Contents lists available at ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

Original article

Quenching effect of deferoxamine on free radical-mediated photon production in luminol and *ortho*-phenanthroline-dependent chemiluminescence

Mahdi Parvar^a, Jalil Mehrzad^{b,c,*}, Mohammad Javad Chaichi^a, Saman Hosseinkhani^d, Hamid Golchoubian^a

^a Faculty of Chemistry, Mazandaran University, Babolsar 4741695447, Iran

^b Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

^c Veterinary Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

^d Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran

ARTICLE INFO

Article history: Received 19 July 2013 Received in revised form 24 December 2013 Accepted 24 December 2013 Available online 14 January 2014

Keywords: Chemiluminescence Deferoxamine Free radicals Photon production Stern–Volmer plot

ABSTRACT

Removing excessive free radicals (FRs) by a synthetic chemical might give a clue for treatment of many iron-mediated diseases. Deferoxamine (DFO) can be one of the chemicals of choice for the clue. To investigate photoredox properties of DFO, its quenching effect on superoxide radical $(O_2^{-\bullet})$, hydrogen peroxide (H_2O_2) and hydroxyl radical (OH^{\bullet}) was examined using luminol and *ortho*-phenanthroline (*o*-phen) chemiluminescence (CL) systems and UV-vis spectrophotometry. Stern-Volmer equation was also used for the CL kinetics. The observed quenching effect of DFO on CL/photon production in luminol and *o*-phen CL systems strongly confirmed the static arm of quenching properties of DFO on OH[•] and H_2O_2 , but much less pronounced on $O_2^{-\bullet}$; the quenching property was maximal when iron was involved in the reaction systems. The Stern-Volmer plots in the designed photochemical reaction systems also confirmed a potent quenching effect of DFO on FR-mediated CL. Our study highlights strong photoreducing and antioxidant properties of DFO with huge quenching capacity on excessive FRs, and thus implies its promising prospects for therapeutic applications.

© 2014 Jalil Mehrzad. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

1. Introduction

Free radicals (FRs) such as $O_2^{-\bullet}$, H_2O_2 , OH^{\bullet} , ${}^{1}O_2$ and $ONOO^-$ are normally generated *in vivo* [1–4]. Formed by one electron reduction of O_2 , in the body, the $O_2^{-\bullet}$ is produced mostly in inflamed sites [1,2], dismuted to H_2O_2 [5,6] and further converted to OH^{\bullet} , mainly by Fe^{2+} and Cu^+ , initiating Fenton's-like reactions and extensive oxidative damage to vital biomolecules like nucleic acids, proteins and lipids [7–9]. Among the FRs, OH^{\bullet} highly reacts with functional groups of biomolecules and destroys them [10–12] (Eqs. (A) and (B)). Also, oxidation of Fe^{2+} by H_2O_2 produces OH^{\bullet} [13]; the OH^{\bullet} is an intermediate product of reactions in many biochemical systems such as, (A) $H_2O_2 + Fe^{2+} \rightarrow OH^- + OH^{\bullet} + Fe^{3+}$, (B) $OH^{\bullet} + RH \rightarrow R^{\bullet} + H_2O$, (C) $R^{\bullet} + Fe^{3+} \rightarrow R^+ + Fe^{2+}$ and (D) $Fe^{2+} + OH^{\bullet} \rightarrow Fe^{3+} + OH^-$.

E-mail address: mehrzad@um.ac.ir (J. Mehrzad).

To combat the destructive effects of FRs, the body utilizes elaborate enzymatic/endogenous and non-enzymatic/exogenous antioxidant defenses [14] to quench or remove excessive FRs. Many synthetic chemicals also possess redox properties, eliminating oxidants–antioxidants imbalances *in vivo*. Among several available synthetic antioxidants, deferoxamine (DFO; Desferal[®]) can be a photochemical of choice for therapeutic purposes, and its clinical application in human and animal is promising [15–19].

