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Three-dimensional static analysis of thick
functionally graded plates using graded
finite element method

Hassan Zafarmand and Mehran Kadkhodayan

Abstract

In this paper, a thick functionally graded plate based on three-dimensional equations of elasticity and subjected to

nonuniform transverse loading is considered. The Young’s modulus of the plate is assumed to be graded in the thickness

direction according to a simple power law distribution in terms of the volume fractions of the constituents and the

Poisson’s ratio is assumed to be constant. Three-dimensional graded finite element method based on Rayleigh–Ritz

energy formulation has been applied to study the static response of the plate. The plate deflection and in-plane stress for

different values of the power law exponent, thickness-to-length ratio, and various boundary conditions have been

investigated. To verify the presented method and data, the results are compared to published data.
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Introduction

In recent years, the composition of several different
materials is often used in structural components in
order to optimize the responses of structures subjected
to thermal and mechanical loads. Functionally graded
materials (FGMs) are suitable to achieve this purpose.
They are composite materials, microscopically
inhomogeneous, in which the mechanical properties
vary smoothly and continuously from one surface to
the other. This idea was used for the first time by
Japanese researchers1 which leads to the concept of
FGMs. Most of the studies in this area are concerned
with the thermoelastic and residual stress analysis.

The mechanical behavior of FGMs with various
geometries and loading conditions has been studied
by many researchers. Between the geometries that
are studied, the plates are the most important because
of great applications in engineering structures. It
should be noted that the plate is a three-dimensional
(3D) structure that one dimension is much smaller
than the other dimensions. In 2D theories such as
the Kirchhoff’s classical plate theory or the shear
deformations plate theories, to obtain a 2D formula-
tion, various assumptions should be made. Clearly
finding a solution for the plate in 2D formulation is
easier. However, because of assumptions some errors
occur in solutions, and these errors rise as the thick-
ness of the plate increases. Unlike 2D solutions,

the 3D solution does not contain any simplification
assumptions, so it is obvious that using 3D solutions
would be more accurate than the solutions achieved
by the 2D theories. Thus, in dealing with thick plates,
for eliminating the lack of 2D theories, the 3D elasti-
city solution not only provides realistic and accurate
results but also allows further physical insights, which
cannot otherwise be estimated by plate theories.

Many papers studying static and dynamic response
of functionally graded plates have been published
recently. A critical literature review of these works is
done by Jha et al.2 Theoretical formulation, Navier’s
solutions of rectangular plates, and finite element
models (FEMs) based on the third-order shear
deformation plate theory (TSDT) are presented for
the analysis of through-thickness functionally graded
plates by Reddy.3 Ferreira et al.4 studied the static
analysis of a simply supported functionally graded
plate based on a TSDT by using a meshless method.
Axisymmetric bending and stretching of functionally
graded circular plates subjected to uniform transverse

Department of Mechanical Engineering, Ferdowsi University of

Mashhad, Mashhad, Iran

Corresponding author:

Mehran Kadkhodayan, Department of Mechanical Engineering,

Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran.

Email: kadkhoda@um.ac.ir

Proc IMechE Part C:

J Mechanical Engineering Science

2014, Vol. 228(8) 1275–1285

! IMechE 2013

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0954406213507916

pic.sagepub.com



loading based on fourth-order shear deformation
plate theory have been investigated by Sahraee and
Saidi.5 Zenkour6 presented the static response for a
simply supported functionally graded rectangular
plate subjected to a transverse uniform load based
on the generalized shear deformation theory. Talha
and Singh7 studied free vibration and static analysis
of functionally graded plates based on higher order
shear deformation theory (HSDT) with a special
modiEcation in the transverse displacement in con-
junction with FEMs. A focus on the bending analysis
of functionally graded plates by an nth-order shear
deformation theory and meshless global collocation
method based on the thin plate spline radial basis
function was made by Xiang and Kang8 and the gov-
erning equations were derived by the principle of vir-
tual work. Mantari et al.9 presented an analytical
solution to the static analysis of functionally graded
plates using a recently developed HSDT10 and pro-
vided detailed comparisons with other HSDTs avail-
able in the literature.11–14 Moreover, in the case of
thick functionally graded plates (h=a � 0:2), in
which the 2D theories cannot lead to accurate results,
several researches have been carried in the 3D
approach. Pendhari et al.15 presented a 3D mixed
semianalytical and analytical solutions for a simply
supported functionally graded rectangular plate.
A 3D analysis by use of the radial basis function
method is performed for orthotropic functionally
graded rectangular plates with simply supported
edges under static and dynamic loads by Wen
et al.16 Kashtalyan17 suggested a 3D elasticity solu-
tion for a functionally graded simply supported plate
under transversely distributed load. After that,
Kashtalyan and Menshykova18 extended this solution
to a sandwich panel with functionally graded core.
A differential quadrature and harmonic differential
quadrature methods are used to obtain 3D elasticity
solutions for bending and buckling of rectangular
plate.19 Vaghefi et al.20 developed a version of mesh-
less local Petrov–Galerkin (MLPG) method to obtain
3D static solutions for thick functionally graded
plates. Rezaei Mojdehi et al.21 presented the 3D
static and dynamic analyses of thick functionally
graded plates based on the MLPG. The Newmark
time integration method is employed to obtain the
answers in time domain.

The purpose of the current study is to investigate
static response of a thick functionally graded plate.
The Young’s modulus of the plate is varied through
the thickness with power law functions and the
Poisson’s ratio is assumed to be constant. The deflec-
tion and in-plane stress of the thick plate for different
values of the power law exponent, thickness-to-length
ratio, and various boundary conditions under nonuni-
form transverse loading are computed and compared.
The difEculty in obtaining analytical solutions for
response of graded material systems is due to the dis-
persive nature of the heterogeneous material systems.

Therefore, analytical or semianalytical solutions are
available only through a number of problems with
simple boundary conditions. Thus, in order to find
the solution for a thick functionally graded plate sub-
jected to any arbitrary loading function with various
boundary conditions, powerful numerical methods
such as graded finite element method (GFEM) are
needed. The graded finite elements, which incorporate
the material property gradient at the element level
(material properties in each element are interpolated
using linear shape functions), have been employed as
a generalized isoparametric formulation. Some works
can be found in the literature on modeling nonhomo-
genous structures by using GFEM.22–24 In these
researches, it is shown that the conventional FEM
formulation causes a discontinuous stress field in the
direction perpendicular to the material property grad-
ation, while the graded elements give a continuous
and smooth variation. Moreover, in the conventional
FEM formulations, when material properties vary
through the thickness, several elements need to be
considered in the thickness in order to obtain con-
verged results. But with the use of GFEM, the
number of elements in the thickness reduces consider-
ably. Thus, the run time and calculational efficiency in
this approach (GFEM) do not differ significantly in
comparison with the 2D approaches. Accordingly, the
desired results are obtained without too much redun-
dant computational costs.

Problem formulation

In this section the volume fraction distribution
through the thickness of the plate is introduced. The
3D governing equations of equilibrium are obtained
and graded Enite element is utilized for modeling the
nonhomogeneity of the material.

Material distribution and geometry of thick plate

Consider a thick functionally graded rectangular plate
of uniform thickness h, length a, and width b as shown
in Figure 1. The Cartesian coordinate system is shown
such that the plane z ¼ 0 and z ¼ h are the bottom
and top surfaces of the plate, respectively. The plate is
made up of a combined ceramic–metal material,

Figure 1. Thick rectangular plate.
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the top surface of the plate is pure ceramic, and the
bottom surface is pure metal. The material compos-
ition varying continuously along its thickness with a
simple power law distribution is given as follows

< zð Þ ¼ <c � <mð Þ
z

h

� �n
þ<m ð1Þ

where < is the material property and n is a non-
negative volume fraction exponent, subscripts ‘‘c’’
and ‘‘m’’ stand for ceramic and metal, respectively.
It should be mentioned that the Poisson’s ratio is
assumed to be constant. This assumption is reason-
able because of the small differences between the
Poisson’s ratios of basic materials.

