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Since late 1960's, the emergency location problems, fire stations and medical emergency 
services have attracted the attention of researchers. Mathematical models, both deterministic 
and probabilistic, have been proposed and applied to find suitable locations for such facilities 
in many urban and rural areas. Here, we review some models proposed for finding the 
location of such facilities, with an eye on successfully implemented real life applications. We 
then propose an extension of the QM-CLAM model of Marianov and Serra (1998) to M/G/k 
systems, and suggest a GRASP type heuristic procedure for solving the problem. To improve 
the computed solution, local search heuristics are used. Sensitivity analysis and some 
computational results are also presented. 
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1. Introduction 

     Emergency location problems deal with finding suitable locations for emergency facilities, such as 
police, fire, and ambulance stations. According to [26], one of the earliest such works was done for 
the New York city fire department by the RAND corporation. A paper by Savas [48] which presents a 
simulation analysis of an ambulance system for a hospital in New York along with the paper by Carter 
and Ignall [11] on simulation of fire fighting operations, were perhaps the first such attempts to aid 
the decision makers. One of the earliest optimization models presented for this problem is the 
Location Set Covering Model (LSCM) of Toregas et al. [56]. This simple model aims to find the least 
number of ambulances needed to cover all demand points. 
 
     Another important model called Maximal Covering Location Problem (MCLP) was presented by 
Church and ReVelle [13]. The objective in this model was to maximize the population covered by a 
given number of ambulances. This model was later used by Plane and Hendrick [42] to find the 
location of fire stations in Denver, Colorado. It was also used by Eaton et al. [18] to reorganize the 
medical emergency services in the city of Austin, Texas. Later, Eaton et al. [17] used a multi-
objective formulation of the problem to find the locations of emergency service facilities for Santo 
Domingo in the Dominican Republic. A set covering approach was used by Schreuder [50] to 
calculate the minimum number of fire stations for the city of Rotterdam to reach any point in the city 
within a prescribed attendance time. 
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     Neither the LSCM nor the MCLP model considers the type of ambulances used. A model which 
took into account different types of emergency vehicles is the Tandem Equipment Allocation Model 
(TEAM) of Schilling et al. [49]. A variant of this model known as FLEET (Facility Location and 
Equipment Emplacement Technique) was used to locate fire stations and depots in the city of 
Baltimore, Maryland. 
 
     Along with these deterministic models, many probabilistic ones have also been proposed. One of 
the earliest such models is the probabilistic set covering model of Chapman and White [12]. Another 
model is the Maximum Expected Covering Location Problem (MEXCLP) of Daskin [16]. The 
objective in this model was to maximize the total expected demand covered. Fujiwara et al. [23] used 
this model to find the emergency centers for the city of Bangkok. 
 
     The Queueing Probabilistic Location Set Covering Problem (QPLSCP) was proposed by Marianov 
and ReVelle [33] in which the busy fraction for each server was considered to be different. They later 
proposed the QMALP model with an M/G/s-loss queueing system [34]. 
 
     Another extension of the MCLP model, called QM-CLAP, was proposed by Marianov and Serra 
[35] with additional constraints to model congestion. Assuming that the demand has a Poisson 
distribution and the service time is exponential, they formulate the problem as M/M/1 and M/M/m 
queueing systems. 
 
     Determining the location of a center when the queueing system is M/G/1 was discussed by Jamil et 
al. [29]. Batta [5] also presented an M/G/1 model, SQCL, in which a weighted combination of the 
average and the variance of waiting time is minimized. Another queueing model with priority was 
proposed by Silva and Serra [53]. 
 
     More discussion on most of the aforementioned models can be found in the review papers of 
ReVelle [46], Marianov and ReVelle [32], and Brotcorne et al. [10]. A recent paper of Li et al. [31] 
considers several covering models and solution algorithms for Emergency Medical Service (EMS) 
allocation problems. A bibliography of maximal covering problems is also given in the review paper 
of  ReVelle et al. [47]. A review of the location problems with stochastic demands and constraints on 
waiting times can be found in Baron et al. [4]. 
 
