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Abstract Deep drawing is characterized by very complicated
deformation affected by the process parameter values includ-
ing die geometry, blank holder force, material properties, and
frictional conditions. The aim of this study is to model and
optimize the deep drawing process for stainless steel 304
(SUS304). To achieve the purpose, die radius, punch radius,
blank holder force, and frictional conditions are designated as
input parameters. Thinning, as one of the major failure modes
in deep drawn parts, is considered as the process output
parameter. Based on the results of finite element (FE) analysis,
an artificial neural network (ANN) has been developed, as a
predictor, to relate important process parameters to process
output characteristics. The proposed feed forward back prop-
agation ANN is trained and tested with pairs of input/output
data obtained from FE analysis. To verify the FE model, the
results obtained from the FEmodel were compared with those
of several experimental tests. Afterward, the ANN is integrat-
ed into a simulated annealing algorithm to optimize the pro-
cess parameters. Optimization results indicate that by
selecting the proper process parameter settings, uniform wall
thickness with minimum thinning can be achieved.

Keywords Deep drawing . Finite element analysis .

Optimization . Artificial neural networks

Nomenclature
BHF Blank holder force
FE Finite element
σy Yield stress

σUTS Ultimate stress
FLDs Forming limit diagrams
FLSDs Forming limit stress diagrams
DOE Design of experiment
ANN Artificial neural network
Rp Punch radius
Rd Die radius
μ1 Friction coefficient between punch and blank
μ2 Friction coefficient between die and blank
N Number of possible design
L Number of factors
STHm Minimum section thickness
BPN Back propagation network
FEM Finite element method
MSE Mean square error
SA Simulated annealing algorithm
Pr Probability number
ΔC Difference between the present and the new

objective function value
Tk Temperature in k-th iteration

1 Introduction

Sheet metal forming is a widely used manufacturing process
for mass production due to its high speed and low cost. Deep
drawing is one of the most common sheet metal forming
processes which is widely used for mass production of cup-
shaped parts in automobile, petrochemical, and packaging
industries [1–4]. Cup drawing is also used as a basic test for
sheet metal formability. Figure 1 shows deep drawing tools
and the states of forming parts. In this figure,Do,Dp, c, Rp, and
T are the diameter of initial blank, diameter of punch, clear-
ance between punch and die, punch radius, and thickness of
blank, respectively.

M. Manoochehri (*) : F. Kolahan
Department of Mechanical Engineering, Ferdowsi University of
Mashhad, Mashhad, Iran
e-mail: manoochehrimohsen@yahoo.com

F. Kolahan
e-mail: kolahan@um.ac.ir

Int J Adv Manuf Technol (2014) 73:241–249
DOI 10.1007/s00170-014-5788-5

Author's personal copy



The limits of sheet metal drawability are limited by the
onset of process failures: wrinkling, earring, and fracture.
Effective parameters on the different types of defects, which
may appear in the formed parts, can be divided into three main
categories [5]: (1) material properties such as yield stress,
work hardening coefficient, anisotropic coefficient, blank di-
mensions, and thickness of blank; (2) tool properties such as
punch radius, die radius, and clearance; and (3) process pa-
rameters such as blank holder force (BHF), friction coeffi-
cient, type and position of lubricant, strain rate, and pressure.

In order to survive in the daily increasing competitive
market, lighter, safer, and cheaper products are required. Sub-
sequently, it is essential to choose the proper drawing param-
eters which influence the drawing operation. In the past few
decades, researchers have focused on the optimization of deep
drawing process.

