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Abstract In this paper, time-delay control systems with quadratic performance are solved
by applying the least square method on the Bezier control points. The approximation process
is done in two steps. First, the time interval is divided into 2k subintervals, then in each
subinterval the trajectory and control functions are approximated by the Bezier curves. We
have chosen the Bezier curves as piecewise polynomials of degree n and determined the Bezier
curves on any subinterval by n +1 control points. By considering a least square optimization
problem, the control points can be found, then the Bezier curves that approximate the action
of control and trajectory can be computed as well. Some numerical examples are given to
verify the efficiency of the proposed method.

Keywords Optimal control problem · Dynamic systems · The Bezier control points ·
Optimal control of time-delay systems · Time-delay systems · The Bezier curve method

Mathematics Subject Classification (2000) 49N10

1 Introduction

Many physical systems are best modeled using time-delay dynamical systems as follows:

dx(t)
dt

= F(t, x(t),u(t), x1(t − τ1), . . . , x p(t − τp),

u1(t − η1), . . . , um(t − ηm)), t ∈ [t0, t f ]
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688 F. Ghomanjani

x(t) = φ(t), t ≤ t0,

u(t) = ψ(t), t ≤ t0,

where the state x(t) is a p vector function; u(t) is a m vector control function, τi s and
η j s (i = 1, 2, . . . , p, j = 1, 2, . . . ,m) are non-negative constant time delays, the vector
functions φ(t) and ψ(t) are defined appropriately and are given (see Eller and Aggarwal
1969; Gollman et al. 2009; Krasovskii 1963; Loxton 2010; Wu et al. 2006).

In some systems of this type, it is desirable to select the optimal pair (x∗(.),u∗(.)) to
minimize a performance criterion modeled by a cost function of the form

I = G(x(t f ), t f )+
t f∫

t0

g(t, x(t),u(t)) dt.

Wu et al. (2006) developed a computational method for solving an optimal control problem
which is governed by a switched dynamical system with time delay. Kharatishidi (1961)
approached this problem by extending the Pontryagin’s maximum principle to time-delay
systems. The actual solution involves a two-point boundary value problem in which advances
and delays are presented. In addition, this solution does not yield a feedback controller. Opti-
mal time control of delay systems has been considered by Oguztoreli (1963) who obtained
several results concerning bang–bang controls which are parallel to those of LaSalle (1960)
for non-delay systems. For a time-invariant system with an infinite upper limit in the perfor-
mance measure, Krasovskii (1962) developed the forms of the controller and the performance
measure. Ross (1968) obtained a set of differential equations for the unknowns in the forms
of Krasovskii. However, Ross’s results are not applicable to time-varying systems with a
finite limit in the performance measure.

Basin and Perez (2007) presented an optimal regulator for a linear system with multi-
ple states and input delays and a quadratic criterion. The optimal regulator equations were
obtained by reducing the original problem to the linear–quadratic regulator design for a
system without delays (see Basin and Perez 2007; Basin and Rodriguez-Gonzalez 2006).

This paper aims at minimizing quadratic cost functional over solutions of time-delay
system of the following form:

min I = 1

2
xT (t f )H(t f )x(t f )+

t f∫

t0

(xT (t)P(t)x(t)+ uT (t)Q(t)u(t)) dt

s.t.

dx(t)
dt

= A1(t)x(t)+ A2(t)(x1(t − τ1). . .x p(t − τp))
T

+B1(t)u(t)+ B2(t)(u1(t − η1) . . . um(t − ηm))
T

+F(t), t ∈ [t0, t f ],
x(t) = φ(t), t ≤ t0,

u(t) = ψ(t), t ≤ t0, (1)

where x(t) = (x1(t) . . . x p(t))T ∈ R
p , u(t) = (u1(t) . . . um(t))T ∈ R

m are, respectively,
state and control functions, whileφ(t) = (φ1(t) . . . φp(t))T , andψ(t) = (ψ1(t) . . . ψm(t))T ,
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Optimal control of time-varying linear delay 689

are known as vectors functions and τi s and η j s (i = 1, 2, . . . , p, j = 1, 2, . . . ,m)
are non-negative constant time delays. We assume the matrices H(t) = [hi j (t)]p×p and
P(t) = [pi j (t)]p×p are positive semi-definite, Q(t) = [qi j (t)]m×m is positive definite,
A1(t) = [a1

i j (t)]p×p , A2(t) = [a2
i j (t)]p×p , B1(t) = [b1

i j (t)]p×m , B2(t) = [b2
i j (t)]p×m are

matrix functions and F(t) = ( f1(t) . . . f p(t))T is a vector function, which their elements
are assumed to be polynomials defined on [t0, t f ]. We need to impose continuity on x(t) and
its first derivative whose constraints are described in Sect. 2.

Piecewise polynomials are often used to represent the approximate solution in the numer-
ical solution of differential equations (see Winkel 2001; Zheng et al. 2004; Heinkenschloss
2005; Juddu 2002). Splines are usually defined as piecewise polynomials of degree n that
these functions and their n − 1 derivatives should be equal to the approximated function at
the joining nodes. These conditions dramatically increase the computations. While in using
Bezier curves as approximating functions, one needs to consider Bezier curves as C1 func-
tions in defined interval, these considerations reduce the computations. B-splines, due to
numerical stability and arbitrary order of accuracy, have become popular tools for solving
differential equations (where Bezier form is a special case of B-splines). There are many
papers and books that deal with the Bezier curves or surface techniques. Harada and Naka-
mae (1982), Nürnberger and Zeilfelder (2000) used the Bezier control points in approxi-
mating data and functions. Zheng et al. (2004) proposed the use of control points of the
Bernstein–Bezier form for solving differential equations numerically, and also Evrenosoglu
and Somali (2008) used this approach for solving singular perturbed two-point bound-
ary value problems. The Bezier curves are used for solving partial differential equations
as well. Wave and heat equations are solved in Bezier form (see Beltran and Monterde
2004; Cholewa et al. 2002; Lang 0000; Layton and Van de Panne 2002), Bezier curves
are used for solving dynamical systems (see Gachpazan 2011); also the Bezier control
point method is used for solving delay differential equation (see Ghomanjani and Farahi
2012). Some other applications of the Bezier functions and control points are found in
Chu et al. (2008), Farin (1988), and Shi and Sun (2000) that are used in computer-aided
geometric design and image compression. The use of the Bezier curves for the optimal
control of time-varying linear delay system is a novel idea. Although the method is very
easy to use and straightforward, the obtained results are satisfactory (see the numerical
results).

We suggest a technique similar to that used in Zheng et al. (2004), and Evrenosoglu and
Somali (2008) for solving quadratic optimal control problems for time- delay systems. In
Sect. 2, least square method is discussed. Convergence analysis is stated in Sect. 3. In Sect. 4,
some numerical examples are solved which show the efficiency and reliability of the method.
Finally, Sect. 5 gives a conclusion briefly.