     In addition to the mentioned covering models, other models of the P-center and P-median types 
have also been proposed to locate emergency centers. Garfinkel et al. [24] were perhaps one of the 
earliest to use a P-center model to locate emergency facilities on a road network. Hochbaum and 
Pathria [28] formulated the problem of finding emergency centers as a probabilistic P-center problem. 
Talmar [55] formulated and solved a real life problem of locating and dispatching three helicopters in 
the Alpine mountain ranges to respond to ski and climbing accidents in that area, as a P-center 
problem. 
 
     One of the early P-median models proposed for the emergency centers is the model proposed by 
Mirchandani [37] for finding the location of fire stations, in which the demand and travel times are 
assumed to be probabilistic. Another model that tries to minimize the average cost of response is the 
Stochastic Queue Median (SQM) model of Berman et al. [7]. Carson and Batta [10] present a 
dynamic P-median model for locating ambulances in a university campus.  
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Table 1. Some real world applications of EMS models 

Model    Year   Location   Reference 
MEXLCP  1974  Tucson, Arizona  [41] 
MCLP  1977  Denver, Colorado  [42] 
FLEET  1979  Baltimore, Maryland  [49] 
Set covering   1981  Rotterdam,  Netherlands  [50] 
MCLP  1985  Austin, Texas  [17] 
MCLP   1986  Santo Domingo  [17] 
Hypercube model  1986  Boston, US  [9] 
MEXLCP 1989  Bangkok, Thailand  [23] 
AMEXCLP 1990  Tucson, Arizona  [25] 
P-median  1990  Amherst, Buffalo  [10] 
TIMEXCLP  1994  Louisville, Kentucky  [44] 
P-median  1998  Barcelona, Spain  [51] 
Multi-criteria  1998  Dubai, UAE  [3] 
P-center  2002  Alpine mountain  [55] 
P-median  2002  Barbados  [27] 
P-median  2004  Carbondale, Illinois  [41] 
P-median  2006  Riyadh, Saudi Arabia  [1] 
Probabilistic MCLP  2009  Edmonton, Canada  [19] 
MEXCLP2          2009  Hanover, Virginia  [36] 
 MERLP           2009  Charlotte, North Carolina  [43] 
A Covering model    2010  Adana, Turkey  [15] 
Multi-period backup  2011  Istanbul, Turkey  [2] 
Set covering  2012  Tehran, Iran  [52] 

 
A bi-objective model was proposed by Harewood [27] to locate ambulances on the island of 
Barbados. A bi-objective formulation of a covering problem as a goal programming problem was 
presented by Alsalloum and Rand [1]. This model was used to determine the location of EMS centers 
for the Red Cross in the city of Riyadh. Badri et al. [3] presented a multi-criteria model for locating 
fire stations in the city of Dubai, UAE. We have compiled some real life applications of some of these 
models, in chronological order, as shown in Table 1, to emphasize the importance and applicability of 
these mathematical models. 
 
It is argued by some researchers (see e.g., Borras and Pastor [8]), that probabilistic models provide a 
more accurate presentation of the real world problem. In a study by Erkut et al. [19], four probabilistic 
variants of the maximal covering location problem were compared with the basic model, using data 
from Edmonton, Canada. They showed that a model that incorporates uncertainty covers up to 26% 
more of the demand. Recently, Moeen Moghadas and Taghizadeh [38] considered the problem with 
an M/M/k system with side constraints on the number of servers at each center, as well as constraints 
on the total cost of establishing centers. 
 