As a siderophore, DFO is naturally produced by *Streptomyces pilosus*; it has been purified and synthesized since 1960 (Scheme 1A) [20]. As a specific iron chelator and by forming water soluble complex with iron, DFO effectively removes and eliminates excessive iron (Scheme 1B) [19,21], thereby balancing redox system in blood. Though to a much less extent than Fe³⁺, DFO also exhibits affinity toward Al³⁺, Cu²⁺, Ni²⁺, Zn²⁺, Ga³ and other metal ions [22].

Despite its promising implication in medicinal chemistry, little studies have been done on photochemical properties of DFO in FRs producing chemical systems. This study aimed to pinpoint the luminescent properties of DFO to which how it behaves and interacts in the photochemical reactions systems using Fenton's

^{*} Corresponding author at: Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.

^{1001-8417/\$ –} see front matter © 2014 Jalil Mehrzad. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. http://dx.doi.org/10.1016/j.cclet.2014.01.022

Scheme 1. Chemical structure of deferoxamine (DFO) in complex with iron (A) and its interaction with some free radicals in the Fenton's reaction system (B). Chemiluminescence (CL) mechanisms for luminol (C) and *ortho*-phenanthroline (D) and a generally accepted pyrogallol autoxidation pathway (E).

reaction and Fenton's-like reaction. To investigate photochemical properties of DFO, we tested the quenching and scavenging capacities of DFO on OH^{\bullet} , H_2O_2 and $O_2^{\bullet-}$ using luminol and *ortho*-phenanthroline (*o*-phen)-enhanced CL systems, UV-vis absorption spectroscopy and Stern–Volmer equation model.

2. Experimental

All chemicals and reagents were analytical grade. DFO, as mesylate salt (Desferal[®]), and *o*-phen were purchased from Sigma Chemical Co., St. Louis, MO, USA. Other chemical reagents were purchased from Merck, Darmstadt, Germany. Stock solutions of DFO (0.3 and 0.01 mmol/L in ddH₂O), luminol (0.1 mmol/L in DMSO, dimethylsulfoxide), *o*-phen (0.01 mmol/L in ddH₂O), CuSO₄ (0.01 mmol/L in ddH₂O), FeSO₄ (0.01 mmol/L in ddH₂O), were freshly prepared and appropriately protected from light for further use. Main buffers used in the study were phosphate-buffered saline solution (PBS), Tris–HCl, at pH 7.4 and 8, Tris–HCl at pH 8, carbonate at pH 10.2 and acetate at pH 5.5.

To test the effects of DFO on FR, various CL assays, in which the FR, especially OH^{\bullet} , H_2O_2 and $O_2^{\bullet-}$ that are central photo reactants *in situ*, were used. Photochemically, decrease of CL intensity in our method with DFO load always attributes to scavenging capacity/ quenching ability of DFO on FR.

To examine the quenching effect of DFO on OH[•]-induced luminol CL, OH[•] was generated by a Fenton's-type reaction [23] containing 100 μ L FeSO₄ (0.4 mmol/L) and 100 μ L of H₂O₂ 1.5%. This mixture was incubated for 2 min at 37 °C and then 100 μ L of PBS with and without different concentrations of DFO was added to the reaction mixture (solution 1). Luminol solution (600 μ L of 0.15 mmol/L) was added into the luminometer cell (solution 2),

and background of photon production was recorded on a FB12/ Sirius Berthold ultra weak luminometer. Finally, 150 µL of solution 1 was added to the solution 2 and CL/photon production was counted (counts/10 s) and total CL count was integrated. Further, Stern–Volmer plot was drawn from equation $I_0/I = 1 + K_Q [Q] [24]$, where K_Q is the Stern–Volmer quenching constant, I_0 and I are CL intensity without and with DFO, respectively, and [Q] is concentrations of DFO. Also % of scavenging capacity (SC) was calculated using: SC = [($CL_{control} - CL_0$) – ($CL_{sample} - CL_0$)]/(CL_{con $trol} - CL_0$), where $CL_{control}$ is the photon production of the control, CL_0 is the photon production of the background and CL_{sample} is the photon production of DFO mixed samples.

