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a b s t r a c t

In the currentwork, for the first time,we extend the application of a second order slip/jump
equations introduced by Karniadakis et al. for the simulation of high speed, high Knudsen
(Kn) number flows over a nano-scale flat plate and a micro-scale cylinder. The NS equa-
tions subject to a second order slip/jump boundary conditions are solved using the Petrov–
Galerkin Finite Element discretization. We compare our numerical solution for flow
and thermal field with the solution of the DSMC and Generalized Hydrodynamic (GH)
techniques, as well as a recently developed slip/jump boundary condition, i.e., Paterson
equation. Current results demonstrate the suitable accuracy of the employed boundary
conditions for different set of test cases. Our numerical solutions are obtained with much
less numerical costs compared to alternative boundary conditions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, the use ofmicro/nano electromechanical systems (MEMS/NEMS) has been significantly increased
in various industries [1]. The low-pressure gas flow or small length scale which is present in micro/nanofluidics devices
results in flow rarefication. Consequently, the departure from thermodynamic equilibrium due to the rarefication makes
the Navier–Stokes (NS) equations invalid. The degree of gas rarefication is determined by the Knudsen number, defined as
follows:

Kn =
λ

L
(1)

where λ and L are themean free path and characteristic length of the geometry, respectively.With regard to the values of the
Knudsen number, the gas flows are classified as the continuum regime (Kn < 10−3), slip flow regime (10−3 < Kn < 10−1),
transition regime (10−1 < Kn < 10), and freemolecular flow (Kn > 10). The gas flow can be simulated using the Boltzmann
equation in all regimes while the NS equations can be used only in continuum regimes. Nevertheless, we can still simulate
the rarefied gas flow with the NS equations in the slip flow regime and slightly beyond provided that no-slip boundary
conditions are replacedwith velocity slip and temperature jump boundary conditions. Alternatively, momentmethods have
been widely employed for rarefied gas flows [2–4]. The benefit of moment methods is high accuracy and low computational
costs [5]. Recently, boundary conditions (BC) for the regularized 13moments equationswere also extended to derive second
order BCs for the NS equations [5].
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Eu [6] demonstrated that the high Mach number effects also contribute in non-equilibrium besides rarefication. He
introduced a combined parameter that considers both of the rarefaction and compressibility factors. This parameter is
defined as:

Nδ = KnM


2γ
π
. (2)

To consider the effects of flow rarefactions near thewalls, a first-order accurate velocity slip boundary conditionwas derived
for the first time by Maxwell [7]:

Us − Uw =


2 − σv

σv


Kn
∂Us

∂n
(3)

where σv and σT represent themomentum and thermal accommodation coefficients, respectively. Similarly, Smoluchowski
proposed a first-order temperature jump condition with the following equation [8]:

Ts − Tw =


2 − σT

σT

 
2γ
γ + 1


Kn
Pr
∂T
∂n
. (4)

Generally, slip/jump boundary conditions can be classified according to their accuracy and limits of applicability. The first-
order slip boundary conditions can be expressed as in the following general form [9]:

Us − Uw = C1Kn

∂U
∂n


s

(5)

where C1 represents first-order slip coefficient, i.e., C1 =
2−σv
σv

in Maxwell’s condition. Different values have been proposed
for this coefficient based on various analytical, numerical or experimental approaches. For example, see Loyalka et al. [10],
Bohukudumbi et al. [11], Karniadakis et al. [12] and Agrawal et al. [13].

When rarefication increases, more accurate boundary conditions are required. Similar to the aforementioned general
equation, the following equation can be considered for the second-order slip condition:

Us − Uw = C1Kn

∂U
∂n


s
− C2Kn2


∂2U
∂n2


s

(6)

whereC1 andC2 are the first-order and second-order coefficients. Differentmagnitudes have beenproposed for the following
coefficients based on the experimental or theoretical approaches. For example, see Refs. [14–18]. In addition to the following
equation, another type of slip/jump boundary condition, Langmuir type, has been presented considering the condensation
of gas molecules on the surface. Eu et al. [19] and Myong [20–22] developed this family of boundary conditions.

2. Karniadakis boundary condition

Karniadakis et al. [12] derived a second-order accurate slip/jump boundary condition based on the kinetic theory of gases.
They calculated mean tangential velocity of the gas molecules and temperature jump boundary conditions as follows [12]:

us =
1
2
[uλ + (1 − σv) uλ + σvuw] (7)

Ts =


(2 − σT )

Pr
2γ

(γ + 1)
Tλ + σTTw

 
σT +

2γ
(γ + 1)

(2 − σT )

Pr


(8)

where the subscripts λ andw denote value of the variables calculated at a distance proportional to themean-free-path away
from the surface and at the surface, respectively. Karniadakis et al. [12] showed that the Taylor expansion of Eq. (7) results
in a second order BC in terms of Kn number; therefore, this BC is called the second order in the current paper.

