÞ

n2 ¼
o
ffiffiffiffiffi
J2

p

or
¼ 1

2
ffiffiffiffiffi
J2

p s11; s22; s33; 2s12; 2s13; 2s23f gT ð22bÞ

n3 ¼
oJ3

or
¼

s22s33 � s2
23 þ J2=3

s33s11 � s2
31 þ J2=3

s11s22 � s2
12 þ J2=3

2 s13s12 � s11s23ð Þ
2 s12s23 � s22s13ð Þ
2 s12s23 � s22s13ð Þ

2
6666664

3
7777775

ð22cÞ

B1 ¼
of

oI1

¼ df

3
ð23aÞ

B2 ¼
of

o
ffiffiffiffiffi
J2

p � tan 3hffiffiffiffiffi
J2

p of

oh

� �
¼

ffiffiffi
3
p
þ

ffiffiffi
3
p

2
Mf sin 3h ð23bÞ

B3 ¼
ffiffiffi
3
p

2 cos 3h
1

J
3=2
2

of

oh
¼ � 3

4

Mf

J2

ð23cÞ

sijð¼ rij � pdijÞ is deviator stress while dij is Kronecker

delta.

3 Proposed modification

Stress memory factor, HDM, which is multiplied by plastic

modulus HL, shows stress history effect at reloading stage

in the PZC model. HDM is defined by Eqs. 15 and 16.

Equation 16 defines the mobilized stress value by f. As it

was discussed in the previous section, to take into account

stiffness decrease at reloading of dense sands, it is neces-

sary for HDM to be at the range of 0:0\HDM� 1:0, and this

calls for c to be negative, while c has positive value in the

PZC model. HDM value will be discussed in more detail in

the following section.

At the PZC model, the maximum value of f is saved at

the end of virgin loading and is used for HDM calculation at

reloading. HDM is equal to 1.0 at virgin loading. At the

beginning of reloading, when f\fmax, HDM exceeds unity

according to Eq. 15, yet when f increases and its value

goes above fmax, HDM decreases to unity. Figure 1 shows

HDM in the PZC model versus shear strain at the first

reloading of a drained dynamic triaxial test simulation in

dense sand.

Loose sands reveal densifying nature, and plastic mod-

ulus increases during drained dynamic reloading. There-

fore, defined HDM in the PZC model is more appropriate

for loose sands. Dense sand becomes softer and has lower

stress–strain slope at reloading compared with slope at

virgin loading, so defined HDM in the PZC model does not

show the stiffness degradation behavior.

To subject stiffness degradation of dense sand at

reloading, HDM value must be between 0.0 and 1.0, further,

and a negative value is required for c. An expression is

needed to be multiplied by c in Eq. 15 to change the power

of fmax=fð Þ to a negative value. This expression must be

capable of distinguishing loose and dense state of sand. A
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new model constant, c0; is preferred to replace c. Hence, the

following relation for modified HDM is introduced:

HDM ¼
fmax

f

� �c0 0:5�Mf=Mgð Þ
ð24Þ

Taking this expression and possible Mf=Mg values for

sands into account, the range of c changes from 1.0 * 15.0

at the PZC model to 1.0 * 400.0 at the modified PZC

model. Pastor et al. [8] reported that Mf=Mg ratio could be

equal to relative density ðDrÞ. The expression

0:5�Mf=Mg

� �
in Eq. 24 shows loose or dense state of

sand. Common range for the relative density of granular

materials is from 0.3 to 0.7. Therefore, 0.5 is taken as the

average relative density and Mf=Mg as the relative density

of sand Drð Þ. According to the above assumption, when a

dense sand is simulated, the expression 0:5�Mf=Mg

� �
is

negative and by multiplying it by c0, the power of Eq. 24 is

negative; therefore, HDM will be lower than unity, and by

multiplying HDM by HL, in Eq. 14, plastic modulus

decreases at reloading. When loose sand is simulated, the

expression 0:5�Mf=Mg

� �
is positive and the power of

Eq. 24 is also positive. Therefore, HDM will be equal to or

more than unity, which is indicative of the fact that the

stiffness increases for loose sand at reloading.

c0 0:5�Mf=Mg

� �
value (in the modified PZC model) for

loose sand could be equal to c (in the PZC model) via

calibration in the PZC model. As observed, the proposed

modification only modifies dynamic behavior of dense

sand.