     An extension of the QM-CLAP model of  Marianov and Serra [35] with an M/G/1 queueing 
system was proposed by Moeen-Moghadas and Taghizadeh [39]. They also discussed a semi-definite 
programming relaxation of a binary quadratic formulation of the M/G/1 model [54]. Here, we extend 
the results of [39] to the M/G/k queueing systems, where k itself is unknown, but there is a limit on 
the number of servers at each center, and the total number of servers in the system. We propose a 
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solution procedure, and present numerical examples to illustrate the applicability of the proposed 
model. 

2. Mathematical Model 

 
The QM-CLAP model proposed by Marianov and Serra [35] is as follows: 
 

𝑚𝑎𝑥 �� 𝑎𝑖𝑥𝑖𝑗
𝑗∈𝑁𝑖𝑖∈𝐼

  
 

 s.t.  𝑥𝑖𝑗 ≤ 𝑦𝑗 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝑁𝑖 (1)  
 � 𝑥𝑖𝑗

𝑗∈𝑁𝑖

≤ 1, 𝑖 ∈ 𝐼 
(2)  

 �𝑦𝑗
𝑗∈𝐽

≤ 𝑝,  
(3)  

 𝑊𝑗 ≤ 𝜏, 𝑗 ∈ 𝐽 (4)  
 𝑥𝑖𝑗 , 𝑦𝑗 ∈ {0,1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝑁𝑖 , (5)  

 
where, 
𝐼: The set of all existing demand points (incident locations), 
𝐽 : The set of all possible locations of new facilities (stations), 
𝑁𝑖: The set of all centers in a predetermined neighborhood of point 𝑖; i.e., 

𝑁𝑖 = {𝑗 ∶ 𝑑𝑖𝑗 ≤ 𝐷, for a given distance 𝐷}, 
Where, 𝑑𝑖𝑗  is the distance between customer 𝑖 and center  𝑗 , 𝑦𝑗, equals 1, if a new facility is located 
at site 𝑗, and 0, otherwise, 
𝑥𝑖𝑗: Equals 1, if a call from point i is answered by station j, and 0, otherwise, 
𝑎𝑖: Population at point 𝑖, 
𝑝: The number of new stations, 
𝑊𝑗: Waiting time at facility 𝑗, 
𝜏: Maximum allowable waiting time. 
 
The objective maximizes the population covered. Constraints (1) ensure that a point is being served 
only by an established facility at 𝑖. Constraints (2) guarantee that each point is being served only by 
one service facility (station). Constraints (3) establish at most 𝑝 new stations, and constraints (4) 
ensure that the waiting time at each station does not exceed a predetermined amount. 
 
     This model is a modification of the well known P-median problem, with the constraint set (4), 
quality of service constraints, added. To state the problem properly, we need an explicit form 
expressing the waiting time, 𝑊𝑗, in terms of the decision variables  𝑥𝑖𝑗 and 𝑦𝑗. This, in turn, is system 
dependent. For the M/M/1 and M/M/m systems, Marianov and Serra [35] presented a linear form. 
They assume that arriving calls have the intensity 𝑓𝑖, and hence, the arrival rate at each center 𝑗, 𝜆𝑗, 
could be calculated as 𝜆𝑗 = ∑ 𝑓𝑖𝑥𝑖𝑗𝑖 . Thus, constraints (4) can be replaced by 
 

� 𝑓𝑖𝑥𝑖𝑗 ≤
𝜇2𝜏

1 + 𝜇𝜏
𝑖∈𝐼∶𝑗∈𝑁𝑖

⋅ 

 



Emergency Location Problems with an M/G/k Queueing System                                    5 
 

     For an M/G/1 queueing system, however, unfortunately we do not have such a linear 
representation, as the waiting time is given by (See e.g., [30]): 
 

𝑊𝑗 =
𝜆𝑗𝑆𝚥2���

2�1 − 𝜆𝑗𝑆𝚥��
, 1 − 𝜆𝑗𝑆𝚥� > 0, 

 
where 𝑆𝚥� = 𝐸[𝑆𝑗] and 𝑆𝚥2��� = 𝐸[𝑆𝑗2] are respectively the first and the second moments of the service 
time at center 𝑗. It can be shown that under certain assumptions, this leads to a quadratic constraint 
with possibly an indefinite coefficient matrix; hence, a non-convex feasible region. As a result, the 
model cannot be solved easily, even for small instances. 
 
