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Abstract A system of ordinary differential equation, which describes the interaction of HIV and T

cells in the immune system, is utilized, and optimal representing drug treatment strategies of this

model are explored. Control model, in the sense of an optimal control problem shows the strategy

of chemotherapy treatment setting through a dynamic treatment. In this model, the optimal control

pair represents the percentage effect the chemotherapy on the CD4+T cells and virus production.

An objective function characterized based on maximizing T cells and minimizing the systemic cost

of the chemotherapy. The optimal control could characterize by using Pontryagin’s Maximum Prin-

ciple. Then by using an embedding method, we transfer the problem in to a modified problem in

measure space. This transformation is an injection; one-one mapping, so the optimal pair and its

image under the transformation could be identified. New problem could be solved by a linear pro-

gramming problem.
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1. Introduction

AIDS-Acquired Immunity Deficiency Syndrome is the disease
that has affected the whole world in the 20 years since it was

first detected. It is caused by Human Immunodeficiency Virus
(HIV). 34.3 million People live with HIV infection today that
more than 24 million are in the developing world [1].

There is still much work to be completed in the search for
an anti-HIV vaccine. Set of the chemotherapies are aimed at
killing or halting the pathogen, but treatment which can boost

the immune system can serve to help the body fight infection
on its own [2]. The new treatments are aimed at reducing viral
population and improving the immune response [1,3]. This

brings new hope to the treatment of HIV infection, and we
in Shams University.

mailto:ma_roshanfekr@yahoo.com
mailto:Farahi@math.um.ac.ir
mailto:ra_rahbarian@yahoo.com
http://dx.doi.org/10.1016/j.asej.2013.05.004
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2013.05.004


214 M. Roshanfekr et al.
are exploring strategies for such treatments using optimal con-
trol techniques.

There are two kind drugs for treatment of HIV infection

[1,4], the first kinds effect on the virus production and reduces
the virus production, the second kinds effect on the CD4+T
cells production and access CD4+T cells production [1,4]. In

this paper, it is presented a control model for medical control
of the chemotherapy treatment that uses the above two con-
trols. Pathologists attempt to obtain drugs that have capability

both works (access CD4+T cells production and reduce virus
production). However some achievements obtained in this
case, but still don’t beget drugs that do this action [5].

Here our purpose was the representation control’s model

that control both cases and minimizing the cost of treatment.

2. The mathematical model

To begin the control procedure, it is necessary to have a model
that describes the infected scenario. In [2] a simple model is gi-
ven which simulates the interaction of immune system with

HIV. This model is used here.
Let T; V represent the concentration of the uninfected

CDþ4 T cells and free infectious virus particles respectively,

and u1, u2 represent two different treatment strategies. As
our control classes we choose measurable functions defined
on a fixed interval (as treatments can’t be continued for infinite

time period due to hazardous side effects) satisfying
0 6 ai 6 ui 6 bi < 1 i= 1,2 For most of HIV chemotherapy
drugs, the length of treatment is less then 500 days [6].

The state system is

dT

dt
¼ s1 �

s2VðtÞ
B1 þ VðtÞ � lTðtÞ � kVðtÞTðtÞ þ u1ðtÞTðtÞ

dV

dt
¼ gð1� u2ðtÞÞVðtÞ

B2 þ VðtÞ � cVðtÞTðtÞ
ð1Þ

Satisfying V(0) = V0, T(0) = T, where T represents the con-

centration of CDþ4 T cells, V the concentration of HIV parti-

cles. The term s1 � s2VðtÞ
B1þVðtÞ is the source proliferation of

unaffected T cells, lT(t) is the natural loss of uninfected T

cells, kV(t)T(t) is loss by infection, gð1�u2ðtÞÞVðtÞ
B2þVðtÞ is viral contribu-

tion to plasma and cV(t)T(t) is the viral loss. Similarly, l is
death rate of T cells, k is infection rate of T cells, g is the input
rate of an external virus source, c is the loss rate of virus and
B1, B2 are half saturation constants. The controls u1 and u2
represent the immune boosting and viral suppressing drugs
Table 1 The definitions and numerical data for the param-

eters [3].