2 Least square method

Consider the optimal control of time-varying linear system (1) with delays in state and control
and with quadratic performance. Divide the interval [t0, t f ] into a set of grid points such that

ti = t0 + ih, i = 0, 1, . . . , 2k,

where h = t f −t0
2k and k is a positive integer. Let S j = [t j−1, t j ] for j = 1, 2, . . . , 2k. Then,

for t ∈ S j , the optimal control problem (1) can be decomposed into the following suboptimal
control problems:
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690 F. Ghomanjani

min I j = C j +
t j∫

t j−1

(xT
j (t)P(t)x j (t)+ u j (t)

T (t)Q(t)u j (t))dt

s.t.

dx j (t)

dt
= A1(t)x j (t)+ A2(t)

(
x

−k1
1+ j

1 (t − τ1) . . . x
−k p

1 + j
p (t − τp)

)T

+B1(t)u j (t)+ B2(t)

(
u

−k1
2+ j

1 (t − η1) . . . u
−km

2 + j
m (t − ηm)

)T

+F(t), t ∈ S j , j = 1, 2, . . . , 2k,

x j (θ) = φ(θ), θ ≤ t0,

u j (θ) = ψ(θ), θ ≤ t0, (2)

where x j (t) = (x j
1 (t) . . . x

j
p(t))T and u j (t) = (u j

1(t) . . . u
j
m(t))T are, respectively, vectors of

x(t) and u(t)which are considered in t ∈ S j . We should mention that the initial conditions in
case j = 1 for sub-problem (2) are the same as the initial conditions for the problem (1). The
initial conditions in the case j = 2 for sub-problem (2) are obtained from the sub-problem
(2) when j = 1. The initial conditions in case j = 3 for sub-problem (2) are obtained
from the sub-problem (2) when j = 1, and 2, and so on. It is notable that the problem (2)
is in fact the problem (1) when it is induced on the limited interval S j . We mention that

x
−ki

1+ j
i (t − τi ), 1 ≤ i ≤ p, is the i th component of (x

−k1
1+ j

1 (t − τ1) . . . x
−k p

1 + j
p (t − τp))

T ,

where (t − τi ) ∈ [t−ki
1+ j−1, t−ki

1+ j ] and u
−ki

2+ j
i (t − ηi ), 1 ≤ i ≤ m, has the same definition

as well. Also

C j =
{

1
2 xT

2k(t f )H(t f )x2k(t f ) j = 2k

0 j �= 2k
, (3)

ki
1 =

{
τi
h

τi
h ∈ N

([ τi
h ] + 1) τi

h /∈ N
, 1 ≤ i ≤ p, (4)

ki
2 =

{
ηi
h

ηi
h ∈ N

([ ηi
h ] + 1) ηi

h /∈ N
, 1 ≤ i ≤ m, (5)

where [ τi
h ] and [ ηi

h ] denote the integer part of τi
h and ηi

h , respectively.

Let x(t) = ∑2k
j=1 χ

1
j (t)x j (t) and u(t) = ∑2k

j=1 χ
2
j (t)u j (t), where χ1

j (t) and χ2
j (t) ar,

respectively, the characteristic function of x j (t) and u j (t) for t ∈ [t j−1, t j ]. It is trivial that
[t0, t f ] = ⋃2k

j=1 S j .
Our strategy is to use Bezier curves to approximate the solutions x j (t) and u j (t) by v j (t)

and w j (t), respectively, which are given below. Individual Bezier curves that are defined over
the subintervals are joined together to form the Bezier spline curves. For j = 1, 2, . . . , 2k,
define the Bezier polynomials v j (t) and w j (t) of degree n that approximate, respectively,
the actions of x j (t) and u j (t) over the interval [t j−1, t j ] as follows:
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Optimal control of time-varying linear delay 691

v j (t) =
n∑

r=0

a j
r Br,n

(
t − t j−1

h

)
,

w j (t) =
n∑

r=0

b j
r Br,n

(
t − t j−1

h

)
, (6)

where

Br,n

(
t − t j−1

h

)
= n

r
1

hn
(t j − t)n−r (t − t j−1)

r

is the Bernstein polynomial of degree n over the interval [t j−1, t j ]; a j
r and b j

r are, respectively,
p and m ordered vectors of the control points (see Zheng et al. 2004). By substituting (6) in
(2), one may define R1, j (t) and R2, j (t) for t ∈ [t j−1, t j ] as

R1, j (t) = dv j (t)

dt
− (A1(t)v j (t)

+A2(t)(v
−k1

1+ j
1 (t − τ1) . . . v

−k p
1 + j

p (t − τp))
T )

−(B1(t)w j (t)

+B2(t)(w
−k1

2+ j
1 (t − η1) . . . w

−km
2 + j

m (t − ηm))
T )

−F(t),

R2, j (t) = vT
j (t)P(t)v j (t)+ wT

j (t)Q(t)w j (t). (7)

Let v(t) = ∑2k
j=1 χ

1
j (t)v j (t) and w(t) = ∑2k

j=1 χ
2
j (t)w j (t), where χ1

j (t) and χ2
j (t) are,

respectively, the characteristic function of v j (t) and w j (t) for t ∈ [t j−1, t j ]. Beside the
boundary conditions on v(t), at each node, we need to impose the continuity condition on
each successive pair of v j (t) to guarantee the smoothness. Since the differential equation is
of first order, the continuity of x (or v) and its first derivative give

v(s)j (t j ) = v(s)j+1(t j ), s = 0, 1, j = 1, 2, · · · , 2k − 1, (8)

where v(s)j (t j ) is the s-th derivative v j (t) with respect to t at t = t j .

Thus, the vector of control points a j
r (r = 0, 1, n − 1, n) must satisfy (see “Appendix”)

a j
n(t j − t j−1)

n = a j+1
0 (t j+1 − t j )

n,

(a j
n − a j

n−1)(t j − t j−1)
n−1 = (a j+1

1 − a j+1
0 )(t j+1 − t j )

n−1.
(9)

One may recall that a j
r is a p ordered vector. This approach is called the subdivision scheme

(or h-refinement in the finite element literature). In Sect. 3, we prove the convergence in the
approximation via Bezier curves when n tends to infinity.

Remark 2.1 By considering the C1 continuity of w, the following constraints will be added
to constraints in (9),

b j
n(t j − t j−1)

n = b j+1
0 (t j+1 − t j )

n,

(b j
n − b j

n−1)(t j − t j−1)
n−1 = (b j+1

1 − b j+1
0 )(t j+1 − t j )

n−1,

where the so-called b j
r (r = 0, 1, n − 1, n) is a m ordered vector.

123

Author's personal copy



692 F. Ghomanjani

Now, the residual function can be defined in S j as follows:

R j = (C j )
2 +

t j∫

t j−1

(M‖R1, j (t)‖2 + (R2, j (t))
2)dt, (10)

where ‖.‖ is the Euclidean norm (recall that R1, j (t) is a p vector where t ∈ S j ) and M
is a sufficiently large penalty parameter. Our aim is to solve the following problem over
S = ⋃2k

j=1 S j :

min
2k∑
j=1

R j

s.t. a j
n(t j − t j−1)

n = a j+1
0 (t j+1 − t j )

n,

(a j
n − a j

n−1)(t j − t j−1)
n−1 = (a j+1

1 − a j+1
0 )(t j+1 − t j )

n−1,

j = 1, 2, . . . , 2k − 1. (11)

The mathematical programming problem (11) can be solved by many subroutine algorithms.
Here, we used Maple 12 to solve this optimization problem.

From the solution of (11), it is obvious that the pair (v(.),w(.)) approximates well the
optimal solution (x∗(.),u∗(.)).

Remark 2.2 In problem (1), if x(t f ) be unknown, then we set C2k = 0.

Remark 2.3 Now, the main steps of this algorithm discussed in this section are as follows:

3 Convergence analysis

In this section without loss of generality, we analyze the convergence of the Bezier curve
method applied to linear optimal control problem (1) with time delays in state and control
when p = m = 1 and the time interval is [0, 1]. So, the following problem is considered:

min I = 1

2
x(1)H(1)x(1)+

1∫

0

(x(t)P(t)x(t)

+ u(t)Q(t)u(t)) dt
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Optimal control of time-varying linear delay 693

s.t.

L

(
x(t), u(t), x(t − τ), u(t − η),

dx(t)

dt

)

= dx(t)

dt
− A1(t)x(t)− A2(t)x(t − τ)

−B1(t)u(t)− B2(t)u(t − η)

= F(t), t ∈ [0, 1]
x(t) = x0 = a, t ≤ 0, x(1) = x f = b,

u(t) = u0 = a1, t ≤ 0. (12)

where x(t) ∈ R, u(t) ∈ R, and a, b, a1 are the given real numbers, and A1(t), A2(t), B1(t),
B2(t) and F(t) are the known polynomials for t ∈ [0, 1], and H(t), P(t) and Q(t) are the
given non-negative functions. The constant time delays τ and η are non-negative.