Karniadakis et al. [12] reported that the best agreement with the DSMC solution for micro-channel geometry was
obtained if uλ and Tλ were calculated at a distance equal to one mean free path away from the wall. In the current work,
a sensitivity analysis was performed for employment of Eqs. (7)–(8) for external flow geometries. We observed that best
agreementwith theDSMC solutions for velocity and temperature field is obtained if we calculate uλ and Tλ at distances equal
to λ and 2λ, respectively. σv and σT are the tangential momentum and energy accommodation coefficients. In addition, all
of the variables are non-dimensionalized with the reference quantities in the freestream.

Contrary to most other common slip/jump boundary conditions, these boundary conditions are independent of
calculating any velocity or temperature derivatives at the surface. Karniadakis et al. [12] noted that explicit implementation
of boundary conditions which needs to calculate velocity or temperature gradients at the surface may result in unstable
results. This reason along with high computational cost and numerical difficulties that come from calculating the higher
order gradients encourage the researcher to focus on non-gradient slip/jump boundary conditions. In the current work, for
the first time, we extend the applicability of Eqs. (7)–(8) for simulation of high speed external rarefied micro/nano flows.
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Previous applications of these equations were limited to low speed internal flows [12,23]. We show that suitable accuracy
of the above equations justifies the use of these equations for high speed non-equilibrium flows.

We used an explicit implementation of the above slip/jump boundary conditions as follows:

un+1
s =

1
2
[uλ + (1 − σv) uλ + σvuw]n (9)

T n+1
s =


(2 − σT )

Pr
2γ

(γ + 1)
Tλ + σTTw

 
σT +

2γ
(γ + 1)

(2 − σT )

Pr

n

. (10)

Therefore, flow parameters needed in Eqs. (9) and (10) are known from the last iteration.

3. Finite element formulation

A Petrov–Galerkin finite element method is used to solve the compressible NS equations. This method is based on intro-
ducing and using an artificial diffusion which is applied locally along the streamlines. Simplicity, stability and high accuracy
of this method are determinative factors for its usage [24]. The algorithm is implemented using bilinear quadrilateral ele-
ments. The NS equations can be written in the dimensionless forms as follows:

∂ρ

∂t
+ u · ∇ρ + ρ∇ · u = 0

ρ


∂u
∂t

+ u · ∇u


+
1

γM2
∞

∇p = ∇ · τ

(11)

ρ


∂E
∂t

+ u · ∇E


+ (γ − 1)∇ · (pu)

=
γ

Pr × Re∞

∇ · µ


∇E −

(γ − 1)
2

γM2
∞

∇ (u · u)


+ γ (γ − 1)M2
∞

∇ · (τ · u)

where Re∞ and M∞ are respectively the Reynolds and Mach numbers defined at the reference conditions. τ is the dimen-
sionless deviatoric stress tensor.

The Petrov–Galerkin weak formulations of governing equations are written as:
Ω


ω
∂ρ

∂t
+ vρ


u
∂ρ

∂x
+ v

∂ρ

∂y


+ ωρ


∂u
∂x

+
∂v

∂y


dΩ = 0 (12)

Ω


ωρ
∂u
∂t

+ vuρ


u
∂u
∂x

+ v
∂u
∂y


+ ω

1
γM2

∞

∂ (ρe)
∂x

+
µ

Re∞


∂ω

∂x


4
3
∂u
∂x

−
2
3
∂v

∂y


+
∂ω

∂y


∂u
∂y

+
∂v

∂x


dΩ

−


Γ

ω
µ

Re∞


4
3
∂u
∂x

−
2
3
∂v

∂y


nx +


∂u
∂y

+
∂v

∂x


ny


dΓ = 0 (13)

Ω


ωρ
∂v

∂t
+ vvρ


u
∂v

∂x
+ v

∂v

∂y


+ ω

1
γM2

∞

∂ (ρe)
∂y

+
µ

Re∞


∂ω

∂x


∂u
∂y

+
∂v

∂x


+
∂ω

∂y


4
3
∂v

∂y
−

2
3
∂u
∂x


dΩ

−


Γ

ω
µ

Re∞


∂u
∂y

+
∂v

∂x


nx +


4
3
∂v

∂y
−

2
3
∂u
∂x


ny


dΓ = 0 (14)