Delamézière et al. [6] optimized the material properties of
thin sheets applied in deep drawing. They considered two
material parameters: the strain hardening exponent and the
average anisotropic coefficient. They defined two objective
functions, namely, failure and wrinkling to control the forming
defects. Response surface, built on a limited number of eval-
uations of the objective function, has been employed to opti-
mally determine material properties. Browne and Hillery [2]
investigated the variation and effects of punch and die geom-
etry, blank holding pressure, top ram pressure, lubrication, and
drawing speed in the deep drawing of C.R.1 steel cups of
0.9 mm thickness. A series of cups were deep drawn using
DOE, where a screening experiment was conducted and the
desired factors were varied at different levels. Based on their
findings, top ram pressure, punch and die profile, lubrication,
and position of lubrication are significant factors when

measuring the punch load induced. Blank holding pressure,
speed, and top ram are the effective parameters on thickness
distribution.

Ozek and Bal [7] investigated the effect of die/punch radius
and die/blank holder angle on drawability in the deep drawing
process. They collected their data using experimental tests
with altering variables in five levels. Their results showed that
the limit drawing ratio increases with increasing radius of
punch and die/blank holder angle.

Padmanabhan et al. [8] studied the significance of three
important process parameters, namely, die radius, blank hold-
er force, and friction coefficient on the deep drawing charac-
teristics of a stainless steel axisymmetric cup. They combined
the finite element method with Taguchi technique to form a
predictive tool to determine the influence of forming process
parameters. Their results denote that die radius has the greatest
influence on the thickness distribution, followed by the blank
holder force and the friction coefficient. Further, they reported
that a blank holder force application and local lubrication
scheme improved the quality of the formed part. Agrawal
et al. [9] performed an attempt to predict the minimum blank
holding pressure required to avoid wrinkling in the flange
region during axisymmetric deep drawing process.

Singh et al. [10] identified optimum values for die radius,
punch radius, friction coefficients, and drawing ratios in deep
drawing of St-14 steel plates with initial uniform thickness of
1 mm. Their data have been gathered from 28 experimental tests.
Then, artificial neural network (ANN) and genetic algorithm
have been used to find the optimal levels of process parameters.
Chamekh et al. [11] optimized initial blank shape in a deep
drawing process of AISI 304 stainless steel. They built a
metamodel by combining the ANN and FEM. Then, the
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metamodel is coupled to an optimization algorithm to determine
the initial blank shape for deep drawing of a rectangular cup.

For angular squared deep drawing process, Özek and Ünal
[12] have studied the effects of die/blank holder angles, blank
holder force, and die/punch diameter on the limit drawing
ratio, punch force, and minimum wall thickness of DIN EN
10130-1999 steel sheets. They used a full factorial experimen-
tal design for data collection. To model the process and to
determine the optimal conditions, they employed regression
analysis, signal-to-noise ratio, and analysis of variance
(ANOVA). Their results indicate that the deep drawing ratio
limits would increase at higher die/blank holder angles and
die/punch diameter and that more uniform cup surfaces would
be obtained with lower blank holder forces.

A rich body of knowledge in this area can be found in
related literature. For instance, Wifi and Abdelmaguid [13]
have presented a concise literature review on the optimization
techniques used for the single-stage and multistage deep
drawing process and identified directions for future research.

In spite of the extensive research work on deep drawing in
most current papers, the optimization process is performed based
on statistical analysis, which would limit the process variable
settings to be chosen solely from a set of pre-specified values.

With regards to this item, the objective of this research is to
devise an efficient modeling and optimization procedure for
deep drawing process using finite element (FE) modeling,
ANN, and simulated annealing (SA) algorithm. The research
presented here is twofold. First, an accurate FE model, which
can substitute the real deep drawing process, has been

developed. Then, to further reduce computational times,
an ANN model has been proposed based on the simula-
tion results of D-Optimal matrix. In the second stage, a
simulated annealing optimization method has been imple-
mented to optimally determine deep drawing process pa-
rameters. The proposed modeling and optimization proce-
dure would treat the process parameters as continuous
variables, and hence they can take any values within their
feasible ranges.

