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The Bezier curves are presented to estimate the solution of the linear Fredholm integral equation of the second kind. A direct
algorithm for solving this problem is given. We have chosen the Bezier curves as piecewise polynomials of degree n and determine
Bezier curves on [0, 1] by n + 1 control points. Numerical examples illustrate that the algorithm is applicable and very easy to use.

1. Introduction

Integral equations are often involved in the mathematical
formulation of physical phenomena, and they can be encoun-
tered in various fields of science such as physics [1], biology
[2], and engineering (see [3, 4]). But we can also use it
in numerous applications, such as control, biomechanics,
elasticity, economics, electrical engineering, electrodynam-
ics, electrostatics, fluid dynamics, game theory, heat and
mass transfer, medicine, oscillation theory, plasticity, and
queuing theory [5]. Fredholm integral equations of the
second kind are shown in studies which include airfoil
theory [6], elastic contact problems (see [7, 8]), fracture
mechanics [9], combined infrared radiation, and molecular
conduction [10]. Many different basic functions have been
used to estimate the solution of integral equations, such as
orthogonal functions and wavelets (see [11, 12]). Depending
on the structure, the orthogonal functions may be widely
classified into three families [13]. The first includes sets of
piecewise constant orthogonal functions (e.g., Walsh, block-
pulse, Haar, etc.). The second consists of sets of orthogonal
polynomials (e.g., Laguerre, Legendre, Chebyshev, etc.). The
third are the widely used sets of sine-cosine functions
in the Fourier series. Fredholm integral equations of the
second kind are much more difficult to solve than ordinary

differential equations. Therefore, many authors have tried
various transform methods to overcome these difficulties
(see [11, 12]). Recently, hybrid functions have been applied
extensively for solving differential equations or systems, and
they proved to be a useful mathematical tool. The pioneering
work in system analysis via hybrid functions was led in [14,
15], who first derived an operational matrix for the integrals
of the hybrid function vector and paved the way for the
hybrid function analysis of the dynamic systems. But they
derived the matrix of small order, and the calculations are
not enough to achieve high accuracy. Hsiao [16] presented
the properties of hybrid functions which consist of block-
pulse functions plus the Legendre polynomials. Based upon
some useful properties of hybrid functions, integration of
the cross product, a special product matrix and a related
coefficient matrix with optimal order are applied to solve
these integral equations. The main characteristic of this
technique is to convert an integral equation into an algebraic
one. Maleknejad and Mahmoudi [17] used a simple base, a
combination of block-pulse functions on [0, 1] and the Taylor
polynomials, that is called the hybrid Taylor block-pulse
functions, to solve the linear Fredholm integral equation of
the second kind. One of the advantages of this method is
that the coefficients of expansion of each function in this base
could be computed directly without estimation.
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Consider the following integral equation:

𝑦 (𝑡) = ∫
1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑥 (𝑡) , (1)

where 𝑥(𝑡) ∈ 𝐿2[0, 1), 𝑘(𝑡, 𝑠) ∈ 𝐿2([0, 1) × [0, 1)), 𝑦(𝑡) is an
unknown function.

In this paper, we discuss a technique similar to that used
in [18] for solving integral equations by using the Bezier
control points. There are many papers and books that deal
with the Bezier curves or surface techniques. Harada and
Nakamae [19] and Nürnberger and Zeilfelder [20] used the
Bezier control points in approximated data and functions.
Zheng et al. [21] proposed the use of the control points of
the Bernstein-Bezier form for solving differential equations
numerically, and also Evrenosoglu and Somali [18] used this
approach for solving singular-perturbed two-point boundary
value problems. The Bezier curves are used in solving partial
differential equations; besides, Wave and Heat equations are
solved in Bezier form (see [22–25] ). Wu [26] presented the
least squares method for solving partial differential equations
on arbitrary polygon domain by the Bezier control points.
Wu [26] used triangular Bezier patches of degree 𝑛 with
𝐶
𝑘 continuity to approximate the exact solution of partial

differential equations. Bezier curves are used for solving
dynamical systems (see [27]), also the Bezier control points
method is used for solving delay differential equation (see
[28]). Some other applications of the Bezier functions and
control points are found in ([29–31]), that are used in
computer-aided geometric design and image compression.