Parameters and constant Values

s1 2 d�1 mm3

s2 1.5 d�1 mm3

l 0.002 d�1

k 2.5 · 10�2 d�1 mm3

g 30 d�1 mm�3

c 0.007 cd�1 mm�3

b1 14

b2 1
respectively. The definitions and numerical data for the param-

eters can be found in Table 1.
The objective functional to be maximized is

Jðu1; u2Þ ¼
Z tf

0

T� A1u
2
1ðtÞ þ A2u

2
2ðtÞ

� �� �
dt ð2Þ

The first term represent the benefit of T cells and the other
terms are systemic costs of the drug treatments. The positive
constants A1 and A2 balance the size of the terms, and u21; u22
reflect the severity of the side effects of the drugs. When drugs
such as interleukin are administered in high dose, they are
toxic to the human body, which justifies the quadratic terms

in the functional. Our goal is maximizing the number of T cells
and minimizing the systemic cost to the body. We seek an opti-
mal control pair u�1; u�2 such that J u�1; u

�
2

� �
¼ maxfJðu1; u2Þj

ðu1; u2Þ 2 Ug where U= {(u1, u2)Œui measurable i= 1, 2

t 2 [0, tf], ai 6 ui 6 bi} is the control set.
Is recommend that the reader see [2–4] for a more complete

background and analysis of the model.

3. Application of measure theory in optimal control problem

3.1. Further analysis of the classical control problem

In the section it is followed from Rubio [7].

Consider:

(i) A real closed interval J = [ta, tb], with ta < tb. the inte-
rior of this interval in the real line will be denoted by
J0 = (ta, tb).

(ii) A bounded, closed, path wise–connected set A in Rn.
(iii) Two elements of A, xa and xb, which are to be the initial

and final states of the trajectory of the controlled system.
(iv) A bounded, closed subset U of Rm.

(v) Let X = J · A · U, and f0: X fi R, gi: X fi R; i = 1, 2,
. . ., n. a continuous function.

Consider the differential equation x
� ðtÞ ¼ gðt; xðtÞ;

uðtÞÞ; t 2 J0,
Where the trajectory function x(t) 2 A, t 2 J is a absolutely

continuous and the control function u(t) 2 U, t 2 J is Lebes-
gue-measurable.

Let p = [x(.), u(.)] Be an admissible pair, and B an open
ball in Rn+1 containing J · A; we denote by C0(B) the space
of real-valued continuously differentiable functions on B.

Let / 2 C0(B), and define

/gðt; x; uÞ ¼ /xðt; xÞ
t
gðt; x; uÞ þ /tðt; xÞ:

/xðt; xÞ ¼
@/
@x1

;
@/
@x2

; . . . ;
@/
@xn

� �
; ðt; x; uÞ 2 X

ð3Þ

Since p= [x(.), u(.)] is an admissible pair,Z
J

/g½t; xðtÞ; uðtÞ�dt ¼
Z
J

f/x½t; xðtÞ�x0ðtÞ þ /t½t; xðtÞ�gdt

¼
Z
J

_/½t; xðtÞ�dt

¼ /ðtb; xbÞ � /ðta; xaÞ � D/; ð4Þ

For all / 2 C0(B).
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Let D(J0) be the space of infinitely differentiable real–val-
ued functions with compact support in J0.