Without loss of generality, we consider the interval [0, 1] instead of [t0, t f ] since the
variable t can be changed with the new variable z by t = (t f − t0)z + t0 where z ∈ [0, 1].

Lemma 3.1 For a polynomial in Bezier form

x(t) =
n1∑

i=0

ai,n1 Bi,n1(t),

we have

∑n1
i=0 a2

i,n1

n1 + 1
≥

∑n1+1
i=0 a2

i,n1+1

n1 + 2
≥ . . . ≥

∑n1+m1
i=0 a2

i,n1+m1

n1 + m1 + 1
→

1∫

0

x2(t)dt, m1 → +∞,

where ai,n1+m1 is the Bezier coefficient of x(t) after being degree-elevated to degree n1 +m1.

Proof See Zheng et al. (2004). 
�

The convergence of the approximated solution could be done in two ways:

(1) Degree raising the Bezier polynomial approximation
(2) Subdivision of the time interval.

In the following, we prove the convergence in each case, although in numerical examples,
we use only subdivision case.

3.1 Degree raising

Theorem 3.2 If the linear optimal control problem (12) with time delays in state and control
has a unique C1 continuous trajectory solution x̄ , C0 continuous control solution ū, then the
approximate solution obtained by the Bezier curve method converges to the exact solution
(x̄, ū) as the degree of the approximated solution tends to infinity.

Proof Given an arbitrary small positive number ε > 0, by the Weierstrass Theorem (see
Rudin 1986 and Sohrab 2003), it is obvious that polynomials Q1,N1(t) of degree N1 and

Q2,N2(t) of degree N2 such that ‖ di Q1,N1 (t)

dt i − di x̄(t)
dt i ‖∞ ≤ ε

16 , ‖ di Q1,N1 (t−τ)
dt i − di x̄(t−τ)

dt i ‖∞ ≤
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694 F. Ghomanjani

ε
16 , i = 0, 1, ‖Q2,N2(t) − ū(t)‖∞ ≤ ε

16 , and ‖Q2,N2(t − η) − ū(t − η)‖∞ ≤ ε
16 , where

‖.‖∞ stands for the L∞-norm over [0, 1]. Especially, we have

‖a − Q1,N1(0)‖∞ ≤ ε

16
,

‖b − Q1,N1(1)‖∞ ≤ ε

16
,

‖a1 − Q2,N2(0)‖∞ ≤ ε

16
.

(13)

In general, Q1,N1(t) and Q2,N2(t) do not satisfy the boundary conditions. After a small
perturbation with linear and constant polynomials αt + β and γ , respectively, for Q1,N1(t)
and Q2,N2(t), we can obtain polynomials P1,N1(t) = Q1,N1(t) + (αt + β) and P2,N2(t) =
Q2,N2(t)+γ such that P1,N1(t) satisfies the boundary conditions P1,N1(0) = a, P1,N1(1) = b,
and P2,N2(0) = a1. Thus, Q1,N1(0) + β = a and Q1,N1(1) + α + β = b. Using (13), one
has

‖a − Q1,N1(0)‖∞ = ‖β‖∞ ≤ ε

16
,

‖b − Q1,N1(1)‖∞ = ‖α + β‖∞ ≤ ε

16
.

Since

‖α‖∞ − ‖β‖∞ ≤ ‖α + β‖∞ ≤ ε

16
,

‖α‖∞ ≤ ε

16
+ ‖β‖∞

≤ ε

16
+ ε

16
= ε

8
.

By the time, a1 = P2,N2(0) = Q2,N2(0)+ γ , so

‖a1 − Q2,N2(0)‖∞ = ‖γ ‖∞ ≤ ε

16
.

Now, we have

‖P1,N1(t)− x̄(t)‖∞ = ‖Q1,N1(t)+ αt + β − x̄(t)‖∞
≤ ‖Q1,N1(t)− x̄(t)‖∞

+‖α + β‖∞ ≤ ε

8
<
ε

5
,

∥∥∥∥dP1,N1(t)

dt
− dx̄(t)

dt

∥∥∥∥∞
=

∥∥∥∥dQ1,N1(t)

dt
+ α − dx̄(t)

dt

∥∥∥∥∞

≤
∥∥∥∥dQ1,N1(t)

dt
− dx̄(t)

dt

∥∥∥∥∞

+‖α‖∞ ≤ 3ε

16
<
ε

5
,

‖P2,N2(t)− ū(t)‖∞ = ‖Q2,N2(t)+ γ − ū(t)‖∞
≤ ‖Q2,N2(t)− ū(t)‖∞ + ‖γ ‖∞
≤ ε

8
<
ε

5
,
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Optimal control of time-varying linear delay 695

so,

‖P1,N1(t − τ)− x̄(t − τ)‖∞ <
ε

5
,

‖P2,N2(t − η)− ū(t − η)‖∞ <
ε

5
.

Now, let define L PN (t) = L(P1,N1(t), P2,N2(t), P1,N1(t − τ), P2,N2(t − η),
dP1,N1 (t)

dt ) =
dP1,N1 (t)

dt − A1(t)P1,N1(t)− A2(t)P1,N1(t − τ)− B1(t)P2,N2(t)−B2(t)P2,N2(t −η) = F(t),
for every t ∈ [0, 1]. Thus, for N ≥ max{N1, N2}, for the following residual, an upper bound
can be found:

‖L PN (t)− F(t)‖∞ = ‖L

(
P1,N1(t), P2,N2(t), P1,N1(t − τ) ,

P2,N2(t − η),
dP1,N1(t)

dt

)
− F(t)‖∞

≤ ‖dP1,N1(t)

dt
− dx̄(t)

dt
‖∞

+‖A1(t)‖∞‖P1,N1(t)− x̄(t)‖∞

+‖A2(t)‖∞‖P1,N1(t − τ)− x̄(t − τ)‖∞

+‖B1(t)‖∞‖P2,N2(t)− ū(t)‖∞

+‖B2(t)‖∞‖P2,N2(t − η)− ū(t − η)‖∞

≤ C1

(ε
5

+ ε

5
+ ε

5
+ ε

5
+ ε

5

)
= C1ε,

where C1 = 1 + ‖A1(t)‖∞ + ‖A2(t)‖∞ + ‖B1(t)‖∞ + ‖B2(t)‖∞ is a constant.
Since the residual R(PN ) := L PN (t)− F(t) is a polynomial, we can represent it by a Bezier
form. Therefore, we have

R(PN ) :=
m1∑
i=0

di,m1 Bi,m1(t).

Then, by Lemma 3.1, there exists an integer M(≥N ) such that when m1 > M , we have∣∣∣∣∣∣
1

m1 + 1

m1∑
i=0

d2
i,m1

−
1∫

0

(R(PN ))
2 dt

∣∣∣∣∣∣ < ε,

which gives

1

m1 + 1

m1∑
i=0

d2
i,m1

< ε +
1∫

0

(R(PN ))
2 dt

≤ ε + C2
1ε

2. (14)

Suppose x(t) and u(t) are approximated solutions of (12) obtained by the Bezier curve
method of degree m2 (m2 ≥ m1 ≥ M). Let
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696 F. Ghomanjani

R

(
x(t), u(t), x(t − τ), u(t − η),

dx(t)

dt

)

= L

(
x(t), u(t), x(t − τ), u(t − η),

dx(t)

dt

)
− F(t)

=
m2∑
i=0

ci,m2 Bi,m2(t), m2 ≥ m1 ≥ M, t ∈ [0, 1].