     In our M/G/k model, we assume that there are a total of 𝑘� servers available and that each center 
can have at most 𝑘𝑚𝑎𝑥 servers. In addition, if we define the variable 𝑘𝑗 as the number of servers at the 
center j, (𝑘𝑗 = 0,1,⋯ ,𝑘𝑚𝑎𝑥), then the problem can be stated as follows: 
 

𝑚𝑎𝑥 �� 𝑎𝑖𝑥𝑖𝑗
𝑗∈𝑁𝑖𝑖∈𝐼

  
 

 s.t.  (1) through (5),    
 ∑ 𝑘𝑗𝑗∈𝐽 ≤ 𝑘� ,  (6)  
 𝑘𝑗 ≤ 𝑘𝑚𝑎𝑥𝑦𝑗 , 𝑗 ∈ 𝐽 (7)  
 𝑘𝑗 = 0,1,⋯ , 𝑘𝑚𝑎𝑥, 𝑗 ∈ 𝐽. (8)  

 
     In this model, the objective function and constraints (1)-(5) are defined as before. Constraint (6) 
limits the number of servers at all selected centers and constraints (7) ensure that at most 𝑘𝑚𝑎𝑥 servers 
are placed at each center. 
 
     To state the problem properly, however, we need an explicit form expressing the average waiting 
time in terms of the variables 𝑥𝑖𝑗, 𝑦𝑗 and 𝑘𝑗. Unfortunately, in the case of M/G/k queueing system, 
there is not an explicit form for the average waiting time. We need to use an approximate formula for 
the waiting time. Here, we opt for the approximation proposed by Nozaki and Ross [40], which is 
shown to be “adequate” by Batta and Berman [6]. This approximating formula is: 
 

𝑊�𝜆𝑗,𝑘𝑗� =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜆𝑗

𝑘𝑗𝑆𝚥2����𝑆𝚥��
𝑘𝑗−1

2�𝑘𝑗 − 1�! �𝑘𝑗 − 𝜆𝑗𝑆𝚥��∑
�𝑘𝑗 − 𝑡��𝜆𝑗𝑆𝚥��

𝑡

𝑡!
𝑘𝑗−1
𝑡=0

, 𝜆𝑗𝑆𝚥� < 𝑘𝑗

+∞, otherwise,

� 

 
where 𝑊�𝜆𝑗,𝑘𝑗� is the average waiting time at center 𝑗 with arrival rate 𝜆𝑗 and with 𝑘𝑗 servers, 𝑆𝚥�  and 
𝑆𝚥2��� are as defined before. Now, if we define 𝑇�𝑖𝑗 and 𝑇�𝑖𝑗2 as the first and second moments of service 
time for the customer 𝑖 at center 𝑗, respectively, then we have [29]: 
 

 𝑆𝑗̅ = � ℎ𝑖𝑇�𝑖𝑗𝑥𝑖𝑗
𝑖∈𝐼:𝑗∈𝑁𝑖

,  (9)  
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 𝑆𝚥2��� = � ℎ𝑖𝑇�𝑖𝑗2𝑥𝑖𝑗
𝑖∈𝐼:𝑗∈𝑁𝑖

,  (10)  

where ℎ𝑖 is the fraction of calls originating from demand point 𝑖 which is defined to be ℎ𝑖 = 𝑓𝑖
∑ 𝑓𝑖𝑖

. 
 