Define

wjðt; x; uÞ ¼ xjw
0ðtÞ þ gjðt; x; uÞwðtÞ; j ¼ 1; 2; . . . ; n; w

2 DðJ0Þ: ð5Þ

Then, if p= [x(.), u(.)] is an admissible pair, we have, for
j= 1, 2, . . ., n and w 2 D(J0),

Z
J

wj½t;xðtÞ;uðtÞ�dt¼
Z
J

xjw
0ðtÞdtþ

Z
J

gj½t;xðtÞ;uðtÞ�wðtÞdt

¼ xjðtÞwðtÞjJþ
Z
J

x0jðtÞ�gj½t;xðtÞ;uðtÞ�
n o

wðtÞdt¼ 0: ð6Þ

Put /(t, x, u) = h(t). (t, x, u) 2 X, that is a function which de-
pends on the time variable only; then / g(t, x, u) = h0(t), if
p = [x(.), u(.)] is an admissible pair, then the equality (4) for

the function / implies that

Z
J

f½t; xðtÞ; uðtÞ�dt ¼ af:
:

3.2. Transfer the problem into measure space

Now consider the mapping: Kp: C(X) fi R

KpðfÞ ¼
Z
J

f½t; xðtÞ; uðtÞ�dt: f 2 CðXÞ ð7Þ

This well defined mapping is linear, positive, continuous, and
injection (see Rubio [6]) therefore, can be identified pairs

p = [x(.), u(.)] with the linear functional Kp.
Some authors define such a functional as positive Radon

measure (see Rubio [7]),

Using this approach, the above optimal control now can be
written as follows:

Minimize Kpðf0Þ
Subject to : Kpð/gÞ ¼ D/; / 2 C0ðBÞ:

KpðwjÞ ¼ 0; j ¼ 1; 2; . . . ; n w 2 DðJ0Þ ð8Þ
KpðfÞ ¼ af; f 2 C1ðXÞ

A Radon measure on X can be identified with a regular Borel
measure on this set (see Rubio [6]), thus KpðfÞ ¼R

X fdl ¼ lðfÞ f 2 CðXÞ.
The space of all positive Radon measures on C(X) will be

denoted by M+(X).
We seek a measure in M+(X), to be normally denoted by

l*, which minimizes
The functional

l 2MþðXÞ ! lðf0Þ 2 R ð9Þ

Subject to the constraints

lð/gÞ ¼ D/ / 2 C0ðBÞlðwjÞ ¼ 0 j ¼ 1; 2; . . . ; n & w 2 DðJ0Þ
lðfÞ ¼ af f 2 C1ðJ0Þ:

ð10Þ

The existence of the optimal measure for problem (9)
and (10) is based on analysis described in Farahi et al.
[8].
3.3. Approximation

We considering the minimization of l fi l(f0) over a subset of
M+(X) defined by requiring that only a finite number of the
constraints in (10) are satisfied.

Consider the first set of equalities in (10). Let the set
{/iŒi= 1, 2, . . .} be such that the linear combinations of the
function /i 2 C0(B) are uniformly dense in the space

C0(B). For instance, these functions can be taken to bemono-

mials in the components of the n-vector x and the variable t.
Consider the function in D(J0) defined by

wðtÞ ¼ sin½2prðt� taÞ=Dt� t 2 J0

0 t R J0

(
;

wðtÞ ¼ 1� cos½2prðt� taÞ=Dt� t 2 J0

0 t R J0

( ð11Þ

where Dt= tb � ta and r= 1, 2, 3, . . . . We shall call
{vhŒh = 1, 2, . . .} the sequence of functions of the type wj(t,
x, u) = xjw0(t) + gj(t, x, u)w(t). j = 1, 2, . . ., n, defined in

(10), when the functions w(t) are the sine and cosine functions
(14) defined above and

j ¼ 1; 2; . . . ; n

Theorem 3.1. Consider the linear program consisting in mini-

mizing the function l fi l(f0) over the set Q(M1, M2) of
measures in M+(X) satisfying

lð/g
i Þ ¼ D/i i ¼ 1; 2; . . . ;M1

lðvhÞ ¼ 0 h ¼ 1; 2; . . . ;M2

ð12Þ

As M1 and M2 tend to infinity, gðM1;M2Þ ¼ inf lðfÞQðM1 ;M2Þ
tends to g = infl(f0)Q.