Define the following norm for difference approximated solution (x(t), u(t)) and exact solu-
tion (x̄(t), ū(t)):

‖(x(t), u(t))− (x̄(t), ū(t))‖

:=
1∫

0

1∑
j=0

∣∣∣∣d j x(t)

dt j
− d j x̄(t)

dt j

∣∣∣∣
2

dt

+
1∫

0

|u(0)− ū(0)| dt. (15)

By (15) and Lemma 3.1, one can show that

‖(x(t), u(t))− (x̄(t), ū(t))‖ ≤ C(|x(0)− x̄(0)|
+|x(1)− x̄(1)| + |u(0)− ū(0)|
+

∥∥∥∥R

((
x(t), u(t), x(t − τ), u(t − η),

dx(t)

dt

)

−
(

x̄(t), ū(t), x̄(t − τ), ū(t − η),
dx̄(t)

dt

))∥∥∥∥
2

2

= C

1∫

0

m2∑
i=0

(ci,m2 Bi,m2(t))
2 dt

≤ C

m2 + 1

m2∑
i=0

c2
i,m2

. (16)

The last inequality in (16) is obtained by Lemma 3.1 where C is a constant positive number.
Now, by Lemma 3.1 and (17), one has

‖(x(t), u(t))− (x̄(t), ū(t))‖ ≤ C

m2 + 1

m2∑
i=0

c2
i,m2

≤ C

m2 + 1

m2∑
i=0

d2
i,m2

≤ C

m1 + 1

m1∑
i=0

d2
i,m1

≤ C(ε + C2
1ε

2)

= ε1, m1 ≥ M, (17)

where the last inequality in (17) comes from (14).
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Optimal control of time-varying linear delay 697

Thus, from (17) we have

‖x(t)− x̄(t)‖ ≤ ε1,

‖u(t)− ū(t)‖ ≤ ε1.

Since the infinite norm and the norm defined in (15) are equivalent, there is a ρ1 > 0 where

‖x(t)− x̄(t)‖∞ ≤ ρ1ε1,

‖u(t)− ū(t)‖∞ ≤ ρ1ε1.

Now, we show that the approximated cost function tends to exact cost function as the degree
of Bezier approximation increases. Let

Iexact = 1

2
x̄(1)H(1)x̄(1)+

1∫

0

(x̄(t)P(t)x̄(t)

+ū(t)Q(t)ū(t)) dt,

Iapprox = 1

2
x(1)H(1)x(1)+

1∫

0

(x(t)P(t)x(t)

+u(t)Q(t)u(t)) dt,

for t ∈ [0, 1]. Now, there are four positive integers Mi ≥ 0, i = 1, . . . , 4 such that‖P(t)‖∞ ≤
M1, ‖Q(t)‖∞ ≤ M2, ‖x̄(t)‖∞ ≤ M3, and ‖ū(t)‖∞ ≤ M4. Since

‖x(t)‖∞ − ‖x̄(t)‖∞ ≤ ‖x̄(t)− x(t)‖∞ ≤ ρ1ε1,

‖u(t)‖∞ − ‖ū(t)‖∞ ≤ ‖ū(t)− u(t)‖∞ ≤ ρ1ε1,

we have

‖x(t)‖∞ ≤ ‖x̄(t)‖∞ + ρ1ε1 ≤ M3 + ρ1ε1,

‖u(t)‖∞ ≤ ‖ū(t)‖∞ + ρ1ε1 ≤ M4 + ρ1ε1,

so,

‖x̄(t)+ x(t)‖∞ ≤ ‖x̄(t)‖∞ + ‖x(t)‖∞ ≤ 2M3 + ρ1ε1,

‖ū(t)+ u(t)‖∞ ≤ ‖ū(t)‖∞ + ‖u(t)‖∞ ≤ 2M4 + ρ1ε1,

now, we have

‖Iexact − Iapprox‖∞ = ‖
1∫

0

x̄(t)P(t)x̄(t)

+ū(t)Q(t)ū(t)− x(t)P(t)x(t)

−u(t)Q(t)u(t) dt‖∞

≤
1∫

0

‖x̄(t)P(t)x̄(t)− x(t)P(t)x(t)‖∞dt

+
1∫

0

‖ū(t)Q(t)ū(t)− u(t)Q(t)u(t)‖∞dt
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698 F. Ghomanjani

≤
1∫

0

‖P(t)‖∞‖x̄2(t)− x2(t)‖∞dt

+
1∫

0

‖Q(t)‖∞‖ū2(t)− u2(t)‖∞dt

≤
1∫

0

‖P(t)‖∞‖x̄(t)− x(t)‖∞‖x̄(t)+ x(t)‖∞dt

+
1∫

0

‖Q(t)‖∞‖ū(t)− u(t)‖∞‖ū(t)+ u(t)‖∞dt

≤ M1ρ1ε1(ρ1ε1 + 2M3)+ M2ρ1ε1(ρ1ε1 + 2M4).

This completes the proof. 
�
3.2 Subdivision

Theorem 3.3 Let (x, u) be the approximated solution of the linear optimal control problem
(12) obtained by the subdivision scheme of the Bezier curve method. If (12) has a unique
solution (x̄, ū) where (x̄, ū) is smooth enough so that the cubic spline T (x̄, ū) interpolates
to (x̄, ū) and converges to (x̄, ū) in the order O(hq), (q > 2), where h is the maximal width
of all subintervals, then (x, u) converges to (x̄, ū) as h → 0.

Proof We first impose a uniform partition
∏

d = ⋃
i [ti , ti+1] on the interval [0, 1] as ti = id ,

where d = 1
n1+1 .

Let Id(x̄(t), ū(t), x̄(t − τ), ū(t − η), dx̄(t)
dt ) be the cubic spline over

∏
d which is interpo-

lating to (x̄, ū). Then, for an arbitrarily small positive number ε > 0, there exists a δ1 > 0
such that ∥∥∥∥L

(
x̄(t), ū(t), x̄(t − τ), ū(t − η),

dx̄(t)

dt

)

−L

(
Id

(
x̄(t), ū(t), x̄(t − τ), ū(t − η),

dx̄(t)

dt

))∥∥∥∥∞
≤ ε,

provided that d < δ1. Let R(Id(x̄(t), ū(t), x̄(t−τ), ū(t−η), dx̄(t)
dt )) = L(Id(x̄(t), ū(t), x̄(t−

τ), ū(t − η),
dx̄(t)

dt )) − F(t) be the residual. For each subinterval [ti , ti+1], R(Id(x̄(t), ū(t)

, x̄(t − τ), ū(t − η),
dx̄(t)

dt )) is a polynomial. On each interval [ti , ti+1], we impose another
uniform partition

∏
i,h = ⋃

j [ti, j , ti, j+1] as ti, j = id + jh, where h = d
m1

, j = 0, . . . ,m1.

Express R(Id(x̄(t), ū(t), x̄(t − τ), ū(t − η),
dx̄(t)

dt )) in [ti, j−1, ti, j ] as

R

(
Id

(
x̄(t), ū(t), x̄(t − τ), ū(t − η),

dx̄(t)

dt

))

=
l∑

p1=0

r i, j
p1 Bp1,l(t), t ∈ [ti, j−1, ti, j ].

By Lemma 3 in Zheng et al. (2004), there exists a δ2 > 0 (δ2 ≤ δ1) such that when h < δ2,
we have
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Optimal control of time-varying linear delay 699

∣∣∣∣∣∣
m1∑
j=1

(ti, j − ti, j−1)

l∑
p1=0

(r i, j
p1 )

2

−(l + 1)

ti+1∫

ti

R2
(

Id

(
x̄(t), ū(t), x̄(t − τ), ū(t − η),

dx̄(t)

dt

))∣∣∣∣∣∣ ≤ ε

d
.

Thus, ∣∣∣∣∣∣
n1∑

i=1

m1∑
j=1

(ti, j − ti, j−1)

l∑
p1=0

(r i, j
p1 )

2

−(l + 1)

1∫

0

R2
(

Id

(
x̄(t), ū(t), x̄(t − τ), ū(t − η),

dx̄(t)

dt

))∣∣∣∣∣∣ ≤ ε,

or
n1∑

i=1

m1∑
j=1

(ti, j − ti, j−1)

l∑
p1=0

(r i, j
p1 )

2

< (l + 1)
∫ 1

0
R2

(
Id(x̄(t), ū(t), x̄(t − τ), ū(t − η),

dx̄(t)

dt

)
+ ε

< (l + 1)ε2 + ε.