     To determine 𝑇�𝑖𝑗 and 𝑇�𝑖𝑗2 , we use the same assumptions as in Berman et al. [7]; i.e., we assume the 
average service time at point 𝑖 served by center 𝑗 consists of four parts: travel time to the scene, on the 
scene service time, travel time back to the center 𝑗, and possibly additional off scene time. It we 
define 𝑣  as the travel speed, then 𝑇�𝑖𝑗 and 𝑇�𝑖𝑗2 can be written as [7]: 
 

𝑇�𝑖𝑗 =
𝛽𝑑𝑖𝑗
𝑣

+ 𝑍𝚤� , 

𝑇�𝑖𝑗2 = �
𝛽𝑑𝑖𝑗
𝑣 �

2

+ 2
𝛽𝑑𝑖𝑗
𝑣

+ 𝑍𝚤2���, 

 
where 𝑍𝚤�   is the average on scene plus off scene (non-travel related) service time associated with node 
𝑖  and 𝛽 ≥ 1 is a parameter. 
 
Note that if we replace (9) and (10) in the approximation formula, the problem will be a nonlinear 
integer programming problem which is NP-hard; hence, even small problems cannot be solved by the 
existing commercial software. In the next section, we propose a heuristic solution procedure for this 
problem. 

3. Solution Procedure 

     For the M/M/1 and M/M/m cases, as mentioned, we have an integer linear program, which can be 
solved by commercial software packages for small problems. For larger problems, heuristic methods 
have been developed by Marianov and Serra [35]. 
 
     A GRASP type procedure for the priority queueing location problem has also been proposed by 
Silva and Serra [53]. Another approach for solving QM-CLAP is the procedure proposed by Correa et 
al. [14]. The authors in [14] model the problem as a covering graph. To the best of our knowledge, no 
study has considered this model when the underlying system is an M/G/k queue. Here, we propose a 
GRASP type procedure for solving the problem. We complement this procedure with two local search 
heuristics to improve the solution. Greedy Randomized Adaptive Search Procedure (GRASP) was 
developed by Feo and Resende [20], and successfully applied to many problems, including maximal 
covering problem [45]. A two-part annotated bibliography of GRASP was presented by Festa and 
Resende in [21] and [22]. Each GRASP iteration consist of constructing a solution and then 
performing a local search around the constructed solution. 
 
     Following the developments in [39], if we relax constraints (1)–(3), then we will have knapsack 
sub-problems of the following form: 
 

𝑣�𝑃𝑗� = 𝑚𝑎𝑥 �� 𝑎𝑖𝑥𝑖𝑗
𝑗∈𝑁𝑖𝑖∈𝐼

  
 

(𝑃𝑗)  s.t.  𝑊�𝜆𝑗 , 𝑘𝑗� ≤ 𝜏, 𝑗 ∈ 𝐽  
  𝑥𝑖𝑗 ∈ {0,1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝑁𝑖 .  
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To solve the sub-problems, we use a modified version of the heuristic procedure GRASP. 
 
     The GRASP procedure that we use is in principle similar to the one proposed for the maximal 
covering problem by Resende [45]. The main differences are in construction of the restricted 
candidate list and the greedy function. In the construction phase (subprogram CGRS given as Fig. 1), 
an initial feasible set of solutions and an assignment of “demand” points to these centers are 
constructed; a set RCL of candidate centers which can improve the objective function is determined 
(Fig. 2). Then,  𝑘 centers are randomly selected from this set. If 𝑅𝐶𝐿 ≠ ∅, (key=1), then the sets 𝐽∗ 
and 𝐼,̅ the set of selected centers and the set of “demand” points not yet received a service, 
respectively, are updated. In doing so, we will take constraints (1) and (2) into account. 𝑘, 𝑘𝑗 and 
𝑘𝑚𝑎𝑥, are the number of centers selected, number of servers at center 𝑗, and the total number of 
servers, which should not exceed a maximum number, 𝑘�. In this phase, finding a new center is 
continued until all centers are located, or the number of servers exceed 𝑘�, or the set of candidate 
centers is empty. 
To construct the set RCL, sub-problem 𝑃𝑗 is solved for all 𝑗 ∉ 𝐽∗. Then, all the centers with an 
objective value of at least 𝛼 (0 < 𝛼 < 1) times the maximum value of the objectives for 𝑗 ∉ 𝐽∗ are 
selected. 𝛼 = 0 means that the centers are selected randomly, while 𝛼 = 1 indicates that the centers 
are selected using a greedy procedure. 
 