Ω


ωρ
∂e
∂t

+ veρ


u
∂e
∂x

+ v
∂e
∂y


+ ω (γ − 1) (ρe)


∂u
∂x

+
∂v

∂y


+ωγ (γ − 1)

M2
∞

Re∞

µ


4
3


∂u
∂x

2

+


∂v

∂y

2

−


∂u
∂x
∂v

∂y


+


∂u
∂y

2

+


∂v

∂x

2

+ 2

∂u
∂y
∂v

∂x



+
γ

PrRe∞

µ


∂ω

∂x
∂e
∂x

+
∂ω

∂y
∂e
∂y


dΩ −


Γ

ω


γ

PrRe∞

µ


∂e
∂x

nx +
∂e
∂y

ny


dΓ = 0 (15)

whereΩ is open-connected domain, Γ is the boundary, n is the normal unit vector and vρ, vu, ve, and ve that appeared in
continuity, momentums and energy equations are Petrov–Galerkin weighting functions used in connective terms only. ω is
the standard Galerkin weighting function which is equal to shape functions. Calculation of these parameters is described in
detail in Ref. [24].

The weighting functions are calculated using the following equations [25]:

vρ = w +
h
2U


u
∂w

∂x
+ v

∂w

∂y


(16)
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vu = w + αu
h
2U


u
∂w

∂x
+ v

∂w

∂y


(17)

where

αu = coth
γu

2


−

2
γu

(18)

and

γu =
ρRe∞Uh

µ

1 +

u2
3(u2+v2)

 (19)

vv = w + αv
h
2U


u
∂w

∂x
+ v

∂w

∂y


(20)

where

αu = coth
γv

2


−

2
γv

(21)

and

γv =
ρRe∞Uh

µ

1 +

v2

3(u2+v2)

 (22)

ve = w + αe
h
2U
µ


u
∂w

∂x
+ v

∂w

∂y


(23)

where

αe = coth
γe
2


−

2
γe

(24)

and

γv =
ρPrRe∞Uh

µγ
(25)

h is the element length associated with the mesh and direction of u [25].
We used a quadrilateral bilinear element, where the distributions of dependent variables in the interior of the elements

are computed from the following equations:

ρ (x, t) =

n
i=1

N i(x)ρi(t)

u (x, t) =

n
i=1

N i(x)ui(t)

v (x, t) =

n
i=1

N i(x)vi(t)

e (x, t) =

n
i=1

N i(x)ei(t)


, (26)

where ψi(t) = ρ(t), u(t), v(t), e(t) is the value of variable ψ in ith node in time t . To obtain uλ and Tλ once the mean-
free-path was smaller than the element size, we applied a linear interpolation between the values of variables in the node
located on the wall and the upper node.

Variations of the viscosity with the temperature are considered as follows:

µ = µref


T
Tref

ω
, µref =

15
√
πmkTref

2πd2ref (5 − 2ω) (7 − 2ω)
. (27)

For argon gas molecules, Tref = 273 K, d = 4/17 × 10−10 (m) , ω = 0.81, µref = 2.117 × 10−5 [26].
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Fig. 1. Flat plate geometry and imposed boundary conditions.

Fig. 2. Grid independency test.

4. Numerical results

4.1. Test 1: Mach = 4.38, Kn = 0.0013 flow over the flat plate [26]

In order to evaluate the accuracy of theKarniadakis et al. [12] slip/jumpboundary conditions for high speed rarefied flows,
three test cases have been considered over awide range of flownon-equilibriumconditions. Firstly,we consider a supersonic
flow of argon over a nano-scale flat plate [27]. The freestream flow conditions are T∞ = 300 K and p∞ = 4.14×107 Pa. The
plate has a length of 100 nm and is held at a constant temperature of Tw = 500 K. The inlet Mach and Knudsen numbers are
respectively 4.38 and 0.0013 based on the freestream conditions and plate length, respectively. The value of Eu’s parameter
at the free stream conditions is Nδ = 0.00582. In order to obtain a correct velocity distribution at the inlet of the plate, the
inflow boundary is placed at a distance of 10% of the plate length from the leading edge. The height of the computational
domain is 75 nm. Fig. 1 shows the geometry and boundary conditions. Since we assumed that molecules are reflected from
the wall diffusively, both of the accommodation coefficients are set equal to one.