Now, combining the partitions
∏

d and all
∏

i,h gives a denser partition with the length h
for each subinterval. Suppose (x(t), u(t)) is the approximated solution by the Bezier curve
method with respect to this partition, and denote the residual over [ti, j−1, ti, j ] by

R

(
x(t), u(t), x(t − τ), u(t − η),

dx(t)

dt

)

= L

(
x(t), u(t), x(t − τ), u(t − η),

dx(t)

dt

)
− F(t)

=
l∑

p1=0

ci, j
p1 Bp1,l(t).

Define the following norm for difference approximated solution (x(t), u(t)) and exact solu-
tion (x̄(t), ū(t)):

‖(x(t), u(t))− (x̄(t), ū(t))‖

:=
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

|x(t)− x̄(t)|2 dt

+
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

∣∣∣∣dx(t)

dt
− dx̄(t)

dt

∣∣∣∣
2

dt

+
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

|u(0)− ū(0)| dt. (18)
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700 F. Ghomanjani

Then, there is a constant C such that

‖(x(t), u(t))− (x̄(t), ū(t))‖
≤ C

∥∥∥∥R

((
x(t), u(t), x(t − τ), u(t − η),

dx(t)

dt

)

−
(

x̄(t), ū(t), x̄(t − τ), ū(t − η),
dx̄(t)

dt

))∥∥∥∥
2

2

≤ C

l + 1

n1∑
i=1

m1∑
j=1

(ti, j − ti, j−1)

l∑
p1=0

(ci, j
p1 )

2, (19)

the last inequality in (19) is obtained by Lemma 3.1. It can be shown that

‖(x(t), u(t))− (x̄(t), ū(t))‖

≤ C

l + 1

n1∑
i=1

m1∑
j=1

(ti, j − ti, j−1)

l∑
p1=0

(ci, j
p1 )

2

≤ C

l + 1

n1∑
i=1

m1∑
j=1

(ti, j − ti, j−1)

l∑
p1=0

(r i, j
p1 )

2

≤ C

(
ε2 + ε

l + 1

)
= ε2. (20)

Thus, from (20) we have:

‖x(t)− x̄(t)‖ ≤ ε2,

‖u(t)− ū(t)‖ ≤ ε2.

Since the infinite norm and the norm defined in (18) are equivalent, there is a ρ2 > 0 where

‖x(t)− x̄(t)‖∞ ≤ ρ2ε2,

‖u(t)− ū(t)‖∞ ≤ ρ2ε2.

Now, it can be shown that the approximated cost function converges to exact cost function
in the subdivision case. Define

Iexact = 1

2
x̄(1)H(1)x̄(1)+

n1∑
i=1

m1∑
j=1

ti, j∫

ti, j−1

(x̄(t)P(t)x̄(t)

+ū(t)Q(t)ū(t)) dt,

Iapprox = 1

2
x(1)H(1)x(1)+

n1∑
i=1

m1∑
j=1

ti, j∫

ti, j−1

(x(t)P(t)x(t)

+u(t)Q(t)u(t)) dt,

for t ∈ [ti, j−1, ti, j ]. Now, there are four positive integers Mi ≥ 0, i = 1, . . . , 4, such that
‖P(t)‖∞ ≤ M1, ‖Q(t)‖∞ ≤ M2, ‖x̄(t)‖∞ ≤ M3, and ‖ū(t)‖∞ ≤ M4. Since

‖x(t)‖∞ − ‖x̄(t)‖∞ ≤ ‖x̄(t)− x(t)‖∞ ≤ ρ2ε2,

‖u(t)‖∞ − ‖ū(t)‖∞ ≤ ‖ū(t)− u(t)‖∞ ≤ ρ2ε2,
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Optimal control of time-varying linear delay 701

we have

‖x(t)‖∞ ≤ ‖x̄(t)‖∞ + ρ2ε2 ≤ M3 + ρ2ε2,

‖u(t)‖∞ ≤ ‖ū(t)‖∞ + ρ2ε2 ≤ M4 + ρ2ε2,

so,

‖x̄(t)+ x(t)‖∞ ≤ ‖x̄(t)‖∞ + ‖x(t)‖∞ ≤ 2M3 + ρ2ε2,

‖ū(t)+ u(t)‖∞ ≤ ‖ū(t)‖∞ + ‖u(t)‖∞ ≤ 2M4 + ρ2ε2,

now, we have

‖Iexact − Iapprox‖∞ =

∥∥∥∥∥∥∥
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

x̄(t)P(t)x̄(t)

+ū(t)Q(t)ū(t)− x(t)P(t)x(t)

−u(t)Q(t)u(t) dt

∥∥∥∥∥∥∥∞

≤
n1∑

i=1

m1∑
j=1

ti, j∫

t i, j−1

‖x̄(t)P(t)x̄(t)− x(t)P(t)x(t)‖∞dt

+
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

‖ū(t)Q(t)ū(t)− u(t)Q(t)u(t)‖∞dt

≤
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

‖P(t)‖∞‖x̄2(t)− x2(t)‖∞dt

+
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

‖Q(t)‖∞‖ū2(t)− u2(t)‖∞dt

≤
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

‖P(t)‖∞‖x̄(t)− x(t)‖∞‖x̄(t)+ x(t)‖∞dt

+
n1∑

i=1

m1∑
j=1

ti, j∫

ti, j−1

‖Q(t)‖∞‖ū(t)− u(t)‖∞‖ū(t)+ u(t)‖∞dt

≤ n1(n1 + 1)

2

m1(m1 + 1)

2
hM1ρ2ε2(ρ2ε2 + 2M3)

+n1(n1 + 1)

2

m1(m1 + 1)

2
hM2ρ2ε2(ρ2ε2 + 2M4).

By Lemma 3 in Zheng et al. (2004), we conclude that the approximated solution converges
to the exact solution in the order o(hq), (q > 2). This completes the proof. 
�
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4 Numerical examples

While applying the presented method, in Examples 1, 2, 3, 4, 5, and 6 we choose the Bezier
curves as piecewise polynomials of degree 3.

Example 1 Consider the optimal control of linear time-delay system (see Palanisamy and
Rao 1983),

min I = 1

2

2∫

0

(x2(t)+ u2(t)) dt,

s.t.
dx(t)

dt
= x(t − 1)+ u(t),

x(t) = 1, t ≤ 0,

u(t) = −2, t ≤ 0.

We need to mention that in Example 1, there is a delay in the state only. Let k = 3, then
the time interval [0, 2] is divided into 6 subintervals. From (11), the following approximated
solutions can be found for the state x(t) and the control u(t),

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.9999999997 − 1.017369899t + 1.95635344t2 − 1.049862820t3, 0 ≤ t ≤ 1
3 ,

0.8673937557 − 0.1209966900t + 0.1584828t2 − 0.1432411700t3, 1
3 ≤ t ≤ 2

3 ,

1.475965806 − 2.304655589t + 2.601598153t2 − 0.9486123500t3, 2
3 ≤ t ≤ 1,

−0.03981875368 + 2.321307955t − 2.102975263t2 + .64578208t3, 1 ≤ t ≤ 4
3 ,

6.672738304 − 12.03971118t + 8.11111341t2 − 1.76857117t3, 4
3 ≤ t ≤ 5

3 ,

8.719375271 − 14.13399691t + 8.413888355t2 − 1.63836686t3, 5
3 ≤ t ≤ 2,

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1.999999999 + 3.497666466t + 0.4582933066t2 − 8.13100258t3, 0 ≤ t ≤ 1
3 ,

−3.059435875 + 12.66068894t − 25.91507291t2 + 17.1266624t3, 1
3 ≤ t ≤ 2

3 ,

−4.087320158 + 10.01605060t − 11.04293897t2 + 4.23800721t3, 2
3 ≤ t ≤ 1,

−6.969863914 + 16.84971548t − 16.06263745t2 + 5.30658457t3, 1 ≤ t ≤ 4
3 ,

−1.6262781 − 6.448864322t + 9.867931179t2 − 3.290216032t3, 4
3 ≤ t ≤ 5

3 ,

4.929764665 − 14.10458008t + 10.38979280t2 − 2.263380566t3, 5
3 ≤ t ≤ 2.