The use of the Bezier curves for solving Fredholm integral
equations of the second kind is a novel idea. Although the
method is very easy to be used and straightforward, the
obtained results are satisfactory (see the numerical results).

We suggest a technique similar to that used in [28] for
solving Fredholm integral equations of the second kind. The
current paper is organized as follows.

Presented algorithm will be stated in Section 2. In
Section 3, the convergence analysis will be presented. Some
numerical examples are solved in Section 4 which show the
efficiency and reliability of the method. Finally, Section 5 will
give a conclusion in brief.

2. The Algorithm

Our strategy is to use Bezier curves to approximate the
solutions 𝑦(𝑡) by V(𝑡) where V(𝑡) is given below. Define the
Bezier polynomial of degree 𝑛 that approximates the values
of 𝑦(𝑡) over the interval [𝑡

0
, 𝑡
𝑓
] as follows:

V (𝑡) =
𝑛

∑
𝑟=0

𝑎
𝑟
𝐵
𝑟,𝑛
(
𝑡 − 𝑡
0

ℎ
) , (2)

where ℎ = 𝑡
𝑓
− 𝑡
0
;

𝐵
𝑟,𝑛
(
𝑡 − 𝑡
0

ℎ
) = (

𝑛

𝑟
)
1

ℎ𝑛
(𝑡
𝑓
− 𝑡)
𝑛−𝑟

(𝑡 − 𝑡
0
)
𝑟 (3)

is the Bernstein polynomial of degree 𝑛 over the interval
[𝑡
0
, 𝑡
𝑓
], and 𝑎

𝑟
is the control point (see [21]). By substituting

(2) in (1), one may define 𝑅
1
(𝑡) for 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] as follows:

𝑅
1
(𝑡) = V (𝑡) − (∫

𝑡𝑓

𝑡0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠 + 𝑥 (𝑡)) . (4)

In Section 3, the convergence of this method is proven by
Bezier curves when the degree of the approximate solution,
𝑛, tends to infinity.

Now, we define the residual function over the interval
[𝑡
0
, 𝑡
𝑓
] as follows:

𝑅 = ∫
𝑡𝑓

𝑡0

(
󵄩󵄩󵄩󵄩𝑅1 (𝑡)

󵄩󵄩󵄩󵄩
2

) 𝑑𝑡, (5)

where ‖ ⋅ ‖ is the Euclidean norm. Our aim is to solve the
following problem over the interval [𝑡

0
, 𝑡
𝑓
]:

min 𝑅

s.t. V (𝑡
0
) = V
0
.

(6)

When the minimization problem (6) is posed, the condition
V(𝑡
0
) = V
0
is equivalent to fix the first control point 𝑎

0
= V
0
.

The mathematical programming problem (6) can be solved
by many subroutine algorithms, and we used Maple 12 to
solve this optimization problem.

3. Convergence Analysis

In this section without the loss of generality, we analyze
the convergence of the control-point-based method when
applied to the integral equation (1) with the time interval
[0, 1]. So, the following problem is considered:

𝐿 (𝑡, 𝑦 (𝑡)) = 𝑦 (𝑡) − ∫
1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 = 𝑥 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑦 (0) = 𝑦
0
= 𝑎,

(7)

where 𝑎 is a given real number and 𝑘(𝑡, 𝑠) ∈ 𝐿2([0, 1) × [0, 1))
and 𝑥(𝑡) ∈ 𝐿2[0, 1) are known functions for 𝑡 ∈ [0, 1].

Lemma 1. For a polynomial in Bezier form

𝑦 (𝑡) =

𝑛1

∑
𝑖=0

𝑎
𝑖,𝑛1
𝐵
𝑖,𝑛1
(𝑡) , (8)

we have

∑
𝑛1

𝑖=0
𝑎
2

𝑖,𝑛1

𝑛
1
+ 1

≥
∑
𝑛1+1

𝑖=0
𝑎
2

𝑖,𝑛1+1

𝑛
1
+ 2

≥ ⋅ ⋅ ⋅ ≥
∑
𝑛1+𝑚1

𝑖=0
𝑎
2

𝑖,𝑛1+𝑚1

𝑛
1
+ 𝑚
1
+ 1

, (9)

where 𝑎
𝑖,𝑛1+𝑚1

is the Bezier coefficient of 𝑦(𝑡) after being degree-
elevated to degree 𝑛

1
+ 𝑚
1
.