Governing equations

The plate is subjected to the nonuniform loading on
its top surface and the 3D equations of equilibrium in
absence of body forces are

@�x
@x
þ
@�xy
@y
þ
@�xz
@z
¼ 0 ð2-1Þ

@�xy
@x
þ
@�y
@y
þ
@�yz
@z
¼ 0 ð2-2Þ

@�xz
@x
þ
@�yz
@y
þ
@�z
@z
¼ 0 ð2-3Þ

where �ij and �ij are components of normal and shear
stresses, respectively.

The stress–strain relations from the Hook’s law in
matrix form are

�ij
� �
¼ DðzÞ½ � "ij

� �
ð3Þ

The stress and strain components and the coefE-
cients of elasticity are

where � denotes the Poisson’s ratio and assumed to be
constant and E is Young’s modulus that depends on
z coordinate.

The strain–displacement equations based on theory
of linear elasticity are

"x ¼
@u

@x
, �yz ¼

@v

@z
þ
@w

@y

"y ¼
@v

@y
, �xz ¼

@u

@z
þ
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"z ¼
@w

@z
, �xy ¼

@v

@x
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@u
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ð7Þ

The boundary conditions used in this paper are
defined as follows

CCCC :
x ¼ 0, a

y ¼ 0, b

�
! u ¼ 0, v ¼ 0, w ¼ 0

��
ð8-1Þ

SSSS :
x ¼ 0, a ! v ¼ 0, w ¼ 0

��
y ¼ 0, b ! u ¼ 0, w ¼ 0

��
(

ð8-2Þ

CSCS :
x ¼ 0, a ! u ¼ 0, v ¼ 0, w ¼ 0

��
y ¼ 0, b ! u ¼ 0, w ¼ 0

��
(

ð8-3Þ

CFCF1 : y ¼ 0, b ! u ¼ 0, v ¼ 0, w ¼ 0
���

ð8-4Þ

CFCF2 : x ¼ 0, a ! u ¼ 0, v ¼ 0, w ¼ 0
���

ð8-5Þ

where u, v, and w are displacement components.

Graded finite element modeling

In order to solve the governing equations, the isopara-
metric Enite element method with graded element
properties is used. For this purpose the variational
formulation is considered. In conventional Enite elem-

ent formulations, a predetermined set of material
properties is used for each element such that the prop-
erty Eeld is constant within an individual element.

�ij
� �
¼ �x, �y, �z, �yz, �xz, �xy
� �T

ð4Þ

"ij
� �
¼ "x, "y, "z, �yz, �xz, �xy
� �T

ð5Þ

D½ � ¼
E zð Þ

1þ �ð Þ 1� 2�ð Þ

1� � � � 0 0 0

� 1� � � 0 0 0

� � 1� � 0 0 0

0 0 0 1� 2�ð Þ=2 0 0

0 0 0 0 1� 2�ð Þ=2 0

0 0 0 0 0 1� 2�ð Þ=2

2
666666664

3
777777775

ð6Þ
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For modeling a continuously nonhomogeneous
material, the material property function must be dis-
cretized according to the size of elements mesh. This
approximation can provide signiEcant discontinuities.
Based on these facts the graded Enite element is
strongly preferable for modeling of the present
problem.

Hamilton’s principle for the present problem is

Z t2

t1

� U�Wð Þdt ¼ 0 ð9Þ

where U and W are potential energy and virtual work
done by surface tractions, respectively. These func-
tions and their variations are

U ¼

Z
V

�ij"ij dV ð10-1Þ

�U ¼

Z
V

�ij�"ij dV ð10-2Þ

W ¼

Z
A

piui dA ð11-1Þ

�W ¼

Z
A

pi�ui dA ð11-2Þ

where V and A are the volume and area of the domain
under consideration and pi is the component of sur-
face tractions.