The important process parameters considered here are die
and punch radiuses, BHF, and frictional conditions (friction
coefficient between punch-–blank, die–blank, and blank hold-
er–blank). Thinning, as a major failure mode or defect en-
countered in deep drawn parts, has been considered as the
process output characteristic. In drawing process, thinning can
be defined as the maximum decrease in the blank thickness
after drawing compare to its initial value. Figure 2 shows the
steps of the proposed procedure tomodel and to optimize deep
drawing process.

2 Material and equipment

In this study, stainless steel 304 (AISI 304) with 0.5 mm
thickness has been used for simulation and experimental
efforts. Table 1 shows the chemical composition of this mate-
rial. Mechanical properties and anisotropic coefficients were
determined using the results of uniaxial tensile tests. Rolled
materials, such as sheet metals, may exhibit anisotropic

ModelingSimulation Optimization

Optimization of deep drawing
process with combined ANN and

simulated annealing algorithm

Verification of optimization 
results with FE model and 

experimental test

Fig. 2 Flowchart of proposed procedure to modeling and optimization of deep drawing process

Table 1 Chemical composition
of SUS 304 Element Carbon Manganese Phosphorus Sulfur Silicon Chromium Nickel Nitrogen

Percentage 0.08 2 0.045 0.03 0.75 18–20 8–10.5 0.10

Int J Adv Manuf Technol (2014) 73:241–249 243

Author's personal copy



mechanical properties, that is, their properties may vary in
different directions. To obtain anisotropic coefficients and
mechanical properties, tensile tests were performed on three
specimens which were cut from the blank in three different
directions (0°, 45°, and 90°). Each specimen was prepared
according to ASTM B0557 M-02 Standard. The tests were
then performed using a Zwick-Z250 tensile test machine. The
mechanical properties and the anisotropic coefficient obtained
from the uniaxial tests are reported in Table 2. These material
properties have been used in the simulation of deep drawing
process with the FE method.

Drawing ratio with respect to punch radius (65 mm) and
blank diameter (140 mm) is equal to 2.15. A set die has been
designed and manufactured to perform the experiments. The
set die was mounted on a 60-ton hydraulic press to form parts
(Fig. 3). Blank holder force was supplied by eight standard
springs with 134 N/mm stiffness. Friction coefficient between
the die–blank and punch–blank was obtained by several ex-
periments using a force gauge of 0.01 N resolution.

3 Finite element simulation

In this study, ABAQUS/EXPLICIT software V 6.10 was used
to develop a 3D FE model of the deep drawing process for

SUS 304 alloy as shown in Fig. 4. Tools (die, punch, and
blank holder) were modeled as rigid bodies using R3D4
elements, and the sheet is modeled as a formable body using
C3D8R. A surface-to-surface contact model was adopted in
which the coulomb friction law has been considered. Three
contact pairs, namely, punch–blank, die–blank, and blank
holder–blank, were created. Material behavior obtained from
the tensile testing experiments and the Hill’s anisotropy pa-
rameters [14] were incorporated into the FE model to account
for the specimen orientation and sheet anisotropy. A constant
uniform pressure was applied on the blank holder in Y-
direction as the BHF, while the freedom of the blank holder
in Y-direction was unfastened.

3.1 Verification of FE model

To validate the developed FE model, the final shape of the
drawn parts and the predicted punch loads versus punch
strokes were compared with the experimental results under
the same process conditions. The comparisons are presented
in Fig. 5. With respect to the force–displacement curves, the
maximum error of the punch load for the case with wrinkling
is less than 9 %. The difference for the parts with no such
defect is much less. This is an indication that the FE model is
capable of modeling the process under various circumstances

Table 2 Mechanical properties
and anisotropic coefficient of
SUS 304

Mechanical properties Anisotropic coefficient

σy (MPa) σUTS (MPa) Young's modulus (GPa) Angular offset from rolling direction

0° 45° 90°

265 573 191.7 0.913 1.120 1.424

Fig. 3 Hydraulic press and die set used for experiments Fig. 4 FE model for the deep drawing of cup-shaped parts
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and the simulated formed shapes are consistent with those of
experiments.