In the local search phase, a 2-exchange procedure is employed. 
 
Note that in sub-problem 𝑃𝑗, 𝑘𝑗 and 𝑥𝑖𝑗 are not known. Because the set of demand points assigned to 
the center 𝑗 (𝐼𝑗∗) are dependent on the number of servers at 𝑗 (𝑘𝑗), we solve this problem for different 
 

𝑘sum = 0, 𝑘 = 0, 𝑘𝑒𝑦 = 1 
while ( (𝑘 < 𝑝) and (𝑘𝑠𝑢𝑚 < 𝑘�) and (𝑘𝑒𝑦 == 1) ) do 
 RCL =  MakeRCL(𝐽∗, 𝐼)̅ 
 if (RCL ≠ ∅ ) then 
  𝑠 = SelectFacility(RCL) 
  Update(𝐽∗, 𝐼)̅ 
  𝑘𝑠𝑢𝑚 = 𝑘𝑠𝑢𝑚 + 𝑘𝑠 
  𝑘 = 𝑘 + 1 
 else 
  𝑘𝑒𝑦 = 0 
 end  
end 
return 𝐽∗ 
 
Figure 1. The construction procedure CGRS() for GRASP 

 
 

           for ( 𝑗 ∉ 𝐽∗ ) do 
 𝑣�𝑃𝑗� = SolveSubProblem(𝑃𝑗) 
 𝑣max = max  �𝑣�𝑃𝑗� ∶ 𝑗 ∉ 𝐽∗� 
 RCL = �𝑗 ∉ 𝐽∗ ∶  𝑣�𝑃𝑗� ≥ 𝛼𝑣max� 
           end 
           return RCL 
 
           Figure 2. The construction procedure MakeRCL() for the set RCL 
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𝑘𝑒𝑦 = 0  
while (𝑘𝑒𝑦 == 0) do 
 RCL = MakeRCLSub(𝐼𝑗∗, 𝐼)̅ 
 if 𝑅𝐶𝐿 ≠ ∅ then 
  𝑠 = SelectDemand(RCL) 
  𝐼𝑗∗ = 𝐼𝑗∗ ∪ {𝑠} 
  𝐼 ̅ = 𝐼 ̅ − {𝑠} 
 else 
  𝑘𝑒𝑦 = 1 
 end 
end 
 
Figure 3. The construction procedure for sub-problem 𝑃𝑗 

 
In MakeRCL procedure, a set of demand points that can be assigned to candidate center 𝑗 with 𝑘𝑗 
servers is determined. 
 

RCL = ∅  
𝑎max = max �𝑎𝑖 ∶ 𝑖 ∈ 𝐼 ,̅𝑊�𝜆𝑗,𝑘𝑗� ≤ 𝜏, 𝜆𝑗 = ∑ 𝑓𝑡 + 𝑓𝑖𝑡∈𝐼𝑗

∗ �  

if ( 𝑖 ∈ 𝐼 ̅and 𝑎𝑖 ≥ 𝛼𝑎max and 𝑊�∑ 𝑓𝑡𝑡∈𝐼𝑗
∗ + 𝑓𝑖,𝑘𝑗� ≤ 𝜏) then 

 RCL = RCL ∪ {𝑖} 
End 
 
Figure 4. The MakeRCL procedure for sub-problem 𝑃𝑗 
 

values of 𝑘𝑗 (𝑘𝑗 = 1,⋯ , 𝑘𝑚𝑎𝑥  and ∑ 𝑘𝑗𝑗 ≤ 𝑘�), and calculate the covered population. The best 
solution for sub-problem 𝑃𝑗 is then determined. 
 