Using the modified PZC model, at the beginning of dense

sand reloading, mobilized stress ðfÞ value is lower and

therefore, modified HDM should be a positive value lower

than unity. When mobilized stress value increases by loading

progress and exceeds the previous nmax value, HDM increases

and reaches its maximum value, i.e., 1.0. Figure 2 shows

modified HDM versus shear strain at the first reloading of a

drained dynamic triaxial test simulation in dense sand.

The proposed modification shows better agreement with

the experimental results. Four simulations of dynamic

loading will be introduced in the following sections.

4 Simulation of drained cyclic test by the PZC

and modified PZC models

Two drained dynamic triaxial tests, one by Tatsuaka et al.

[40] on loose sand and another by Pradhan et al. [35] on

dense sand, as well as two drained dynamic plane strain

tests on dense sand by Masuda et al. [24] are simulated

using the PZC model and the modified PZC model. Sim-

ulations of loose sand test by two models reveal the same

results. Indeed, the proposed scheme does not promote

simulation of loose sand; yet, it produces better results with

respect to the PZC model for dense sand.

4.1 Loose sand

4.1.1 Simulation of Tatsuoka and Ishihara tests

Tatsuoka and Ishihara [40] conducted a series of drained

cyclic triaxial tests on Fuji river sand. Void ratio at the

Fig. 2 Modified HDM versus shear strain at the extension reloading of

dense sand

Fig. 1 HDM versus shear strain at extension reloading of dense sand

using the PZC model
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beginning of the test was 0.74, which indicates relatively

loose sand. Confining pressure was 200 kPa. Shear strain

definition in this test is cð¼ ea � erÞ where ea is axial strain

and er is radial strain. Model parameters at the PZC model

are presented in Table 1.

Figure 3 illustrates stress–strain curve in drained cyclic

triaxial test, and Fig. 4 illustrates stress–strain curve by

simulation without any modifications. Mf=Mg is equal 0.43

at this simulation, which indicates a relatively loose sand in

terms of the proposed modification scheme. Power value of

HDM equation at the PZC model (c) by calibration is equal

to 1.0 to fit the experimental results best and at the modi-

fied model is: c0 0:5�Mf=Mg

� �
¼ 0:07c0. By assuming

14.0 for c0, c0 0:5�Mf=Mg

� �
becomes 1.0 and reloading

curve best fits to the experiment (Fig. 3), i.e., the modifi-

cation method does not work for sands with Mf=Mg value

lower than 0.5.

4.2 Dense sand

4.2.1 Simulation of Pradhan et al. tests

Pradhan et al. [35] carried out a series of cyclic constant-p

triaxial tests on saturated Toyoura sand under drained

condition. P represents the mean effective stress. The

physical properties of Toyoura sand are Gs ¼ 2:64;D50 ¼
0:16 mm; Uc ¼ 1:46; emax ¼ 0:977; emin ¼ 0:605, and fine

contents less than 74 lm are not included. The mean

effective stress value is 98.1 kPa. Shear strain at this test is:

cð¼ ea � erÞ. The selected test number for simulation is

CYCD09. Initial void ratio is e0 ¼ 0:653, which indicates

dense sand. Parameters of the simulation are presented at

Table 2.

Figure 5 shows the experimental results of the test.

Figure 6 shows two simulations of this test, one by the PZC

model and another by the modified PZC model. The

modified model illustrates lower stiffness at reloading of

compression and extension compared with the virgin

loading. This is because HDM is lower than unity at

reloading compared with its value at virgin loading and

consequently plastic modulus is lower at reloading com-

pared with plastic modulus at virgin loading. The simula-

tion by the PZC model does not show this behavior. c0 is

taken 30.0 at the modified model. Other parameters of the

modified PZC model are the same as for the PZC model.