The inhibitory effect of DFO on Fenton's generated OH[•] was performed using Cu²⁺ and ascorbic acid instead of Fe²⁺, and *o*-phen was used as CL probe [25,26]. Briefly, 100 μ L of 2 × 10⁻⁴ mmol/L CuSO₄, 100 μ L of 10⁻³ mmol/L ascorbic acid, 100 μ L of 10⁻³ mmol/L o-phen, 400 μ L of 0.1 mmol/L acetate buffer and 100 μ L of PBS with different concentrations of DFO. After recording the background CL (*CL*₀), the reaction was started after addition of 200 μ L of 1 mmol/L H₂O₂. The CL intensity was counted once every 20 s at 37 °C. The Stern–Volmer quenching constant (*K*_Q) and SC were obtained as aforementioned procedure.

To evaluate the SC of DFO on H_2O_2 , 600 μ L of 50 mmol/L PBS, pH 8.0, with and without 200 μ L of DFO in PBS and 200 μ L of H_2O_2 1% were mixed for 10 min at 37 °C. Then 150 μ L luminol (15 mmol/L) was added to the mixture; CL was quantified every 4 s, and KQ and SC were eventually obtained.

To examine the scavenging effect of DFO on $O_2^{-\bullet}$, the $O_2^{-\bullet}$ was generated from a pyrogallol autoxidation system accordingly [27]; the SC was determined with UV–vis spectrophotometer (cecill model 5000, Cambridge, England). Briefly, 500 μ L of 100 mmol/L

Fig. 1. Typical pattern of deferoxamine (DFO) effect on FRs-induced chemiluminescence (CL), Fenton's reaction: Fe²⁺-H₂O₂-luminol, A and B; quenching/scavenging capacity (%SC), Fenton's-like reaction: Cu²⁺-ascorbic acid-H₂O₂-o-phen, C and D, %SC, and H₂O₂-induced luminol CL, E and F, %SC.

Tris–HCl, pH 8.2, $(1500 - X) \mu L ddH_2O$, $X \mu L of 300 mmol/L DFO$ plus 100 μL of 0.33 mmol/L pyrogallol, were carefully mixed. The absorbance was measured every 10 s at $\lambda = 310$ nm. The autoxidation rate of pyrogallol was calculated and controlled using the slope of the absorbance fluctuations at λ 310 nm in function of time (s) by adjusting the concentration of pyrogallol. The autoxidation rate of pyrogallol was recorded every second, and was linearly correlated with the absorbance. The scavenging rate, expressed as %SR, of DFO for $O_2^{-\bullet}$ was calculated using, SR = $(k_0 - k_1)/k_0 \times 100\%$, where k_0 and k_1 are autoxidation rates of pyrogallol without and with DFO, respectively.

3. Results and discussion

As confirmed in our study, DFO inhibited Fenton's reaction *via* its ability to: (1) scavenge OH[•], (2) form complexes with iron and (3) scavenge H_2O_2 and to a lesser extent $O_2^{-\bullet}$. Based on the recorded Fenton's reaction, two CL systems (luminol and *o*-phen) were used to pinpoint the effect of DFO on OH[•] in the CL systems mainly *via* complexation of DFO with catalysts, Fe²⁺ and Cu²⁺. Kinetics of OH[•]-induced photon production with and without different concentrations of DFO on luminol and *o*-phen CL systems are representatively shown in Fig. 1A and C. In both systems, photon production intensity dose-dependently decreased with increasing of DFO concentration. The CL intensity peaked at 30 s (T_m) then decreased slowly with increasing reaction time (Fig. 1A). DFO inhibited OH[•]-induced photons from the start of the CL reaction; in this system the OH[•] generated mainly from a Fenton's reaction (Eq. (A)). DFO load at 8 µg/mL forms strong complex with

Fe²⁺, thus inhibiting OH[•] production (half inhibition concentration $(IC_{50}) \approx 2.5 \ \mu g/mL$, Table 1 and Fig. 1B).