To solve the sub-problem 𝑃𝑗  (with fixed 𝑘𝑗), we also use a modified version of GRASP. Fig. 3 shows 
the steps of the construction phase, and Fig. 4 shows the outline of the procedure Make RCL . In these 
procedures, 𝐼 ̅is defined as before and 𝐼𝑗∗ is the set of demand points assigned to center 𝑗. 

4. Numerical Example 

     We have solved three sets of problems with 20, 30, and 50 points, for different values of 𝑝. 
Parameters are set to have the same values as in [39]. In addition to the local search within GRASP, 
we have considered implementing the program with two other local searches, LS1, and LS2. In LS1 
for all selected service centers 𝑗 with 𝑘𝑗 servers, we try to move  𝑡 = 1,⋯ ,𝑘𝑗 of the servers to another 
center 𝑟 with the aim of improving the population coverage. In LS2, for each selected center 𝑗, we try 
to move 𝑡1 and 𝑡2 servers to two centers 𝑟1 and 𝑟2, respectively; again, in order to improve the 
objective function value. Table 2 shows the results for different values of  𝜏  and  𝑝. In this table, 𝑘� is 
set to be 𝑝, and 𝑘𝑚𝑎𝑥. The first column is the method used to solve the test problems, and the second 
column shows the values for 𝜏. The entries in the table are the coverage percentage for different 
values of  𝑝. These numbers are the averages of five runs.  
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     The results in Table 2 indicate that as the number of servers, 𝑝, increases, so does the population 
percentage covered, as expected. In addition, for a fixed 𝑝, increasing 𝜏 improves the solutions. For a 
given 𝑝, however, there is no pronounced difference among different solution methods; although 
GRASP with the two added local searches, in most cases, show a slight improvement in coverage. 
 
     To evaluate the effect of 𝑘� on the solution, we solved some test problems with different values of 
𝑘�. Table 3 shows results for 𝜏 = 12.75 and 𝑘𝑚𝑎𝑥 = 3. Columns 3 through 12 show the coverage 
percentages for two values of 𝑘� = 3, 4. Coverage percentages are the averages of 5 runs. Note that if 
𝑘� < 𝑝, then there is a center with no server which is not meaningful. 
 
     Table 3 depicts the results for fixed values of 𝑝. As can be seen, by increasing 𝑘�, the solutions are 
improved in some cases. The same is true for fixed values of 𝑘� and different values of 𝑝. Furthermore, 
comparison of results in tables 2 and 3 shows that for small values of  𝑝 (𝑝 = 1, 2), increasing 𝑘� 
(𝑘� = 3, 4) usually improves the solution, but for 𝑝 = 3, 4 the average coverage does not change. This 
is to be expected, since in Table 2 we have 𝑘� = 𝑝; Thus, increasing 𝑘� while keeping 𝑝 fixed would 
provide an opportunity to assign more servers to a center, and hence leads to the possibility of serving 
more population. 
 

Table 2. Computational results for different values of 𝜏 and 𝑃 

  𝑚 = 𝑛 = 20 𝑚 = 𝑛 = 30 𝑚 = 𝑛 = 50 

Method 𝜏 𝑃 = 1 𝑃 = 2 𝑃 = 3 𝑃 = 1 𝑃 = 2 𝑃 = 3 𝑃 = 4 𝑃 = 5 𝑃 = 1 𝑃 = 2 𝑃 = 3 𝑃 = 4 𝑃 = 5 

GRASP 
 
 
 