For proof see Farahi, et al. [8,9].

The number of constraints in the original linear program
was limited; the underling space is not, however, finite-

dimensional. It is possible, though, to develop a finite-
dimensional linear program whose solution can be used to
construct one for the problem of minimizing l fi l(f0) over

the set (12).

z was written for the triple (t, x, u) 2 X. A unitary atomic

measure with support the singleton set {z}, to be denoted by

dzðAÞ ¼
1 z 2 A
0 z R A

�
, is characterized by d(z)(F) = F(z),

F 2 C(X), z 2 X.

It is possible to characterize a measure in the set Q(M1, M2)

at which the linear function l fi l(f0) attains its minimum.

Theorem 3.2. The measure l* in the set Q(M1, M2) at which
the function l fi l(f0) attains its minimum has the form

l� ¼
PM1þM2

i¼1 a�i dz�
i
.

With the triples z�i 2 X, and the coefficient

a�i P 0; i ¼ 1; 2; . . . ;M1 þM2.

For proof see Rubio [7].

The measure–theoretical optimization problem is equivalent
to a nonlinear optimization problem; we shall take a different
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road this time, and try somehow to preserve the essential

linearity of the problem. The answer lies in approximating this
support, by introducing a set dense in X:

Theorem 3.3. Let x be a countable dense subset of X. Given
e > 0, a measure �m 2MþðXÞ can be found such that

jðm� � �mÞf0j 6 e

jðm� � �mÞ/g
i j 6 e i ¼ 1; 2; . . . ;M1:

jðm� � �mÞvhj 6 e h ¼ 1; 2; . . . ;M2:

The measure �m has the form �m ¼
PM1þM2

k¼1 a�i dðzkÞ. with the triples
z�i 2 x, and the coefficient a�i P 0; i ¼ 1; 2; . . . ;M1 þM2.

For proof see Rubio [7].

These results suggest that the following linear program
should be considered. Given e > 0 and zk, zk 2 x, k = 1, 2, . . .,
N, where x is a dense subset of X,

Min
XN
j¼1

ajf0ðzjÞ

Subject to : � e 6
XN
j¼1

aj/
g
i ðzjÞ � D/ 6 e i ¼ 1; 2; . . . ;M1

� e 6
XN
j¼1

ajvhðzjÞ 6 e h ¼ 1; 2; . . . ;M2

ð13Þ

Note that the elements zk 2 x, k = 1, 2, . . ., N, are fixed; the
only unknowns are the numbers ai, i = 1, 2, . . ., N. There are
N unknowns and 2(M1 + M2) inequalities in this linear pro-
gramming problem.

We have chosen functions, hs, s = 0, 1, 2, . . ., L as

hsðtÞ ¼
1 t 2 Js
0 t R Js

�
, with Js = [ta + (s � 1)(tb � ta)/L,

ta + s(tb � ta)/L]

Now consider the optimal control problem

min I ¼
R tb
ta
f0½t; xðtÞ; uðtÞ�dt

s:t x
� ðtÞ ¼ gi½t; xðtÞ; uðtÞ� i ¼ 1; 2; . . . ; n

Let X = J · A · U, divide the region X to N grids XK, so we

have: X ¼ [
N

K¼1
XK, and choose zK 2 XK, where zk = (tk, xk,

uk), k = 1, 2, . . ., N. To define /0s, w0s and h0s functions, we
have chosen M1, M2 and L of these functions respectively, thus:

/g
i ðt; x; uÞ ¼

@/iðt;xÞ
@x
� gðt; x; uÞ i ¼ 1; 2; . . . ;M1

We define vh functions as follows:

wr
j ðt; x; uÞ ¼ xjw

0
rðtÞ þ gjðt; x; uÞwrðtÞ

where (t, x, u) 2 X, j = 1, 2, . . ., n, r = 1, 2, . . ., 2M2, and we
have:

wrðtÞ ¼ sin½2prðt� t0Þ=Dt� r¼ 1;2; . . .M2

wrðtÞ ¼ 1� cos½2pðr�M21Þðt� t0Þ=Dt� r¼M21þ 1; . . . ;2M2

�
ð14Þ

Where M2 = 2M21, h = 1,2, . . ., M2, Dt = t1 � t0,
Now the optimal control problem (9) and (10) is approxi-

mated by the following finite-dimensional linear-programming
problem:
min
XN
j¼1

ajf0ðzjÞ

s:t :
XN
J¼1

aj/
g
i ðzjÞ ¼ D/i i ¼ 1; 2; . . . ;M1

XN
j¼1

ajvhðzjÞ ¼ 0 h ¼ 1; 2; . . . ;M2

XN
j¼1

ajhsðzjÞ ¼ as s ¼ 1; 2; . . . ;L

ð15Þ

where D/i = /i(tb, xb) � /i(ta, xa)
4. Computational method

In the following the problem (1) was replaced by another one

in which the maximum of the functional (2) calculated over a
set of positive Radon-measure to be defined as follows. We fol-
low the analysis of the previous section.

We consider again state system (1) and for simplicity, it was
assumed that:.V= x2, T = x1 Hence (1) change to:

dx1

dt
¼ s1 �

s2x2

B1 þ x2

� lx1 � kx2x1 þ u1ðtÞx1

dx2

dt
¼ gð1� u2ðtÞÞx2

B2 þ x2

� cx2x1

ð16Þ

Putting parameters from Table 1 we have

dx1
dt
¼ 2� 1:5x2

0:007þx2 � 0:002x1 � 0:00025x2x1 þ u1ðtÞx1

dx2
dt
¼ 30ð1�u2ðtÞÞx2

14þx2 � 0:007cx2x1

where the objective functional is as follows:

Jðu1; u2Þ ¼
Z tf

0

x1 � A1u
2
1ðtÞ þ A2u

2
2ðtÞ

� �� �
dt:

A1 ¼ 250000; or 500000; and A2 ¼ 75

ð17Þ

The initial values of x1, x2 are given, while the final values of

these variables are indefinite. Define _x ¼ gðt; x; uÞ where

x ¼ x1

x2

	 

; g ¼ g1

g2

	 

so we have

g1ðt;x;uÞ¼
dx1

dt
¼2� 1:5x2

0:007þx2

�0:002x1�0:00025x2x1þu1ðtÞx1

g2ðt;x;uÞ¼
dx2

dt
¼30ð1�u2ðtÞÞx2

14þx2

�0:007x2x1

ð18Þ

Here the optimal control problems (14) and (15) were approx-
imated by a finite dimensional linear programming problem.
Suppose t 2 J = [t0, t1], xi 2 Ai; i= 1, 2u1 2 U1 and u2 2 U2.

It was assumed that m1 = 10, m2 = 5, m3 = 5, m4 = 6 and
m5 = 6, are the number of partitions respect to J, A1, A2, U1

and U2, respectively. We define:

N ¼ m1 �m2 �m3 �m4 �m5 ¼ 9000

Let X = J · A1 · A2 · U, where U= (U1, U2) is control func-
tion pair and g: X fi R5 is the continuous function. Now
divide the region X to N grids XK, so we have:

X ¼ [
N

K¼1
XK, and choose zK 2 XK, where

zk ¼ tk; x
k
1; x

k
2; u

k
1; u

k
2

� �
; k ¼ 1; 2; . . . ; 9000.
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Figure 1 Optimal controls u1, u1 for A1 = 250000.
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Figure 3 V cell count for A1 = 250000.
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Figure 4 Optimal controls u1, u1 for A1 = 500000.
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Figure 5 T cell count for A1 = 500000.
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The functions /0s, w0s and h0s are defined as in [7].
So, the approximated linear programming problem which

approximates the action of optimal control problem would be:

max
X9000
j¼1

aj

Z tf

0

xj
1� A1u

2
1ðtÞþA2u

2
2ðtÞ

� �� �
dt

	 


s:t �
X9000
j¼1

aj 2� 1:5xj
2

0:007þxj
2

�0:002xj
1�0:00025xj

2x
j
1þuj1ðtÞx

j
1

� �
þbj

1 ¼ 400

�
X9000
j¼1

aj

30 1�uj2ðtÞ
� �

xj
2

14þxj
2

�0:007xj
2x

j
1

 !
þbj

2 ¼ 2:5

X9000
j¼1

aj

2pixj
1

5
cosð2pitj=5Þþg1 sinð2pitj=5Þ

� �
¼ 0; i¼ 1;2

X9000
j¼1

aj

2pixj
1

5
sinð2pitj=5Þþg1ð1� cosð2pitj=5ÞÞ

� �
¼ 0; i¼ 1;2

X9000
j¼1

aj

2pixj
2

5
cosð2pitj=5Þþg2 sinð2pitj=5Þ

� �
¼ 0; i¼ 1;2

X9000
j¼1

aj

2pixj
2

5
sinð2pitj=5Þþg2ð1� cosð2pitj=5ÞÞ

� �
¼ 0; i¼ 1;2

X900
j¼1

aj ¼ 1

X1800
j¼901

aj ¼ 1

..

.

X9000
j¼8101

aj ¼ 1

aj P 0; j¼ 1;2;3; . . . ;9000

The linear programming problem has 9000 variables and 20

constraints. This problem was solved for initial values,
A1 = 250000 and A2 = 500000, by using MATLAB’s software
for the following defined intervals:

A1 ¼ ½400; 1000�; A2 ¼ ½0; 3:5�; U1 ¼ ½0; 0:2� U2

¼ ½0; 0:9�; J ¼ ½0; 9�

The objective function’s value is equal to 6139.69, and the
piecewise constant controls u1 and u2 shown below.

4.1. Conclusion

There are generated several treatment schedules for various

time periods. A case for two different values of A1 for a 5-
month treatment schedule is illustrated. Figs. 1–3 are plotted
using A1 = 250000; A2 = 75; b1 = 0:02; b2 = 0:9,

Fig. 1 represents the controls u1 and u2 for drug administra-
tion schedule for these parameters.

Fig. 2 represents the number of T cells during our treatment

period. The T cell population increases almost linearly up to5
month.

Fig. 3 represents the virus population during treatment per-
iod. In the beginning, a sharp decrease was showed in the virus

population and after few days it started to increase steadily
with some fluctuations.

Fig. 4 represents the optimal controls u1 and u2 for drug

administration schedule for the second set of parameters.
In the compare of Figs. 5 and 6 for T and V with Figs. 2

and 3, it showed that higher A1 values reduced the T cell pop-

ulation and increased the virus population.
Nowadays the dynamic behavior of the immune system in

dealing with different diseases are expressed in equations and

nonequations forms until the best way to control the immune
system and treatment be resulted by mathematical science
[6,10].

In the treatment of diseases Factors such as duration of

therapy, the amount of prescribed medication, Intervals for
drugs and treatment costs can form parts of the control of sys-
tem [6].

Considering that the optimal control models made in most
cases leads to the complex nonlinear with high Dimension,
solving these models with the help of the classical methods

optimal control or other numerical methods is very difficult.
In addition in these methods restrictions are imposed on the
system such as the derivative of the functions, which may be
caused that the problem is not answer in the space of derivative

functions [7].
Using of measure method for solving optimal control prob-

lems has some benefits such as using of this method for liner

and nonlinear problems. This method can find the answer in
the highest space size and then can be return the answer to
the functions space using the approximation method. The

complexity of problem and high dimension in measure space
douse not so long the time of solution of problems. In measure
method global answer can be found while in the most methods

local answer can be found [7]. Therefore using of measure
method in solving of these problems could be recommended.
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