3.2 Fracture detection in FEM model

In general, fracture can be predicted by: (1) strain-based
criteria, such as forming limit diagrams (FLDs) and maximum
part thinning; (2) stress-based criteria, using forming limit
stress diagrams (FLSDs); and (3) ductile damage criteria,
including the Cockroft and Latham criterion [15]. Among
these, thinning in the part wall is commonly used in industry

to indicate probability of fracture. Usually, a maximum thin-
ning of 25 % thickness is used as the critical fracture criterion

(a)

(b)

Fig. 5 Simulation and experimental comparisons a with wrinkling and b without wrinkling

Table 3 Variable parameters with their levels

Levels BHF (KN) Rp (mm) Rd (mm) μ1 μ2

1 5 3 3 0.01 0.01

2 11 5 5 0.1 0.1

3 16 8 8 0.2 0.2

4 22 12 12 – –
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[16]. Therefore, in the present study, we also have selected
wall thinning as the process quality index as well. The max-
imum allowed thinning of drawn parts for 0.5-mm thickness
of blank would be 0.125 mm, which has been used as the
acceptance criterion in the analysis.

4 Design of experiment and ANN

One of the main objectives in this research is to predict the
product quality under various sets of process parameters.
According to the results, the FE model could be used for this
purpose. However, it is a time-consuming process as each run
of the FE model may take several hours. Therefore, as a more
efficient prediction technique, ANNwas employed to estimate
the process response (thinning) for any given set of process
parameters. To gather the required data, a set of simulation
runs was performed based on design of experiment (DOE)
approach.

Blank holder force (BHF), punch radius (Rp), die radius
(Rd), friction coefficient between punch–blank (μ1), die–blank
(μ2), and holder–blank were considered as input parameters.
The ranges of these parameters and their levels are given in
Table 3. As shown, the first three parameters are taken to have
four levels, while the last two can vary in three levels. Based
on the previous researches [17–19], punch and die radius are
considered in the range 3–12 mm. All simulation experiments
are carried out for the depth of 30 mm.

For a full factorial design, the number of possible designs
(N) is N=Lm, where L is the number of levels for each factor
and m is the number of factors. Thus, a full factorial for input

parameters in this study would consist of 576 experiments. To
further reduce the number of simulation runs, D-Optimal
design of experiments (DOE) has been implemented. In this
way, only 81 runs are needed to generate the required data for
ANN development. Table 4 illustrates part of the design
matrix and measured outputs. In this table, the last column
shows the minimum section thickness under each set of input
parameters.

4.1 The proposed artificial neural network

ANNs are widely accepted as a tool to simulate complex and
ill-defined problems. They are particularly useful in process
modeling and have been used in diverse applications such as
control, robotics, pattern recognition, forecasting, manufactur-
ing optimization, etc. [20]. Due to the inherent complexity of
deep drawing process, the relationships between part quality
indexes and process parameters could not be established by
any analytical model. On the other hand, the characteristics of

Table 4 Design matrix and out-
put values

aMinimum section thickness
(mm)
b Maximum thinning exceeds
from 0.125 mm and hence the
drawn part is failed

Number of experiment Inputs Output

BHF (kN) Rp (mm) Rd (mm) Mu1 Mu2 STHm
a

1 5 3 3 0.01 0.01 0.391

2 22 8 3 0.1 0.1 0.374b

3 16 12 5 0.1 0.1 0.419

4 22 5 8 0.01 0.01 0.432

5 16 8 12 0.1 0.1 0.444

6 16 12 5 0.01 0.01 0.424

– – – – – – –

– – – – – – –

– – – – – – –

75 11 5 12 0.1 0.01 0.454

76 16 3 3 0.2 0.1 0.374b

77 22 12 12 0.1 0.1 0.449

78 5 8 8 0.2 0.2 0.442

79 5 5 8 0.1 0.1 0.431

80 11 5 8 0.01 0.1 0.399

81 22 5 12 0.2 0.1 0.448

BHF

Rp

Rd

Mu1

Mu2

Input Layer Hidden Layers Output Layer

Minimum STH

Fig. 6 Schematic illustration of the proposed ANN
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the ANN techniquemake it suitable for predicting the thinning
in deep drawn parts; therefore, it is employed in this study.