4.2.2 Simulation of Masuda et al. tests

Masuda et al. [24] studied cyclic stress–strain behavior of

dense sand in a conventional plane strain apparatus. They

used Toyoura sand for the plane strain tests. The mean

grain size, D50, is 0.162 mm, the uniformity coefficient,

Uc, is 1.46, the minimum void ratio, emin, is 0.612, the

maximum void ratio, emax, is 0.973, and the specific

gravity, Gs, is 2.64. Specimens were prepared by pluviating

air-dried sand particles. A series of cyclic loading tests

were conducted at a constant pressure rh, where rh is

Table 1 Parameters of the PZC model and the modified PZC model

used for simulation of drained cyclic triaxial test

K0 G0 Mf Mg H0 H0u b0 b1 a c0a c0b cu

2e4 8e3 0.6 1.4 8e2 2e3 5.0 0.2 0.45 1.0 14.0 10

a PZC only
b Modified PZC only

Fig. 3 Results of drained cyclic triaxial test for loose sand, stress

ratio versus shear strain (experiments from Tatsuoka and Ishihara

[40])

Fig. 4 Simulation of drained cyclic triaxial test on loose sand, stress

ratio versus shear strain, by the PZC model and the modified PZC

model (the curves of two simulations overlap on each other)

348 Acta Geotechnica (2014) 9:343–353

123

Author's personal copy



horizontal pressure. Some of specimens were consolidated

isotropically with an initial stress state rh ¼ rv ¼
78:5 kPa, and others were consolidated anisotropically

with an initial stress state of rh ¼ 78:5 kPa and

rv ¼ 29:5kPa. The specimen’s dimensions are 20 cm at

Table 2 Parameters of the PZC model and the modified PZC model used for simulation of drained cyclic triaxial test

K0 G0 Mf Mg H0 H0u b0 b1 a ca c0b cu

8.5e4 2.5e4 0.68 1.25 3e3 5e3 7.0 0.15 0.45 1.0 30.0 15

a PZC only
b Modified PZC only

Fig. 5 Drained constant-p cyclic triaxial test on dense sand, stress

ratio versus shear strain (experiments from Pradhan et al. [35])

Fig. 7 The meshing and boundary conditions for simulation of plane

strain test

Fig. 6 Simulation of the drained cyclic triaxial test on dense sand by

the PZC model and the modified PZC model, stress ratio versus shear

strain

Fig. 8 Cyclic loading test on isotropically consolidated specimen,

case 5–6, relationship between sin umob ¼ ðrv � rhÞ=ðrv þ rhÞ and

shear strain c ¼ ev � eh, initial state: rh ¼ rv ¼ 78:5 kPa and e0 ¼
0:654 (experiment from Masuda et al. [24])
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height, rv direction, 16 cm at length and 8 cm at width, rh

direction. The results are presented in terms of mobilized

friction angle, sin umob ¼ ðrv � rhÞ=ðrv þ rhÞ, and shear

strain, ¼ ev � eh.

Two cyclic plane strain tests (cases 5–6 and 2–5) are

simulated and compared with the experiments. Both the

modified PZC model and the PZC model are implemented

in a finite difference code. A finite difference mesh is

constructed by 15 zones at height and eight zones at width.

The meshing system, including boundary conditions, is

illustrated in Fig. 7. The model is fixed at the end bottom

nodes along vertical direction. A constant horizontal

pressure, 78.5 kPa for isotropically consolidated specimen

(case 5–6) and 29.5 kPa for anisotropically consolidated

specimen (case 2–5), is applied to the left and right nodes

during loading. A constant rate of velocity, 3E - 8 m/time

step, is maintained at the top nodes along vertical direction

toward the bottom.

The model parameters for the modified PZC model and

the PZC model in the two cases, extracted via calibration of

the experimental results, are presented in Table 3.