Proof . See [21].
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The convergence of the approximate solution could be
done in degree raising of the Bezier polynomial approxima-
tion.

Theorem 2. If the integral equation (7) has a unique 𝐶1
continuous solution 𝑦, then the approximate solution obtained
by the control-point-based method converges to the exact
solution 𝑦 as the degree of the approximate solution tends to
infinity.

Proof. Given an arbitrary small positive number 𝜖 > 0, by
the Weierstrass Theorem (see [32]), one can easily find poly-
nomial 𝑄

1,𝑁1
(𝑡) of degree 𝑁

1
such that ‖𝑄

1,𝑁1
(𝑡) − 𝑦(𝑡)‖

∞
≤

𝜖/16, where ‖ ⋅ ‖
∞

stands for the 𝐿
∞
-norm over [0, 1]. In

particular, we have
󵄩󵄩󵄩󵄩󵄩
𝑎 − 𝑄

1,𝑁1
(0)
󵄩󵄩󵄩󵄩󵄩∞
≤
𝜖

16
. (10)

In general,𝑄
1,𝑁1
(𝑡) does not satisfy the boundary conditions.

After a small perturbation with constant polynomial 𝛼, for
𝑄
1,𝑁1
(𝑡), we can obtain polynomial 𝑃

1,𝑁1
(𝑡) = 𝑄

1,𝑁1
(𝑡) + 𝛼

such that 𝑃
1,𝑁1
(𝑡) satisfies the boundary condition 𝑃

1,𝑁1
(0) =

𝑎. Thus, 𝑄
1,𝑁1
(0) + 𝛼 = 𝑎. By using (10), one has

󵄩󵄩󵄩󵄩󵄩
𝑎 − 𝑄

1,𝑁1
(0)
󵄩󵄩󵄩󵄩󵄩∞
= ‖𝛼‖∞ ≤

𝜖

16
. (11)

We have
󵄩󵄩󵄩󵄩󵄩
𝑃
1,𝑁1
(𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞
=
󵄩󵄩󵄩󵄩󵄩
𝑄
1,𝑁1
(𝑡) + 𝛼 − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
1,𝑁1
(𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞
+ ‖𝛼‖∞ ≤

𝜖

8
<
𝜖

5
.

(12)

Now, let

𝐿𝑃
𝑁
(𝑡) = 𝐿 (𝑡, 𝑃

1,𝑁1
(𝑡))

= 𝑃
1,𝑁1
(𝑡) − ∫

1

0

𝑘 (𝑡, 𝑠) 𝑃
1,𝑁1
(𝑠) 𝑑𝑠 = 𝑥 (𝑡)

(13)

for every 𝑡 ∈ [0, 1]. Thus, for𝑁 ≥ 𝑁
1
, one may find an upper

bound for the following residual:
󵄩󵄩󵄩󵄩𝐿𝑃𝑁 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩∞ =
󵄩󵄩󵄩󵄩󵄩
𝐿 (𝑡, 𝑃

1,𝑁1
(𝑡)) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩
𝑃
1,𝑁1
(𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩󵄩∞

+ ∫
1

0

󵄩󵄩󵄩󵄩󵄩
𝑘 (𝑡, 𝑠) 𝑃

1,𝑁1
(𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶
1
(
𝜖

5
+
𝜖

5
) < 𝐶

1
𝜖,

(14)

where 𝐶
1
= 1 + ‖𝑘(𝑡, 𝑠)‖

∞
is a constant.

Since the residual 𝑅(𝑃
𝑁
) := 𝐿𝑃

𝑁
(𝑡) − 𝑦(𝑡) can be

considered as a polynomial because if it is not a polynomial,
we can use the Taylor series for it, we can represent the
statement 𝑅(𝑃

𝑁
) by a Bezier form. Thus, we have

𝑅 (𝑃
𝑁
) :=

𝑚1

∑
𝑖=0

𝑑
𝑖,𝑚1
𝐵
𝑖,𝑚1
(𝑡) . (15)