10 7 1 . 4 5 90.1 99.62 66.14 83.8 97.11 98.53 100 45.31 63.16 70.95 77.94 84.13 

12.75 77.05 90.06 100 70.74 83.91 96.19 98.53 100 47.5 65.14 74.19 79.81 86.17 

17 82.61 90.02 100 74.41 83.91 96.63 98.53 100 48.81 66.87 73.54 81.37 86.60 

20 85.68 90.02 100 77.87 91.26 98.53 99.78 100 49.1 66.47 74.28 81.27 86.59 

GRASP + 
LS1 

 
 
 

10 71.57 90.1 100 66.36 84.35 97.11 98.57 100 45.42 65.4 72.11 78.74 84.64 

12.75 77.05 90.1 100 70.74 85 96.63 98.53 100 47.61 67.42 74.64 81.04 86.34 

17 83.36 90.1 100 74.41 87.93 96.63 98.53 100 49.04 67.23 74.22 81.6 86.99 

20 86.1 91.11 100 77.87 92.94 98.53 99.78 100 49.8 67.12 74.59 81.69 87 

GRASP + 
LS2 

 
 
 

10 71.45 98.1 100 66.14 95.61 98.53 98.53 100 45.31 63.16 72.15 77.94 84.13 

12.75 77.05 99.62 100 70.74 97.25 98.53 98.53 100 47.5 65.14 74.19 79.81 86.17 

17 82.61 100 100 74.41 97.25 98.53 99.12 100 48.81 66.87 73.54 81.37 86.60 

20 85.68 100 100 77.87 91.26 98.53 99.78 100 49.1 66.47 74.28 81.27 86.59 
GRASP + 

LS1 +  
LS2 

 
 
 

10 71.57 98.1 100 66.36 86.69 98.53 98.82 100 45.42 65.4 72.11 78.74 84.64 

12.75 77.05 100 100 70.74 85 98.53 98.53 100 47.61 67.42 74.64 81.04 86.34 

17 83.36 100 100 74.41 87.93 98.53 99.12 100 49.04 67.23 74.22 81.6 86.99 

20 86.1 95.06 100 77.87 92.94 98.53 99.78 100 49.8 67.12 74.59 81.69 87 
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Table 3. Computational results for different values of 𝑘� 

 
    𝑚 = 𝑛 = 20 𝑚 = 𝑛 = 30 𝑚 = 𝑛 = 50 

Method 𝑘� 𝑃 = 1 𝑃 = 2 𝑃 = 1 𝑃 = 2 𝑃 = 3   𝑃 = 4  𝑃 = 1 𝑃 = 2 𝑃 = 3   𝑃 = 4 

GRASP 
3 90.1 100 83.36 95.9 96.27  - 49.8 67.42 73.1  - 
4 90.1 100 83.91 97.18 98.53  98.53 49.8 67.42 74.85  80.43 

GRASP + 
LS1 
   

3 90.1 100 84.24 95.9 96.7 -  64.34 67.42 74.05 - 

4 90.1 
100 

84.64 97.18 98.53 98.53 64.45 67.42 74.85 81.80 

GRASP + 
LS2 

3 90.1 100 83.36 95.9 98.09 - 49.8 67.42 73.1 - 
4 90.1 100 83.91 97.18 98.53 98.53 49.8 67.42 74.85 80.43 

GRASP + 
LS1 + 
LS2 

3 90.1 100 84.26 95.9 98.53 - 64.34 67.42 74.05 - 

4 90.1 
100 

84.64 97.18 98.53 98.53 64.45 67.42 74.85  81.80 

5. Conclusion 

     We first discussed some optimization models for locating emergency facilities and reviewed 
several successful implementations of these models. We then considered a queueing covering location 
problem and proposed its extension with an M/G/k system. Since we do not have a closed form 
formula for the waiting time and the problem is NP-hard, hence we opted to use the heuristic solution 
procedure GRASP. We also used two local search procedures to improve the solution. Numerical 
results, however, did not show a substantial improvement in the solution as a result of added local 
search procedures. 
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