The results of cyclic tests for cases 5–6 and 2–5 are

shown in Figs. 8 and 10, respectively. Case 5–6 was con-

solidated isotropically with the initial state: rh ¼ rv ¼
78:5 kPa and e0 ¼ 0:654, and case 2–5 was consolidated

anisotropically with the initial state: rh ¼ 78:5 kPa, rv ¼

Table 3 Parameters of the modified PZC and the PZC model used for simulations of drained cyclic plane strain tests

Cases K0 G0 Mf Mg H0 H0u b0 b1 a ca
c
0 b cu

Cases 5–6 40e3 30e3 0.9 1.2 4e3 1e4 4.0 0.1 0.45 1.0 2.0 1.0

Cases 2–5 42e3 43e3 0.95 1.1 1.5e3 1e4 10.0 0.1 0.45 1.0 1.0 15.0

a PZC only
b Modified PZC only

Fig. 9 Simulations of cyclic loading test on isotropically consoli-

dated specimen, case 5–6, relationship between sin umob ¼
ðrv � rhÞ=ðrv þ rhÞ and shear strain ¼ ev � eh, a simulation by the

modified PZC model, b simulation by the PZC model

Fig. 10 Cyclic loading test on anisotropically consolidated specimen,

case 2–5, relationship between sin umob ¼ ðrv � rhÞ=ðrv þ rhÞ and

shear strain c ¼ ev � eh, initial state:rh ¼ 78:5kPa,rv ¼ 29:5kPa and

e0 ¼ 0:659 (experiment from Masuda et al. [24])
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29:5 kPa and e0 ¼ 0:659. Calculation of relative density

for both tests reveals high relative density values that

indicate dense specimens. The calibrated values of Mf and

Mg and their ratio also indicate dense state.

Both cyclic tests show stiffness degradation at reloading

(Figs. 8, 10). As observed, simulation curves by the mod-

ified PZC model present stiffness decrease at the reloading

stages of compression and extension in Figs. 9 and 11. c is

taken 1.0 for the PZC model in both cases. Therefore, stress

memory factor becomes HDM ¼ fmax=fð Þc¼ fmax=fð Þ. This

indicates that HDM always exceeds unity and plastic mod-

ulus, HL, captures high values at reloading stages. Simu-

lation curves by the PZC model in Figs. 9b and 11b

represent this trend. c0 is taken 2.0 for case 5–6 and 1.0 for

case 2–5. Modified stress memory factor becomes HDM ¼
fmax=fð Þc

0 0:5�Mf=Mgð Þ¼ fmax=fð Þ�0:5
for case 5–6 and

HDM ¼ fmax=fð Þ�0:36
for case 2–5. It can be inferred that

HDM will change at the range of 0:0\HDM� 1:0, and

consequently, plastic modulus takes lower values com-

pared with its values at the PZC model. The slopes of the

reloading curves tend to decrease compared with the slopes

at virgin loading as can be seen in Figs. 9a and 11a.

5 Conclusions

The PZC model is a suitable constitutive model based on

the generalized plasticity and the concept of the yield

surface gradient vectors. This model has been mainly used

with the aim of simulating saturated sand under undrained

condition. In order to improve its prediction for the

dynamic behavior of dense sand, a modification is intro-

duced by considering stiffness degradation under dynamic

loading and drained condition.

The PZC model includes a stress memory factor HDMð Þ
that considers only stiffness increase behavior at reloading.

This model needs to take the stiffness decrease in dense

sand at reloading stages of dynamic loading into account.

A simple modification to HDM is made to simulate the

stiffness degradation of dense sand at reloading. The pro-

posed modification does not increase the number of model

parameters.

Two cyclic triaxial tests on dense and loose sand and

two relatively large-scale plane strain cyclic tests on dense

sand are simulated by the PZC model and the modified

PZC model. It is indicated that the proposed modification is

useful for simulating cyclic behavior of dense sand. Stress–

strain curves of all modified simulations present stiffness

degradation of dense sand at reloading stages of com-

pression and extension as well.
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