Since the affinity of DFO to form complexes with Cu^{2+} is much less than with Fe^{2+} , we further examined the effect of DFO on OH[•] without iron, using Fenton's-like reaction, in which the contribution of Cu^{2+} , instead of Fe^{2+} , to *o*-phen as a CL probe to generate •OH-induced CL is central. Also, in this CL system ascorbic acid played key role in the reaction mechanism (Eqs. (E)–(H)): (E) Ascorbic acid + $2Cu^{2+} \rightarrow$ Dehydroascorbic acid + $2Cu^+ + 2H^+$, (F) $2Cu^+ + 2O_2(aq) \rightarrow 2Cu^{2+} + 2O_2^-$, (G) $2O_2^- + 2H^+ \rightarrow H_2O_2 + O_2$ and (H) $Cu^+ + H_2O_2 \rightarrow •OH + OH^- + Cu^{2+}$.

The kinetics of the o-phen-mediated OH•-induced CL showed the CL intensity reached to its $T_{\rm m}$ at about 160 s and more slowly decreased afterwards Fig. 1C; this was remarkably different from what observed in luminol-mediated OH•-induced CL (Fig. 1A). Indeed, DFO instantly inhibited OH•-induced CL from the start of the reaction and remained inhibited until the endpoint. In this system increasing of DFO concentration to140 µg/mL resulted in quenching of more than 90% of CL signal (IC₅₀ \approx 32 µg/mL, Fig. 1D); this might be due to far less affinity of DFO to form complexes with Cu²⁺.

Part of the quenching effect of DFO on Fenton's reactioninduced CL may be ascribed to the scavenging ability of DFO on H_2O_2 . We, therefore, examined the effect of DFO on H_2O_2 via its quenching effect on H_2O_2 -induced luminol-dependent CL/photon production with no interference of Fe²⁺, Fe³⁺and Cu²⁺. The kinetics curve of H_2O_2 -induced luminol-dependent CL (Fig. 1C) differed from that of OH[•]-induced CL (Fig. 1E). CL intensity instantly reached to its maximal value then rapidly decreased to half of the initial value at ~40 s (Fig. 1E), clearly indicating that H_2O_2 was

Table 1

Quenching parameters of deferoxamine (DFO) from Stern-Volmer plot in different CL systems.

CL system	$K_Q (mL/\mu g)$	Stern–Volmer equation $(y = I_0/I, x = [DFO])$	r^2	N ^a	IC_{90}^{b} (µg/mL)	IC ₅₀ ^c (µg/mL)
Fe ²⁺ -H ₂ O ₂ -luminol	1.302	y = -0.510 + 1.302x	0.994	6	8	2.5
Cu ²⁺ -ascorbic acid-H ₂ O ₂ -o-phen	0.042	y = 0.783 + 0.042x	0.955	7	140	32
H ₂ O ₂ -luminol	0.693	y = 1.282 + 0.693x	0.990	5	12	0.8

^a Number of points.

^b 90% inhibition concentration.

^c 50% inhibition concentration.

Fig. 2. Stern–Volmer plots for quenching effect of deferoxamine (DFO) on (A) Fe²⁺-H₂O₂-luminol CL, (B) Cu²⁺-ascorbic acid-H₂O₂-o-phen CL and (C) H₂O₂-luminol C systems. (D) Kinetics plot of autoxidation of pyrogallol by UV-vis spectrometry at λ 310 nm and (E) scavenging rate of pyrogallol with different concentrations of DFO.

rapidly consumed by DFO in luminol-CL system. As clearly observed, low range of [DFO] acted as strong scavenger of H_2O_2 in concentration-dependent manner. At 12 µg/mL, DFO quenched more than 90% of CL signal (IC₅₀ \approx 0.8 µg/mL, Fig. 1F).