Then, by Lemma 1, there exists an integer𝑀(≥ 𝑁) such that
when𝑚

1
> 𝑀, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑚
1
+ 1

𝑚1

∑
𝑖=0

𝑑
2

𝑖,𝑚1
− ∫
1

0

(𝑅 (𝑃
𝑁
))
2

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜖, (16)

which gives

1

𝑚
1
+ 1

𝑚1

∑
𝑖=0

𝑑
2

𝑖,𝑚1
< 𝜖 + ∫

1

0

(𝑅 (𝑃
𝑁
))
2

𝑑𝑡 ≤ 𝜖 + 𝐶
2

1
𝜖
2
. (17)

Suppose that 𝑦(𝑡) is an approximated solution of (7) obtained
by the control-point-based method of degree𝑚

2
(𝑚
2
≥ 𝑚
1
≥

𝑀). Let

𝑅 (𝑡, 𝑦 (𝑡)) = 𝐿 (𝑡, 𝑦 (𝑡)) − 𝑦 (𝑡)

=

𝑚2

∑
𝑖=0

𝑐
𝑖,𝑚2
𝐵
𝑖,𝑚2
(𝑡) , 𝑚

2
≥ 𝑚
1
≥ 𝑀, 𝑡 ∈ [0, 1] .

(18)

Define the following norm for the difference-approximated
solution 𝑦(𝑡) and the exact solution 𝑦(𝑡):

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 := ∫

1

0

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡. (19)

It is easy to show that
󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝐶 (
󵄨󵄨󵄨󵄨𝑦 (0) − 𝑦 (0)

󵄨󵄨󵄨󵄨

+
󵄩󵄩󵄩󵄩𝑅 ((𝑡, 𝑦 (𝑡)) − (𝑡, 𝑦 (𝑡))

󵄩󵄩󵄩󵄩
2

2

= 𝐶∫
1

0

𝑚2

∑
𝑖=0

(𝑐
𝑖,𝑚2
𝐵
𝑖,𝑚2
(𝑡))
2

𝑑𝑡

≤
𝐶

𝑚
2
+ 1

𝑚2

∑
𝑖=0

𝑐
2

𝑖,𝑚2
.

(20)

The last inequality in (20) is obtained by Lemma 1 in which
𝐶 is a constant positive number. Now, by Lemma 1 and (15),
it can be shown that

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤

𝐶

𝑚
2
+ 1

𝑚2

∑
𝑖=0

𝑐
2

𝑖,𝑚2

≤
𝐶

𝑚
2
+ 1

𝑚2

∑
𝑖=0

𝑑
2

𝑖,𝑚2
≤

𝐶

𝑚
1
+ 1

𝑚1

∑
𝑖=0

𝑑
2

𝑖,𝑚1

≤ 𝐶 (𝜖 + 𝐶
2

1
𝜖
2
) = 𝜖
1
, 𝑚
1
≥ 𝑀,

(21)

where the last inequality in (21) is coming from (17).
Thus, from (21) we have

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜖1. (22)

Since the infinite norm and the norm defined in (19) are
equivalent, there is a 𝜌

1
> 0 where

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩∞ ≤ 𝜌1𝜖1 = 𝜖2. (23)

This completes the proof.
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The error (in semilogarithmic scale)
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Figure 1: The error for Example 1.

4. Numerical Examples

In this Section, we present some test problems and apply the
method presented in this paper for solving them. The well-
known symbolic software “Maple 12” has been employed for
calculations.

Example 1. Consider the integral equation described by

𝑦 (𝑡) = ∫
1

0

(𝑡 + 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑒
𝑡
+ (1 − 𝑒) 𝑡 − 1, 𝑦 (0) = 1,

(24)

For this integral equation, there exists the exact solution
𝑦(𝑡) = 𝑒

𝑡 (see [17]). With the method described in the paper,
and with 𝑛 = 4 one can find the following approximate
solution:

𝑦 (𝑡) = (1 − 𝑡)
4
+ 4.999424084𝑡(1 − 𝑡)

3

+ 9.506308758𝑡
2
(1 − 𝑡)

2

+ 8.155525672𝑡
3
(1 − 𝑡) + 2.718281828𝑡

4
.

(25)

Figure 1 shows the value of error for Example 1 where the
maximum error of hybrid Taylor and Block-Pulse functions
[17] is 1.777834 × 10−4 for𝑀 = 3 and𝑁 = 20.