The graphs of approximated trajectory and control are shown in Fig. 1. The approximated
and exact objective functions are, respectively, I = 1.593587244 and I ∗ = 1.59 (see
Palanisamy and Rao 1983). The computation takes 20 s of CPU time when it is per-
formed by Maple 12 on an AMD Athelon X4 PC with 2 GB of RAM. The QPSolve
command solves (11), which involves computing the minimum of a quadratic objective
function possibly subject to linear constraints. The QPSolve command uses an iterative
active-set method implemented in a built-in library provided by the numerical algorithms
group.
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Fig. 1 The graphs of approximated trajectory and control for Example 1

We mention that the value of objective function with the proposed method is more accurate
than that with the presented method in Palanisamy and Rao (1983).

Example 2 Consider the optimal control of linear time-delay system (see Palanisamy and
Rao 1983),

min I = 1

2

1∫

0

(x(t)2 + u(t)2) dt,

s.t.
dx(t)

dt
= −x(t)+ x

(
t − 1

3

)
+ u(t)− 1

2
u

(
t − 2

3

)
,

x(t) = 1, t ∈
[
−1

3
, 0

]
,

u(t) = −1, t ∈
[
−2

3
, 0

]
.

Let k = 3. From (11), the following approximated solutions can be found for the state x(t)
and the control u(t):

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.000000001 − 1.094274275t + 7.009277868t2 − 21.4398625t3, t ∈ [0, 1
6 ],

1.443587597 − 6.822905439t + 27.84539125t2 − 36.0407421t3, t ∈ [ 1
6 ,

1
3 ],

−0.2629450168 + 9.543968302t − 24.2794706t2 + 19.1083604t3, t ∈ [ 1
3 ,

1
2 ],

0.9618527121 − 0.9806318053t + 3.1213571t2 − 3.3932764t3, t ∈ [ 1
2 ,

2
3 ],

−.2065981021 + 9.498503471t − 20.42900575t2 + 12.297735t3, t ∈ [ 2
3 ,

5
6 ],

14.94439046 − 51.03072302t + 59.38886727t2 − 22.5025347t3, t ∈ [ 5
6 , 1]
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Fig. 2 The graphs of approximated trajectory and control for Example 2

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1.000000001 − 1.329818401t + 31.07777526t2 − 32.0406571t3, t ∈ [0, 1
6 ],

−2.835696746 + 22.5624782t − 57.37453536t2 + 35.06102613t3, t ∈ [ 1
6 ,

1
3 ],

28.52820978 − 218.0458504t + 539.4499599t2 − 436.7629786t3, t ∈ [ 1
3 ,

1
2 ],

94.62327190 − 495.4215408t + 855.8119763t2 − 488.7447465t3, t ∈ [ 1
2 ,

2
3 ],

200.2261824 − 809.5696358t + 1085.436615t2 − 482.7583142t3, t ∈ [ 2
3 ,

5
6 ],

426.7110543 − 1414.224688t + 1558.194094t2 − 570.729872t3, t ∈ [ 5
6 , 1].

The graphs of approximated trajectory and control by this method are shown in Fig. 2.
The approximated and exact objective functions are, respectively, I = 0.4220497643 and
I ∗ = 0.4220. Our approach is more accurate with results in Palanisamy and Rao (1983).

Palanisamy and Rao (1983) presented a computational algorithm via Walsh Functions
(WF), and the results by the WF method with m = 100 were shown, where m was a number
of components in Walsh series.

Walsh series is used for m = 100, but the obtained results of the proposed method with
k = 3 are more accurate than the results of the presented method in Palanisamy and Rao
(1983).

Example 3 Consider the previous example while we increase k from 3 to 4. From (11),
the following approximated solutions can be found for the state x(t) and the control
u(t):
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x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 0.9138164531t + 5.529958375t2 − 20.0135236t3, t ∈ [0, 1
8 ],

1.177058837 − 3.914197484t + 19.5407582t2 − 30.7296608t3, t ∈ [ 1
8 ,

1
4 ],

1.886094914 − 10.0860121t + 34.88154345t2 − 38.7220768t3, t ∈ [ 1
4 ,

3
8 ],

−4.078875011 + 36.13850158t − 84.3965045t2 + 63.7585686t3, t ∈ [ 3
8 ,

1
2 ],

−1.692056145 + 13.76608415t − 23.54866115t2 + 12.4580007t3, t ∈ [ 1
2 ,

5
8 ],

7.253866273 − 29.18890961t + 45.20263472t2 − 24.2217869t3, t ∈ [ 5
8 ,

3
4 ],

−4.579939593 + 33.49864909t − 58.85055718 ∗ t2 + 31.1217563t3, t ∈ [ 3
4 ,

7
8 ],

7.904364831 − 26.62673081t + 29.66079178 ∗ t2 − 10.1384258t3, t ∈ [ 7
8 , 1],

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1.− 3.777279531t + 55.65743925t2 − 47.0312335t3, t ∈ [0, 1
8 ],

−2.288335188 + 17.96402697t − 44.84310858t2 + 25.1571492t3, t ∈ [ 1
8 ,

1
4 ],

7.582984429 − 86.52818596t + 317.2712533t2 − 383.1893467t3, t ∈ [ 1
4 ,

3
8 ],

114.3612068 − 796.4503892t + 1825.587592t2 − 1381.86206t3, t ∈ [ 3
8 ,

1
2 ],

196.0023593 − 1061.199677t + 1904.890913t2 − 1134.600772t3, t ∈ [ 1
2 ,

5
8 ],

488.1937132 − 2151.73991t + 3150.590061t2 − 1532.752197t3, t ∈ [ 5
8 ,

3
4 ],

743.3521221 − 2741.564191t + 3362.609963t2 − 1371.688832t3, t ∈ [ 3
4 ,

7
8 ],

723.0849239 − 2316.117024t + 2469.573623t2 − 876.5088905t3, t ∈ [ 7
8 , 1].

The graphs of approximated trajectory and control by this method are shown in Fig. 3.
The approximated and exact objective functions are, respectively, I = 0.4220385520 and
I ∗ = 0.4220 (see Palanisamy and Rao 1983).

Example 4 Consider the linear time-varying system with delays described by (see Wang
2007)

min I = 1

2

1∫

0

(
[ x1(t) x2(t) ]

[
1 t
t t2

] [
x1(t)
x2(t)

]

+ (t2 + 1)u(t)

)
dt

s.t.
dx1(t)

dt
= (t2 + 1)x1

(
t − 1

2

)
+ x2

(
t − 1

2

)
+ u(t)

+(t + 1)u

(
t − 1

4

)
,

dx2(t)

dt
= 2x2

(
t − 1

2

)
+ (t + 1)u(t)

+(t2 + 1)u

(
t − 1

4

)
,

[
x1(t) x2(t)

]T = [1 1]T , t ∈
[
−1

2
, 0

]
,

u(t) = 1, t ∈
[
−1

4
, 0

]
,
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Fig. 3 The graphs of approximated trajectory and control for Example 3

where x(t) = [x1(t) x2(t)]T is two-dimensional state function and u(t) one-dimensional
control function. Let k = 4. From (11), one can find the following approximated solutions
x1(t), x2(t) and u(t):

x1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.+ 3.499822625t − 2.285880500t2 − 12.58707780t3, t ∈ [0, 1
8 ],