To obtain a grid independent solution, three different sets of grids, i.e., 110×75, 220×150 and 330×225, using bilinear
quadrilateral elements were used. An expansion coefficient of 1.016 was used to increase the cell spacing in both axial and
vertical directions. As Fig. 2 shows, all three grids provide almost identical solutions for tangential velocity and temperature
at x = 90 nm. Therefore, we chose the grid with 110 × 75 cells which required less computational cost.

The convergence criterion is:Xn+1
− Xn


∥Xn∥

. (28)

The convergence is achieved if themaximum of the relative error, defined by Eq. (15), of the dependent variables falls below
the threshold value of 10−8. We compare our results with the DSMC solution obtained using the dsmcFoam solver available
in the OpenFOAM package [28].
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Fig. 3. Tangential velocity profile along the surface of the nano-scale flat plate (M = 5.48, Kn = 0.0013,Nδ = 0.00582).

Fig. 4. Temperature profile along the surface of the nano-scale flat plate (M = 5.48, Kn = 0.0013,Nδ = 0.00582).

Figs. 3 and 4 compare present results for the velocity and temperature distributions along the surface of the plate with
the DSMC solution, respectively. Considering the surface velocity, Karniadakis’s BCs results are almost coincident with the
DSMC data over thewhole plate including the shock and boundary layer regions. However, temperature jump deviates from
the DSMC data in regions close to the leading edge, but this difference decreases when flowmoves away from the beginning
of the plate. This difference can perhaps be explained by the fact that DSMC particles returning to the inlet boundary could
detect the shock formation while in the NS equations, the flow does not observe the plate until it reaches the plate tip [29].

Figs. 5–6 illustrate tangential velocity and temperature profiles at x = 80 nm. It is observed that there is reasonably
good agreement between the current approach and DSMC. The mean absolute percentage error between the DSMC and NS
solution for T and V are around 5.2% and 2.9%, respectively.

4.2. Test 2: Mach = 12.7, Kn = 0.00418 flow over the flat plate [29]

The second problem considered is the high speed hypersonic argon flow over a flat plate at Mach 12.7 and Knudsen
number 0.00418. Eu’s parameter for this problem at the free stream condition is Nδ = 0.0547. Free-stream flow conditions
are T∞ = 64.5 K,U∞ = 1893.7 (m/s) , p∞ = 3.73 Pa and Tw = 292 K. The mesh used for this case is the same as the
previous test case.We compared our resultswith theDSMCdata andPattersonBC’s results reported in Ref. [29]. Greenshields
and Reese [29] derived Patterson equations based onGrad’smomentmethod. They showed that the results using Patterson’s
temperature jump BC compare quite well with the DSMC and are consistently better than those using the Smoluchowski
temperature jump BC. Fig. 7 presents a comparison of the velocity distribution along the surface of the plate obtained by the
DSMC as well as the NS equations using different BC’s such as the Maxwell, Paterson and Karniadakis et al. model. As can
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Fig. 5. Tangential velocity profile at x = 80 nm from the plate tip (M = 5.48, Kn = 0.00129,Nδ = 0.00582).

Fig. 6. Temperature profile at x = 80 nm from the plate tip (M = 5.48, Kn = 0.00129,Nδ = 0.00582).

Table 1
Mean absolute percentage error for velocity slip over the whole surface.

BC Present work Patterson Maxwell

MAPE 34.23% 84.14% 89.457%

be deduced from this figure, Karniadakis et al.’s BC predicts the closest results to the DSMC data and performs considerably
better than the Paterson model, which coincides with the Maxwell model for this test case.

Fig. 8 shows a comparison of the temperature distribution along the surface of the plate. As observed in this figure, the
solution of the presentmodel coincideswith Patterson’s BCs, and both boundary conditions give better results for the surface
temperature than the Smoluchowski condition. Similar to Fig. 4, CFD andDSMC solutions are different at the beginning of the
flat plate while they approach each other as flow goes further along the plate. The mean absolute percentage error (MAPE)
for velocity slip and temperature jump over the whole surface is reported in Tables 1–2.

MAPE =
1
n

n
t=1

XDSMC − XNS

XDSMC

 (29)

where n is the number of cells and X is the quantity of interest.
Additionally, profiles of the temperature and tangential velocity at x = 25 mm are presented in Figs. 9–10, respectively.

From Fig. 9, we observe that almost all BC models predict a higher value of slip on the plate in comparison with the DSMC
solutions while they agree with the DSMC solution from slightly above the plate until y < 1 mm. Deviation between DSMC
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Fig. 7. Velocity profile along the surface of the flat plate (M = 12.7, Kn = 0.00418,Nδ = 0.0547).