The photon production decay curves for all CL systems evaluated with and without DFO are shown in Figs. 1 and 2A-C. Nevertheless, in all above-mentioned CL systems DFO was found to markedly quench the designed photoreaction systems. In the presence of DFO, the CL intensity of photon production reduced from I_0 to I, the ratio is directly proportional to the DFO load [Q]according to Stern–Volmer equation, in which a plot of I_0/I versus [Q] yielded a linear graph with an intercept of 1 and a slope of K_0 . For a measurement system based on quenching and interpretation, the K_Q is central; the larger the K_Q in our CL systems with DFO, the higher quenching capacity of DFO; indeed, the K_0 is directly proportional to the effect of DFO on the photochemical reaction. A plot of I_0/I versus [DFO] for the photochemical system for some key parameters of the plots are given in Table 1 and Fig. 2A-C. Interestingly, the quantum of K_0 for the three different CL systems clearly reveals the fact that quenching capacity of DFO on Fenton's reaction behaved somewhat differently. The Stern-Volmer constant in the presence of Fe²⁺ was more than that of the Cu²⁺, further revealing the fact that DFO can far better form complex with Fe²⁺ than Cu²⁺.

Indeed, FRs are key compartments of both luminol and *o*-phen CL systems [28], see Scheme 1C and D. Both Fe²⁺ and Cu²⁺ have catalytic role in the CL system. Low K_Q with Cu²⁺ is mainly due to the presence of *o*-phen in the CL system, because Cu²⁺ can perform strong complex with *o*-phen. The *o*-phen possesses two nitrogen atoms in the heterocyclic system. These aromatic molecules appropriately interact with Cu²⁺ and produce relatively tight complexes with copper. DFO in the presence of *o*-phen cannot appropriately breakdown the Cu-*o*-phen complexes and, thus K_Q for *o*-phen CL system is far less than that of luminol CL system. Indeed, DFO, an easily oxidizable antioxidant and as a strong iron lowering chemical in our photo reactive mixture and therefore functioned as a static quencher in our luminol-dependent CL system. The most probable mechanism for the quenching of CL by

DFO could be *via* electron transferring pathway. Mechanistically, there would be two forms of quenching pathways for DFO in our examined CL systems, static and dynamic [24]. The static one results from formation of DFO-photoreactant complexes. In contrast, the dynamic one is the result of collision of DFO with the photoreactants, accelerating energy loss in the reaction mixture [24]. Indeed, both the static and the dynamic pathways of quenching can be predicted in the applied Stern–Volmer equation model. To us, the observed quenching effect of DFO in our study belongs mainly to the static part of quenching pathway, and DFO-iron complexation in our CL systems clearly exemplifies the static arm of the quencher, DFO.

In the presence of iron the maximal quenching capacity of DFO on Fenton's reaction systems were observed; in contrast, the minimal quenching capacity of DFO were observed in the Fenton's-like reaction system, further supporting far lower affinity of DFO to react with Cu^{2+} , compared with Fe^{2+} ; very well correlation between K_Q and IC_{90} , further confirms our point on the affinity of DFO in different photochemical reactive systems designed in our study.