Substituting equations (10) and (11) in equation
(9), applying side conditions �uiðt1Þ ¼ �uiðt2Þ ¼ 0,
and using part integration give

Z
V

�ij�"ij dV ¼

Z
A

pi�ui dA ð12Þ

The strain–displacement equations based on theory
of linear elasticity in the matrix form can be written as

"f g ¼ d½ � f
� 	

ð13Þ

where

d½ � ¼

@=@x 0 0

0 @=@y 0

0 0 @=@z

0 @=@z @=@y

@=@z 0 @=@x

@=@y @=@x 0

2
666666664

3
777777775

ð14Þ

and

f
� 	
¼

u

v

w

8><
>:

9>=
>; ð15Þ

The plate is divided into a number of linear hexa-
hedron or break elements, each of them has eight
nodes. For convenience the local coordinate is used
and its variables (�, �, 	) are between �1 to þ1 as
shown in Figure 2. For element (e), the displacements
in three directions are approximated as follows

f
� 	ðeÞ

¼ N½ �ðeÞ Q
� 	ðeÞ

ð16Þ

where [N] is the matrix of linear shape function in
local coordinate and {Q}(e) is the nodal displacement
vector of the element that are as

Q
� 	ðeÞ

¼ U1,V1,W1,U2,V2,W2, . . . ,U8,V8,W8h iT

ð17Þ

N½ �ðeÞ

¼

N1 0 0 N2 0 0 . . . N8 0 0

0 N1 0 0 N2 0 . . . 0 N8 0

0 0 N1 0 0 N2 . . . 0 0 N8

2
64

3
75

3�24

ð18Þ

Substituting equation (16) in equation (13) gives
the strain matrix of element (e) as

"f gðeÞ¼ d½ � N½ �ðeÞ Q
� 	ðeÞ

ð19Þ

B½ �ðeÞ¼ d½ � N½ �ðeÞ ð20Þ

"f gðeÞ¼ B½ �ðeÞ Q
� 	ðeÞ

ð21Þ

The components of matrix N and B are given in
Appendix 2.

Figure 2. Mapping to local coordinate.
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Applying Hamilton’s principle for each element
and using equations (3) and (21), it can be achieved
that

� QðeÞ
� 	T Z

VðeÞ
B½ �T D½ � B½ �dV


 �
QðeÞ
� 	

¼ � QðeÞ
� 	T Z

SðeÞ
N½ �T Pf gdS


 � ð22Þ

where VðeÞ, SðeÞ, and Pf g are volume of element, area
under pressure, and vector of surface tractions,
respectively.

To treat the material inhomogeneity by using the
GFEM, in each element we have

= ¼
X8
i¼1

=iNi ð23Þ

Thus in each element, the elastic modulus is a func-
tion of local coordinate as

EðeÞ ¼ E �, �, 	ð Þ ð24Þ

Substituting equation (24) into equation (22) gives

K½ �ðeÞ Q
� 	
¼ Ff gðeÞ ð25Þ

where

K½ �ðeÞ¼

Z
V

B½ �T D½ � B½ �dV ð26Þ

Ff gðeÞ¼

Z
SðeÞ

N½ �T Pf gdS ð27Þ

To find the stiffness matrix, the integral must
be taken over the elements’ volume which is eval-
uated by numerical integration for each element.
First the integral is taken to the local coordinate
as below

I ¼

Z
VðeÞ

f ðXÞdV

¼

Z Z Z
VðeÞ

f X �, �, 	ð Þ½ � det J �, �, 	ð Þ½ � d� d� d	

¼

Z Z Z
VðeÞ

g �, �, 	ð Þd� d� d	 ð28Þ

where J is Jacobian matrix and is introduced in
Appendix 2. In this way, the integration domain is
identical for all elements belonging to the same type.
Now, the analytical integration is approximated by a
numerical integration scheme. This basically means
that the integral in equation (28) is replaced by a
linear combination of function values at speciEc

locations, the so-called integration points, within the
domain of integration

Z Z Z
VðeÞ

g �, �, 	ð Þd� d� d	 �
XN
i¼1

g �i, �i, 	ið Þ i ð29Þ

The value of the weights, the location of the inte-
gration points, and their number constitute together
an integration scheme. Different schemes lead to dif-
ferent calculational expenditure and different accur-
acy. For Enite element calculations, the Gauss
schemes are very popular, because of their high accur-
acy compared to the numerical expenditure.25

In this case the 2� 2� 2 scheme which represents
full integration for a linear element (eight-node brick)
is used. The location of integration point and their
weights are defined as

 i ¼ 1

�i, �i, 	i ¼ �
1ffiffiffi
3
p , �

1ffiffiffi
3
p , �

1ffiffiffi
3
p

 �
ð30Þ

Now by assembling the element matrices, the
global equilibrium equations for the functionally
graded plate can be obtained as

K½ � Q
� 	
¼ Ff g ð31Þ

Once the Enite element equations are established,
the displacements and stresses would be found by
equations (31) and (3), respectively.