The back propagation network (BPN) is a typical ANN that
has been widely used in many research fields. BPNs have
hierarchical feed forward network architecture, and the out-
puts of each layer are sent directly to each neuron in the next
layer. This kind of ANN is trained by repeatedly presenting a
series of input/output pattern sets to the network. The neural
network gradually “learns” the governing relationship in the
data set by adjusting the weights between its neurons to
minimize the error between the actual and predicted outputs
of the training set. A separate set of data called the test set is
usually used to evaluate the network’s performance. Training
is considered completed when the mean squared error (MSE)
of the test set reaches a pre-determined value. The MSE
formula is:

MSE ¼ 1

n

Xi¼n

i¼1

t−t0ð Þ2 ð1Þ

where n is the number of experiments in the test set, t is the
predicted thickness, and t0 is the actual thickness.

The number of neurons for the input layer is equal to the
number of process variables. Likewise, the number of neurons
at the output layer is specified by the number of measured
output responses. Therefore, for the problem under consider-
ation, input and output layers have five and one neuron,
respectively. The number of middle (hidden) layers and their
corresponding neurons are usually defined through trial runs.
Based on the results of several test runs, a four-layer ANN
(two hidden layers) with one neuron in the first hidden layer
and three neurons in the second hidden layer was found to be
the best architecture for the problem under study. The network
was trained using resilient back propagation algorithm. Other
initial parameters of training algorithm, such as training time
and termination criterion, were set according to the defaults of
MATLAB software. A schematic illustration of the proposed
ANN architecture is presented in Fig. 6.

To train and to test the ANN, 81 sets of input/output
samples were randomly divided into two data sets. The 60
set points were assigned to the training set and the remaining
21 set points were used as the testing set. The MSE between
the ANN and FEM models was found to be less than 3 %.

Therefore, it can be concluded that the proposed ANN is
capable to predict the output with high accuracy.

After being trained, the ANN can map the complex and
non-linear relation between quality index and input variables
of deep drawing process, and hence there is no need to use FE
model for this purpose anymore. The developed ANN predic-
tor may now be used in the optimization process using simu-
lated annealing algorithm.

5 Optimization of deep drawing process parameters

The aim of this section is to present an optimization procedure
in order to find the process parameter values in such a way that
the minimum wall thicknesses of drawn parts are maximized.
Simulated annealing (SA) algorithm has been employed to
determine the best values of process variables with respect to
minimum wall thickness. One of the reasons for selecting SA
is because it has fewer parameters compared to other heuris-
tics, such as genetic algorithm (GA), which makes it easier for
computer programming.

Simulated annealing is a powerful stochastic technique for
obtaining optimum or near-to-optimum solutions to combina-
torial and function optimization problems. This algorithm,
first proposed by Kirkpatrick et al., is inspired by the thermo-
dynamic process of cooling (annealing) a molten metal to
attain the lowest free energy state [21]. A standard SA proce-
dure begins by generating an initial solution at random. At
each stage, a small random change is made to the current

Table 5 Optimum parameters

Variables BHF (kN) Rp (mm) Rd (mm) Mu1 Mu2 STHm predicted
with ANN

STHm obtained
from FEM

STHm obtained
from experiment

Optimum value 8 12 12 0.2 0.01 0.466 0.477 0.43
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Fig. 7 Simulated annealing performance
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solution. Then, the objective function value of the new solu-
tion is calculated and compared with that of the current solu-
tion. A move is then made to the new solution if it has a better
value. A non-improving solution is also accepted with the

certain probability which is given by Pr ¼ exp −Δc
Tk

� �
. The

acceptance probability of non-improving solutions decreases
as the difference in the costs (Δc) increases and as the tem-
perature of the method decreases. As the number of iterations
(k) increases, the temperature (Tk) is gradually decreased from
a relatively high value to near zero [22].