1.382213734 − 3.433186286t + 35.25722514t2 − 64.91278450t3, t ∈ [ 1
8 ,

1
4 ],

0.7593214115 + 4.243682498t + 3.741106488t2 − 21.8131018t3, t ∈ [ 1
4 ,

3
8 ],

−0.1380354631 + 15.57008948t − 37.52278401t2 + 24.6971462t3, t ∈ [ 3
8 ,

1
2 ],

4.889311879 − 14.13800018t + 20.98140654t2 − 13.6976550t3, t ∈ [ 1
2 ,

5
8 ],

6.041661631 − 18.05850758t + 24.67698414t2 − 14.2941048t3, t ∈ [ 5
8 ,

3
4 ],

−72.19820146 + 297.8975685t − 400.5932822t2 + 176.4906795t3, t ∈ [ 3
4 ,

7
8 ],

−0.6086887156 − 7.597396124t + 17.16691348t2 − 8.798192522t3, t ∈ [ 7
8 , 1],

x2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 3.475849531t − 1.85421075t2 − 17.8394708t3, t ∈ [0, 1
8 ],

1.438831326 − 4.490440233t + 41.35081084t2 − 78.3187377t3, t ∈ [ 1
8 ,

1
4 ],

1.430371686 − 2.102217545t + 22.65109209t2 − 41.1900087t3, t ∈ [ 1
4 ,

3
8 ],

−1.461938047 + 25.22794969t − 61.40719215t2 + 43.4643224t3, t ∈ [ 3
8 ,

1
2 ],

0.1718009449 + 10.06871987t − 20.37514082t2 + 8.96722710t3, t ∈ [ 1
2 ,

5
8 ],

−2.993469106 + 23.94330086t − 40.4645260t2 + 18.55626216t3, t ∈ [ 5
8 ,

3
4 ],

−84.28234975 + 344.754301t − 462.4198296t2 + 203.5174208t3, t ∈ [ 3
4 ,

7
8 ],

−4.107469433 + 1.348483676t + 8.35311977t2 − 5.65671536t3, t ∈ [ 7
8 , 1],
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Fig. 4 The graphs of approximated trajectories for Example 4

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 30.5639081t + 206.8628318t2 − 393.8794758t3, t ∈ [0, 1
8 ],

−1.683199715 + 19.68237552t − 81.90336092t2 + 74.2861682t3, t ∈ [ 1
8 ,

1
4 ],

−0.9864745645 + 14.9784254t − 77.71456712t2 + 88.2037853t3, t ∈ [ 1
4 ,

3
8 ],

4.887497295 − 13.77658341t − 49.66591976t2 + 106.4995442t3, t ∈ [ 3
8 ,

1
2 ],

−112.5266494 + 564.7695841t − 954.8808295t2 + 542.0578672t3, t ∈ [ 1
2 ,

5
8 ],

−1.939987697 − 24.15985884t + 80.38782599t2 − 59.67557402t3, t ∈ [ 5
8 ,

3
4 ],

339.3535284 − 1258.596941t + 1551.987958t2 − 636.2463098t3, t ∈ [ 3
4 ,

7
8 ],

−59.82398778 + 229.5467337t − 285.3591522t2 + 115.7379162t3, t ∈ [ 7
8 , 1].

The graphs of approximated trajectories and control by this method are shown, respec-
tively, in Figs. 4 and 5. The approximated objective function by this method and the
approximated objective function in Wang (2007) are, respectively, I = 1.536409753 and
J = 1.562240664.

According to the result obtained from our method for cost function, this result is more
accurate than the obtained cost function of the presented method in Wang (2007).

Example 5 Consider the optimal control of linear time-delay system (see Basin and
Rodriguez-Gonzalez 2006),

min I = 1

2

0.25∫

0

(x2(t)+ u2(t))dt

s.t.
dx(t)

dt
= x(t)+ u(t − 0.1)+ u(t),
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Fig. 5 The graph of approximated control for Example 4

x(0) = 1,

u(t) = 0, t ∈ [−0.1, 0].

The optimal control problem is to minimize the state x using the minimum energy of control u.
Let k = 5. From (11), one can find the following approximated solutions x(t) and u(t):

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 0.99832875t − 4.0936575t2 + 74.947150t3, t ∈ [0, 0.025],
1.001606585 + 0.7877042125t + 5.0446990t2 − 56.409270t3, t ∈ [0.025, 0.05],
0.9892882272 + 1.555923762t − 10.9020555t2 + 53.784860t3, t ∈ [0.05, 0.075],
1.013058989 + 0.5866384125t + 2.2678130t2 − 5.8415000t3, t ∈ [0.075, 0.1],
1.09110482 − 2.23685085t + 35.3238485t2 − 132.09876t3, t ∈ [0.1, 0.125],
0.8097325684 + 6.876248412t − 56.4622665t2 + 163.0144t3, t ∈ [0.125, 0.15],
1.263865389 − 4.494380525t + 34.5950765t2 − 73.23114t3, t ∈ [0.15, 0.175],
1.191288641 − 1.9891374t + 13.073286t2 − 18.511320t3, t ∈ [0.175, 0.2],
0.6813145184 + 5.666839712t − 25.2384265t2 + 45.394580t3, t ∈ [0.2, 0.225],
2.240447094 − 16.53889212t + 79.752815t2 − 119.48t3, t ∈ [0.225, 0.25],

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−9.922962338t + 302.4537965t2 − 2031.087914t3, t ∈ [0, 0.025],
−0.3037434199 + 16.80712747t − 377.9849724t2 + 1857.898024t3, t ∈ [0.025, 0.05],
0.8645233559 − 37.71115742t + 400.8262922t2 − 1257.14752t3, t ∈ [0.05, 0.075],
−0.5629148875 + 8.515404269t − 70.58162325t2 + 193.79326t3, t ∈ [0.075, 0.1],
−0.6053531744 + 9.579442912t − 79.13091t2 + 215.32055t3, t ∈ [0.1, 0.125],
3.867717010 − 81.86852425t + 525.2070892t2 − 1056.92548t3, t ∈ [0.125, 0.15],
−3.389970920 + 51.64438898t − 287.2733633t2 + 576.129669t3, t ∈ [0.15, 0.175],
−0.1062186132 − 20.48085613t + 215.3414569t2 − 553.556774t3, t ∈ [0.175, 0.2],
4.397795419 − 48.67393673t + 159.4712105t2 − 132.3802809t3, t ∈ [0.2, 0.225],
−21.16959667 + 239.4476588t − 886.5049222t2 + 1069.711335t3, t ∈ [0.225, 0.25],
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Fig. 6 The graph of approximated trajectory for Example 5

Fig. 7 The graph of approximated control for Example 5

The graphs of approximated trajectory and control by this method are shown in Figs. 6
and 7. The approximated objective function by this method and the approximated objective
function in Basin and Rodriguez-Gonzalez (2006) are, respectively, I = 0.1565866913 and
J = 0.1563 (see Basin and Rodriguez-Gonzalez 2006).
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Basin and Rodriguez-Gonzalez (2006) used the terminal condition for state, but no termi-
nal condition is used here.

Example 6 Consider the optimal control of linear time-delay system (see Marzban and Raz-
zaghi 2004),

min I = 1

2

⎡
⎣105x2(2)+

2∫

0

u2(t)dt

⎤
⎦ , (21)

s.t.
dx(t)

dt
= x(t − 1)+ u(t), (22)

x(t) = 1, t ∈ [−1, 0]. (23)

The problem is to find the optimal control u(t) which minimizes (21) subject to (22) and
(23). The exact solution is given by

u(t) =
{ −2.1 + 1.05t, t ∈ [0, 1],

−1.05, t ∈ [1, 2].

x(t) =
{

1 − t + 0.525t2, t ∈ [0, 1],
−0.25 + 1.575t − 1.075t2 + 0.175t3, t ∈ [1, 2].