Results and discussions

Validation

To validate the current work, the data of a function-
ally graded plate can be used.6 The plate is square
(a ¼ b) with a thickness-to-length ratio of 0.1
(h=a ¼ 0:1) and consists of aluminum and alumina
as its components. The modulus of elasticity at the
top surface (alumina) is Ec ¼ 380GPa, at the
bottom surface (aluminum) is Em ¼ 70GPa, and
Poisson’s ratio is selected constant for both and
equal to 0.3. Material distribution is assumed to be
varied in thickness from metal (aluminum) at the
bottom surface to ceramic (alumina) at the top sur-
face with a power law function. The boundary condi-
tions are simply supported and the load is sinusoidal
as below

qðx, yÞ ¼ �q0 sin

x

a

� �
sin


y

b

� �
, q0 ¼ 106 Pa

ð32Þ
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The comparison of the nondimensional parameters
defined in Ref. 6 with the results of the present study
is given in Table 1 and a good agreement between
these two results is observed.

�w ¼
10h3Ec

a4q0
w

a

2
,
b

2

 �
ð33-1Þ

��x ¼
h

aq0
�x

a

2
,
b

2
, h

 �
ð33-2Þ

Numerical results and discussions

A thick functionally graded square plate of side equal
to 1 m (a ¼ b ¼ 1 m) is considered here. The nonuni-
form load is taken as

qðx, yÞ ¼ �q0x
2 sinð
yÞ ð34Þ

where

q0 ¼ 106 Pa ð35Þ

The distribution schematic of nonuniform load is
shown in Figure 3.

First, the influence of power law exponent (n) and
thickness-to-length ratio (h=a) on maximum deflection
and distribution of �x in the thickness direction of the
plate is studied. The boundary condition is assumed
to be CCCC. Figure 4 shows the influence of power
law exponent on maximum deflection of the plate with
a constant thickness-to-length ratio of 0.1. As it can
be seen, the maximum deflection increases when
power law exponent rises, as a result of the fact that
when n raises the material properties approach metal,
thus the elasticity modulus decreases.

The effect of thickness-to-length ratio of the plate
on maximum deflection with n¼ 2 is shown in
Figure 5. The figure shows, while the thickness-to-
length ratio increases, the maximum deflection
decreases due to growth of stiffness of the plate.

Figures 6 and 7 illustrate the effect of power law
exponent and thickness-to-length ratio (h/a) on the
variation of �x through the thickness of the plate.
According to these figures, there is compression at
the top surface and tension at the bottom surface.
Moreover, the neutral plane (where �x vanishes)
goes upper with the increase of power law exponent
and remains unchanged when thickness-to-length
ratio varies.

Now the effect of various boundary conditions for a
thick functionally graded plate with a constant power
law exponent and thickness-to-length ratio is investi-
gated. The load distribution is as shown in Figure 3.

Figure 3. Nonuniform load.

Table 1. Nondimensional deflection and stress compared

to Ref. 6.

n

�w ��x

Ref. 6 Present Ref. 6 Present

Ceramic 0.2960 0.2921 1.9955 2.02

2 0.7573 0.7490 3.6094 3.6682

4 0.8819 0.8855 4.0693 4.008

Metal 1.6070 1.6021 1.9955 2.02
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The power law exponent (n) and thickness-to-length
ratio (h/a) are assumed to be 2 and 0.1, respectively.
The deflection distributions in the middle plane of the
plate with mentioned boundary conditions in equation
(8) are shown in Figure 8(a) to (e).

It is seen that with the increase of plate’s degrees of
freedom, the maximum deflection rises, as presented

in Table 2. The deflection distribution in the boundary
condition CFCF1 and CFCF2 differs as a result of
nonuniform loading.

Figure 9 shows the effect of boundary conditions
on variation of �x with a constant n and h/a.
It is obvious that the neutral plane is independent of
boundary conditions.

Figure 5. Influence of thickness-to-length ratio on maximum deflection (n¼ 2).