In order to find the optimum values of the deep drawing
parameters, the proposed ANN has been used as the fitness
function in SA algorithm. In optimization process, punch and
die radius vary from 3 to 12 mm with an increment of 1 mm;
BHF is increased from 5 KN with an increment of 1 KN to
reach the maximum of 22 KN, and friction coefficients vary
according to Table 5.

The algorithm was run for 120 iterations (about 2.0 min).
As shown in Fig. 7, the algorithm was converged to the final
solution after 75 iterations, and no further improvement was
observed thereafter. The optimization results are summarized
in Table 5.

Nevertheless, we cannot claim that the results obtained by
the proposed SA are global optimum. Computational results
merely demonstrate that SA is quite capable of obtaining high-
quality solutions (optimal or near-optimal) within reasonable
computational times.

To validate the optimization procedure, experimental tests
were performed based on the optimum values of process
parameters. In addition, FE model was run using the same
input values. The last three columns of Table 5 show that the
STHm values were obtained by ANN, FEM, and the experi-
ments, respectively. The error between ANN prediction and
FE simulation is less than 2.5 %, while ANN prediction and
experimental test show about 8 % error. Figure 8 display
drawn parts in simulation and experimental test. It can be
concluded that the optimization procedure proposed in this
study is capable of achieving the optimal values of the variable
parameters with high accuracy.

The proposed procedure for optimization of deep drawing
process is efficient and reliable. The optimum set of parameter

settings results in a wall thickness better than all 81 other
combinations used in data collection.

6 Conclusion

In this study, a combined FE–ANN–SA procedure was pro-
posed to model and to optimize the deep drawing process of
SUS304. First, deep drawing process was simulated in
ABAQUS software and verified against experimental data.
In FE modeling, some of the most important process param-
eters of deep drawing have been simultaneously considered.
This made it possible to develop a model as close to actual
process as possible. Next, based on D-Optimal design matrix,
a total of 81 simulation runs were performed to gather the
required data needed for ANN modeling. Verification tests
reveal that the developed ANN is in good agreement with both
FEM model and experimental results. Hence, in our future
investigations, the FE model and ANN predictor could accu-
rately replace the actual deep drawing process. This would
eliminate the need for additional time-consuming and costly
experiments. Finally, to determine the optimum values of
process parameters, the proposed ANNwas used as the fitness
function in a simulated annealing algorithm.

Optimization results show that in order to minimize thin-
ning, BHF should be set at 8 KN, and die and punch radius
must be at their highest possible levels of 12 mm. Computa-
tional results also illustrate that the frictional conditions be-
tween blank and die components should not be the same. This
is in line with the study previously done in this area [2]. Using
optimal parameters, an average improvement of about 14% in
minimum wall thickness can be achieved. The findings of this
study show that the combination of ANN, as the process
predictor, and SA, as an optimization technique, is quiet
efficient in modeling and optimization of deep drawing
process.

The approach presented in this work was applied to macro-
scale deep drawing process. In the future, the same approach
may be used to investigate deep drawing process in micro-
scales. It is certainly worthwhile to carry out comparative
studies by employing other modeling techniques, such as

Fig. 8 Formed parts in
simulation and experimental test
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regression analysis or response surface method, to model deep
drawing process. Another interesting area of research, which
calls for further investigation, is the possible implementation
of more efficient optimization techniques, such as hybrid GA/
SA, for deep drawing optimization. In this case, the results
may be compared with those reported in this work.
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