Here, we solve this problem by means of the Bezier curves and taking k = 5. From (11), one
can find the following approximated solutions x(t), and u(t) (see Tables 1 and 2):

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.− 1.051031912t + 0.15046066t2 + 0.6491195t3, t ∈ [0, 0.1],
1.004156605 − 1.113380987t + 0.462206016t2 + 0.12954394t3, t ∈ [0.1, 0.2],
1.016185952 − 1.203601091t + 0.687756292t2 − 0.05841464t3, t ∈ [0.2, 0.3],
1.048067919 − 1.363010963t + 0.953439472t2 − 0.20601644t3, t ∈ [0.3, 0.4],
1.065591824 − 1.428725643t + 1.035582864t2 − 0.24024287t3, t ∈ [0.4, 0.5],
3.312711536 − 8.170084775t + 7.776941994t2 − 2.48736258t3, t ∈ [0.5, 0.6],
−4.699542268 + 11.86054973t − 8.915253426t2 + 2.14935837t3, t ∈ [0.6, 0.7],
3.277064739 − 5.232179562t + 3.293838924t2 − 0.75756838t3, t ∈ [0.7, 0.8],
−1.620292370 + 3.950365053t − 2.445251484t2 + 0.43807546t3, t ∈ [0.8, 0.9],
1.321572306 − 0.9527427448t + 0.278697296t2 − 0.0663595t3, t ∈ [0.9, 1],

Table 1 Exact and estimated
values of x(t) for Example 6

t Exact x(t) Present x(t)

0.0 1.000000 1.0000000000

0.2 0.801000 0.8010050000

0.4 0.644000 0.6410479850

0.6 0.529000 0.5290000003

0.8 0.456000 0.4623799938

1.0 0.425000 0.4322061750

1.2 0.394400 0.4092437380

1.4 0.328200 0.3291700070

1.6 0.234800 0.2348050010

1.8 0.122600 0.1226060000

2.0 0.000000 0.0000000000
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Table 2 Exact and estimated
values of u(t) for Example 6

t Exact u(t) Present u(t)

0.0 −2.1 −2.100000000

0.2 −1.89 −1.915132832

0.4 −1.68 −1.677935526

0.6 −1.47 −1.469999999

0.8 −1.26 −1.240620577

1.0 −1.05 −1.050000000

1.2 −1.05 −1.050000000

1.4 −1.05 −1.050000002

1.6 −1.05 −1.049999996

1.8 −1.05 −1.050000000

2.0 −1.05 −1.050000100

Fig. 8 The graphs of approximated trajectory and control for Example 6

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2.100000000 + 1.477399952t − 5.5029091t2 + 13.6879428t3, t ∈ [0, 0.1],
−1.935541603 − 0.98947596t + 6.83147032t2 − 6.8693561t3, t ∈ [0.1, 0.2],
−2.604971822 + 4.031250676t − 5.72034628t2 + 3.5904911t3, t ∈ [0.2, 0.3],
−1.580075748 − 1.093229756t + 2.82045454t2 − 1.1543983t3, t ∈ [0.3, 0.4],
1.155971116 − 11.35340554t + 15.64567432t2 − 6.4982399t3, t ∈ [0.4, 0.5],
−13.50691046 + 32.63523922t − 28.34297046t2 + 8.1646417t3, t ∈ [0.5, 0.6],
4.632590256 − 12.71351265t + 9.44765616t2 − 2.3327546t3, t ∈ [0.6, 0.7],
−4.969028736 + 7.861385024t − 5.2486992t2 + 1.1663776t3, t ∈ [0.7, 0.8],
9.363416448 − 19.01194989t + 11.54713524t2 − 2.3327546t3, t ∈ [0.8, 0.9],
−51.85739897 + 83.02274236t − 45.13880484t2 + 8.1646417t3, t ∈ [0.9, 1],
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The graphs of approximated trajectory and control by this method are shown in Fig. 8.
The approximated and exact objective function are, respectively, I = 1.837574909 and
I ∗ = 1.8375 (see Marzban and Razzaghi 2004).

The proposed method is more straight and easier than the hybrid method in Marzban and
Razzaghi (2004), although the results of two papers more or less have the same accuracy.

5 Conclusions

Using Bezier curve, we have used least square method for numerical solutions of time-varying
linear optimal control problems with time delays in state and control.

The control point structure provides a bound on the residual function. Numerical examples
show that the proposed method is efficient and very easy to use. One may extend this method
for optimal control problems governed by nonlinear ordinary differential equations (ODEs),
but a complicated manipulation seems inevitable.

Although the method is simple, by solving various numerical examples, accuracy in com-
parison of other methods can be found.

Appendix

In this section, we specify the derivative of Bezier curve.
By (6), we have

v j (t) =
n∑

i=0

a j
i Bi,n(t), t ∈ [0, 1],

where Bi,n(t) = n!
i !(n−i)! t

i (1 − t)n−i .
Now, we have

dBi,n(t)

dt
= n(Bi−1,n−1(t)− Bi,n−1(t)), (24)

where B−1,n−1(t) = Bn,n−1(t) = 0, and

Bi−1,n−1(t) = (n − 1)!
(i − 1)!(n − i)! t i−1(1 − t)n−i ,

Bi,n−1(t) = (n − 1)!
i !(n − i − 1)! t i (1 − t)n−i−1.

Using (24), the first derivative v j (t) is shown as

dv j (t)

dt
=

n−1∑
i=1

na j
i Bi−1,n−1(t)−

n−1∑
i=0

na j
i Bi,n−1(t)

=
n−1∑
i=0

na j
i+1 Bi,n−1(t)−

n−1∑
i=0

na j
i Bi,n−1(t)

=
n−1∑
i=0

Bi,n−1(t)n{a j
i+1 − a j

i }. (25)
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Now, we specify the procedure of derivation (9) from (8).
By (6), we have

v j (t) = n
0

a j
0

1

hn
(t j − t)n

+ . . .+ n
n

a j
n

1

hn
(t − t j−1)

n, (26)

v j+1(t) = n
0

a j+1
0

1

hn
(t j+1 − t)n

+ . . .+ n
n

a j+1
n

1

hn
(t − t j )

n, (27)

by substituting t = t j into (26) and (27), one has

v j (t j ) = a j
n

1

hn
(t j − t j−1)

n, (28)

v j+1(t j ) = a j+1
0

1

hn
(t j+1 − t j )

n . (29)

To preserve the continuity of Bezier curves at the nodes, one needs to impose the condition
v j (t j ) = v j+1(t j ), so from (28) and (29), we have

a j
n(t j − t j−1)

n = a j+1
0 (t j+1 − t j )

n . (30)

From (25), the first derivatives of v j (t) and v j+1(t) are, respectively:

dv j (t)

dt
=

n−1∑
i=0

Bi,n−1(t)n(a
j
i+1 − a j

i )

=
n−1∑
i=0

(
n − 1

i

)
(t j − t)n−1−i (t − t j−1)

i

× 1

hn
{n(a j

i+1 − a j
i )}

=
(

n − 1
0

)
{n(a j

1 − a j
0)}

1

hn
(t j − t)n−1

+ . . .+
(

n − 1
n − 1

)
{n(a j

n − a j
n−1)}

× 1

hn
(t − t j−1)

n−1, (31)

dv j+1(t)

dt
=

n−1∑
i=0

(
n − 1

i

)
(t j+1 − t)n−1−i (t − t j )

i

× 1

hn
{n(a j+1

i+1 − a j+1
i )}

=
(

n − 1
0

)
{n(a j+1

1 − a j+1
0 )} 1

hn
(t j+1 − t)n−1
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+ . . .+
(

n − 1
n − 1

)
{n(a j+1

n − a j+1
n−1)}

× 1

hn
(t − t j )

n−1. (32)

By substituting t = t j into (31) and (32), we have

dv j (t j )

dt
= n(a j

n − a j
n−1)

1

hn
(t j − t j−1)

n−1, (33)

dv j+1(t j )

dt
= n(a j+1

1 − a j+1
0 )

1

hn
(t j+1 − t j )

n−1, (34)

and to preserve the continuity of the first derivative of the Bezier curves at nodes, by equalizing
(33) and (34), we have

(a j
n − a j

n−1)(t j − t j−1)
n−1 = (a j+1

1 − a j+1
0 )(t j+1 − t j )

n−1,

where it shows the equality (9).
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