Example 2. Consider the following integral equation:

𝑦 (𝑡) = ∫
1

0

(𝑠
2
𝑡 −
3

2
𝑠𝑡
2
)𝑦 (𝑠) 𝑑𝑠 +

3

4
𝑡
2

−
4

3
Ln (2) 𝑡 + 5

9
𝑡 + 2Ln (𝑡 + 1) , 𝑦 (0) = 0,

(26)

The error (in semilogarithmic scale)

0.00008

0.00006

0.00004

0.00002

0

t

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

−0.00002

Figure 2: The error for Example 2.

𝑦(𝑡) = 2Ln(𝑡 + 1), (see [17]). With the described method and
with 𝑛 = 5, one can find the following solution:

𝑦 (𝑡) = 1.999482218𝑡(1 − 𝑡)
4
+ 7.008252137𝑡

2
(1 − 𝑡)

3

+ 9.625408201𝑡
3
(1 − 𝑡)

2
+ 5.93033𝑡

4
(1 − 𝑡)

+ 1.386294361𝑡
5
.

(27)

The error curve of Example 2 is shown in Figure 2 where the
maximum error of hybrid Taylor and Block-Pulse functions
is 9.509965 × 10−5 for 𝑀 = 3 and 𝑁 = 80 (see [17]). In
Table 1, analytic, numerical results of the presented method,
and the absolute error of the presented method are shown,
respectively.

Example 3. Consider the following integral equation (see
[17]):

𝑦 (𝑡) = −
1

3
∫
1

0

𝑒
2𝑡−(5/3)𝑠

𝑦 (𝑠) 𝑑𝑠 + 𝑒
2𝑡+(1/3)

, 𝑦 (0) = 1, (28)

𝑦(𝑡) = 𝑒
2𝑡 (see [17]). With the described method and with

𝑛 = 6, one can find the following approximate solution:

𝑦 (𝑡) = (1 − 𝑡)
6
+ 7.998720114𝑡(1 − 𝑡)

5

+ 27.01533534𝑡
2
(1 − 𝑡)

4

+ 49.29396712𝑡
3
(1 − 𝑡)

3
+ 51.71626551𝑡

4
(1 − 𝑡)

2

+ 29.55669277𝑡
5
(1 − 𝑡) + 7.389056099𝑡

6
.

(29)

Figure 3 shows the value of error for Example 3 where the
maximum error of hybrid Taylor and Block-Pulse functions
[17] is 4.625381 × 10−5 for𝑀 = 4 and𝑁 = 80.
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Table 1: Exact and estimated values of 𝑥(𝑡) for Example 2.

𝑡 Analytic 𝑥(𝑡) Presented method Errors of presented method
0.125 0.235566071312766 0.235569180133636 3.108820870 × 10

−6

0.250 0.446287102628420 0.446276196803712 1.0905824708 × 10
−5

0.375 0.636907462237070 0.636874894051300 3.2568185770 × 10
−5

0.500 0.810930216216328 0.81093021615625 6.0078 × 10
−11

0.625 0.971015631563402 0.971084086456756 6.8454893354 × 10
−5

0.750 1.11923157587085 1.11932128616895 8.971029810 × 10
−5

0.875 1.25721731884475 1.25723533320645 1.801436170 × 10
−5

1.000 1.38629436111989 1.38629436100000 1.1989 × 10
−10

The error (in semilogarithmic scale)
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Figure 3: The error for Example 3.

Example 4. Consider the nonlinear Fredholm integral equa-
tion with exact solution 𝑦(𝑡) = sinh(𝑡) (see [33]):

𝑦 (𝑡) = sinh (𝑡) − 1 + ∫
1

0

(cosh (𝑠2) − 𝑦 (𝑠2)) 𝑑𝑠,

𝑦 (0) = 0.

(30)

In ourmethod, with 𝑛 = 4 one can find the following solution

𝑦 (𝑡) = 0.9995869312𝑡(1 − 𝑡)
3
+ 3.0045666𝑡

2
(1 − 𝑡)

2

+ 3.158170163𝑡
3
(1 − 𝑡) + 1.175201194𝑡

4
.

(31)

Figure 4 shows the value of error for Example 4.

5. Conclusions

A simple and effective algorithm based on Bezier curves
is presented for solving Fredholm integral equations of the
second kind. The method is computationally attractive and
also reduces the CPU time and the computer memory while
at the same time keeping the accuracy of the solution.

The error (in semilogarithmic scale)
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Figure 4: The error for Example 4.
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