We applied the autoxidation properties of widely used pyrogallol [29,30] to pinpoint photoactive capacity of DFO against FR, especially $O_2^{-\bullet}$ in our CL system. The presence of oxygen can be detected or measured by absorbance of the oxidized-colored product of pyrogallol with spectrophotometry; their mechanism of action is given in Scheme 1E. production of end product of the reaction, quinine, directly links to $O_2^{-\bullet}$ [29,30]. So, any $O_2^{-\bullet}$ scavenger weakens the rate of quinine production in our designed CL system. These changes can be easily monitored by a time-driven UV-vis detector. Effect of DFO on kinetics of autoxidation of pyrogallol [29,30] by UV-vis spectrophotometry at λ 310 nm (Fig. 2D) further confirmed that the decreased slope of the association lines inextricably linked to the DFO load in the reaction mixture. The concentration-dependent manner of scavenging effect of DFO on O2-• increased with increase of DFO load (Fig. 2E). At the concentration of 8400 µg/mL SC of 50% was achieved for $O_2^{-\bullet}$, *i.e.*, IC₅₀ ~8.4 µg/mL. In this photoreactive system, IC₅₀ was also measured for some other well-known antioxidants such as ascorbic acid and vitamins B₆ and B₉; the IC₅₀ for these well-known reducing agents was 5.5, 79 and 115 μ g/mL, respectively (data not shown). Compared to other FR, scavenging effects of DFO on O₂^{-•} was far less than those of OH[•] and H₂O₂; biologically, this can be pivotal especially *in vivo* while using DFO as anti-inflammatory chemical for pharmaceutical formulations.

4. Conclusion

The photoanalytical and plotting assays in our CL systems reveal a promising photoredox properties of DFO with huge quenching capacity mainly on OH[•] and H_2O_2 with much less pronounced on $O_2^{-•}$. This quenching is mainly derived from the complexation of DFO with catalyst, Fe^{2+} , and thus Fe^{2+} removal from the oxidation reaction; this complexation process in the presence of OH[•] and/or H_2O_2 might be faster than of $O_2^{-•}$. Further study is needed for the detailed mechanism of metal ions catalyzing the CL reaction. DFO would be a chemical of choice in biological system to remove excessive FRs, especially OH[•] in the body for therapeutic purposes. As such, application of DFO in pharmaceutical formulations is highly encouraged.

Acknowledgment

The authors gratefully acknowledge the bureau (area) for research and technology of Ferdowsi University of Mashhad and Mazandaran University, Babolsar, Iran.

References

- J. Mehrzad, H. Dosogne, E. Meyer, R. Heyneman, C. Burvenich, Respiratory burst activity of blood and milk neutrophils in dairy cows during different stages of lactation, J. Dairy Res. 68 (2001) 399–415.
- [2] J. Mehrzad, L. Duchateau, C. Burvenich, High milk neutrophil chemiluminescence limits the severity of bovine coliform mastitis, Vet. Res. 36 (2005) 101–116.
- [3] S. Dikalov, K.K. Griendling, D.G. Harrison, Measurement of reactive oxygen species in cardiovascular studies, Hypertension 49 (2007) 717–727.
- [4] K. Takeshige, S. Minakami, NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation, Biochem. J. 180 (1979) 129–135.
- [5] B. Halliwell, J.M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186 (1990) 1–85.
- [6] C.W. Trenam, D.R. Blake, C.J. Morris, Skin inflammation: reactive oxygen species and the role of iron, J. Invest. Dermatol. 99 (1992) 675–682.
- [7] G. Poli, U. Leonarduzzi, F. Biasi, E. Chiarpotto, Oxidative stress and cell signaling, Curr. Med. Chem. 11 (2004) 1163–1182.
- [8] J.E. Schneider, M.M. Browning, X. Zhu, K.L. Eneff, R.A. Floyd, Characterization of hydroxyl free radical mediated damage to plasmid pBR322 DNA, Mutat. Res. 214 (1989) 23–31.
- [9] E.R. Stadtman, B.S. Berlett, Reactive-oxygen mediated protein oxidation in aging and disease, Chem. Res. Toxicol. 10 (1997) 485–494.