Fig. 8. Temperature profile along the surface of the flat plate (M = 12.7, Kn = 0.00418,Nδ = 0.0547).

Table 2
Mean absolute percentage error for temperature jump over the whole surface.

BC Present work Patterson Smoluchowski

MAPE 8.80% 13.97% 19.6%

and BC’s increases until flow arrives around at y = 5 mm. From Fig. 10, we observe that Karniadakis et al.’s BC predicts
temperature at the surface 7% less than DSMC, and almost equal to the Patterson BC. It is observed that DSMC data reaches
a peak, where the value of temperature is about 1100 K, at 1.2 mm away from the wall surface. In this region, the closest
solution to the DSMC data belongs to Smoluchowski, Karniadakis, and Patterson BCs, respectively. From y > 3mm, Paterson
solution becomes closer to the DSMC data while around y = 6.8, Karniadakis and Smoluchowski models agree better
with the DSMC data. Overall, the mean absolute percentage errors for Paterson, Karniadakis and Smoluchowski models
are respectively 14.49%, 16.68% and 19.5%.

4.3. Test 3: Mach = 5.48, Kn = 0.05 flow over the cylinder [30]

The third problem considered in thiswork is the hypersonic argon flow past a cylinder atMach 5.48 and Knudsen number
(based on radius of cylinder) 0.05. Eu’s parameter at freestream conditions isNδ = 0.2823. The freestream flow temperature
is T∞ = 26.6 K. Also, the surface temperature of the circular cylinder is fixed at 293 K. Fig. 11 shows computational
domain and relevant boundary conditions employed for our numerical simulation. A structured grid with 240 × 150 nodes
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Fig. 9. Tangential velocity profile at x = 25 mm from the plate tip (M = 12.7, Kn = 0.00418,Nδ = 0.0547).

Fig. 10. Temperature profile at x = 25 mm from the plate tip (M = 12.7, Kn = 0.00418,Nδ = 0.0547).

Fig. 11. Geometry and boundary conditions.

that corresponds to 36,000 bilinear quadrilateral elements is used. Our results are compared with the DSMC data [30,31],
Generalized Hydrodynamic model results [32], and results computed using the nonlinear Boltzmann equations [33]. In
Fig. 12, distributions of the normalized density, velocity and pressure (with respect to the freestream flow conditions) along
the stagnation line are plotted. The distance is normalized using mean free path of the free stream flow.

It is observed that the Karniadakis BC gives reasonably good prediction for flow properties especially close to the surface
of the cylinder, i.e., although there is some difference between CFD results and other approaches in the shock wave region,
post-shock properties of the current simulation agree with the DSMC and Boltzmann solutions. This observation is in
agreement with the finding reported in Ref. [34]. Fig. 13 shows the contour of density and pressure from the current work
(bottom side) and from Ref. [33] (upper side). As expected, NS equations predict a thinner shock wave compared to the
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(a) Density. (b) Velocity.

(c) Temperature.

Fig. 12. Comparison of normalized flow properties along the stagnation line between different methods.

DSMC solution while post-shock contour levels, especially in the rear portion of the cylinder, show suitable agreement with
the DSMC.

The mean absolute percentage error (MAPE) for density and pressure over the whole surface of the cylinder is reported
in Table 3.

MAPE =
1
n

n
t=1

XBoltzmann − XNS

XBoltzmann

 . (30)

5. Conclusions

In the current work we extended the application of a second order slip/jump boundary conditions originally derived by
Karniadakis et al. for low speed internal flows to simulate high speed rarefied flows over typical external geometries. We
developed an explicit finite element solver based on the Petrov–Galerkin method and solved rarefied flow over a flat plate
and a cylinder. We compared our results with the solutions of alternative BC models including Maxwell/Smoluchowski and
Paterson equations. Our results show that the solution of the Karniadakismodel for slip velocity of the flat plate is quite close
to the DSMC solution while its temperature jump prediction is as accurate as the Patersonmodel. For cylinder geometry, we
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(a) Density contours. (b) Pressure contours.

Fig. 13. Hypersonic rarefied flow past a circular cylinder, comparison of the current work with Ref. [33].

Table 3
Mean absolute percentage error for density and pressure
over the whole surface of the cylinder.

Contour Density Pressure

MAPE 12.49% 16.66%

observed that the Karniadakis model predicts post-shock properties suitably while its prediction for pressure and density
contours behind the cylinder relatively agrees with the solution of the Boltzmann equation. Since the use of Karniadakis
BC’s does not require computation of higher order flow gradients, the numerical solver using this model is quite stable and
requires less computational time.
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