- [10] H.J.H. Fenton, Oxidation of tartaric acid in the presence of iron, J. Chem. Soc. 65 (1894) 899–910.
- [11] E. Neyens, J. Baeyens, A review of classic Fenton's peroxidation as an advanced oxidation technique, J. Hazard. Mater. 98 (2003) 33–50.
- [12] S.B. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigments 76 (2008) 714–720.
- [13] F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Lond. A 147 (1934) 332–351.
- [14] B. Halliwell, Free-radicals, antioxidants, and human disease: curiosity, cause, or consequences, Lancet 344 (1994) 721–724.
- [15] M. Auer, L.A. Pfister, D. Leppert, M.G. Taüber, S.L. Leib, Effects of clinically used antioxidants in experimental pneumococcal meningitis, J. Infect. Dis. 182 (2000) 347–350.
- [16] I. Paterniti, E. Mazzon, E. Emanuela, et al., Modulation of inflammatory response after spinal cord trauma with deferoxamine, an iron chelator, Free Radic. Res. 44 (2010) 694–699.
- [17] E.M. Hoke, C.A. Maylock, E. Shacter, Desferal inhibits breast tumor growth and does not interfere with the tumoricidal activity of doxorubicin, Free Radic. Biol. Med. 39 (2005) 403–411.
- [18] E. Banin, A. Lozinski, K.M. Brady, et al., The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 16761-16766.
- [19] C.L. Tielemans, C.M. Lenclud, R. Wens, F.E. Collart, M. Dratwa, Critical role of iron overload in the increased susceptibility of haemodialysis patients to bacterial infections. Beneficial effects of desferrioxamine, Nephrol. Dial. Transplant. 4 (1989) 883–887.
- [20] O. Cozar, N. Leopold, C. Jelic, et al., IR, Raman and surface-enhanced Raman study of desferrioxamine B and its Fe(III) complex, ferrioxamine B, J. Mol. Struct. 788 (2006) 1–6.
- [21] S. Singh, R.C. Hider, J.B. Porter, Separation and identification of desferrioxamine and its iron chelating metabolites by high performance liquid chromatography and fast atom bombardment mass spectrometry: choice of complexing agent and application to biological fluids, Anal. Biochem. 187 (1990) 212–219.
- [22] E. Farkas, H. Csóka, G. Micera, A. Dessi, Copper(II), nickel(II), zinc(II), and molybdenum(VI) complexes of desferrioxamine B in aqueous solution, J. Inorg. Biochem. 65 (1997) 281–286.
- [23] I. Parejo, C. Petrakis, P. Kefalas, A transition metal enhanced luminol chemiluminescence in the presence of a chelator, J. Pharmacol. Toxicol. 43 (2000) 183–190.
- [24] M. Shamsipur, M.J. Chaichi, A study of quenching effect of sulfur-containing amino acids L-cysteine and L-methionine on peroxyoxalate chemiluminescence of 7-amino-4-trifluoromethylcumarin, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 61 (2005) 1227–1231.
- [25] Y.J. Hua, I. Narumi, G.J. Gao, et al., Pprl: a general switch responsible for extreme radioresistance of *Deinococcus radiodurans*, Biochem. Biophys. Res. Commun. 306 (2003) 354–360.
- [26] B. Tian, Y. Wu, D. Sheng, et al., Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in *Deinococcus radiodurans*, Luminescence 19 (2004) 78–84.
- [27] Y. Zhao, W. Yu, D. Wang, X. Liang, T. Hu, Chemiluminescence determination of free radical scavenging abilities of 'tea pigments' and comparison with 'tea polyphenols', Food Chem. 80 (2003) 115–118.
- [28] C. Xiao, D.A. Palmer, D.J. Wesolowski, S.B. Lovitz, W. King, Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence, Anal. Chem. 74 (2002) 2210–2216.
- [29] L. Magnania, E.M. Gaydoua, J.C. Hubaud, Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion, Anal. Chim. Acta 411 (2000) 209–216.
- $[{\bf 30}]$ T. Sun, Z.D. Xu, Radical scavenging activities of α -alanine C_{60} adduct, Bioorg. Med. Chem. Lett. 16 (2006) 3731–3734.