Figure 4. Influence of power law exponent on maximum deflection (h/a¼ 0.1).
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Conclusions

Themain purpose of the present paper was to study the
static analysis of thick functionally graded plate. The
3DGFEM and Rayleigh–Ritz energy formulation was
applied. The proposed method was validated by the
result of a functionally graded plate under sinusoidal
loading which was extracted from published literature.
The comparisons between the results show that the
present method has a good agreement with the existing
results. The effects of thickness-to-length ratio of the
plate and the power law exponent on the deflection and

stress were presented for a thick functionally graded
plate. Additionally, the influences of different bound-
ary conditions on the deflection and in-plane stress of
the plate were studied. The obtained results denote
that the maximum stress, stress distribution, and max-
imum deflection can be controlled by the material dis-
tribution. Advantages of the present method are its
applicability to any FGMmodel, applying any bound-
ary condition and loading, and supporting any 3D
geometry. Moreover, the results demonstrate that
using linear shape functions to interpolate material
properties in each element provide smoother and
more accurate results than homogeneous elements.

Figure 7. Effect of thickness-to-length ratio (h/a) on variation of �x (n¼ 2).

Figure 6. Effect of power law exponent on variation of �x (h/a¼ 0.05).
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Figure 8. The deflection distributions for various boundary conditions: (a) CCCC, (b) SSSS, (c) CSCS, (d) CFCF1 and (e) CFCF2.

Figure 9. Effect of boundary conditions on variation of �x (n¼ 2, h/a¼ 0.1).

Table 2. Maximum deflection in various boundary conditions.

B.C CCCC CSCS CFCF2 SSSS CFCF1

wmax (m) 2.58e-5 3.54e-5 4.12e-5 7.22e-5 1.47e-4
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Appendix 1

Notation

a length of the plate
b width of the plane
E elasticity modulus
F force vector
h thickness of the plate
J Jacobian matrix
K stiffness matrix
n power law exponent
Ni shape functions
P surface traction vector
q nonuniform load
Q nodal displacement vector
u displacement in x direction
U potential energy
v displacement in y direction
w displacement in z direction
W virtual work

< material properties in plate
= material properties in element
�ij shear strains
"ij normal strains
	 local coordinate
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� local coordinate
� Poisson’s ratio
� local coordinate
�ij normal stresses
�ij shear stresses

Appendix 2

The linear shape functions are26

N1 ¼ 1� �ð Þ 1� �ð Þ 1� 	ð Þ=8 ð36Þ

N2 ¼ 1þ �ð Þ 1� �ð Þ 1� 	ð Þ=8 ð37Þ

N3 ¼ 1þ �ð Þ 1þ �ð Þ 1� 	ð Þ=8 ð38Þ

N4 ¼ 1� �ð Þ 1þ �ð Þ 1� 	ð Þ=8 ð39Þ

N5 ¼ 1� �ð Þ 1� �ð Þ 1þ 	ð Þ=8 ð40Þ

N6 ¼ 1þ �ð Þ 1� �ð Þ 1þ 	ð Þ=8 ð41Þ

N7 ¼ 1þ �ð Þ 1þ �ð Þ 1þ 	ð Þ=8 ð42Þ

N8 ¼ 1� �ð Þ 1þ �ð Þ 1þ 	ð Þ=8 ð43Þ

and components of matrix [B] are

Because the shape functions are functions of local
variables �, �, 	ð Þ, to differentiate them with respect to
Cartesian variables x, y, zð Þ, we should use the chain
rule as below27

@Ni=@�

@Ni=@�

@Ni=@	

2
64

3
75 ¼

@x=@� @y=@� @z=@�

@x=@� @y=@� @z=@�

@x=@	 @y=@	 @z=@	

2
64

3
75

@Ni=@x

@Ni=@y

@Ni=@z

2
64

3
75

¼ J

@Ni=@x

@Ni=@y

@Ni=@z

2
64

3
75 ð45Þ

@Ni=@x

@Ni=@y

@Ni=@z

2
64

3
75 ¼ J�1

@Ni=@�

@Ni=@�

@Ni=@	

2
64

3
75 ð46Þ

where J is the Jacobian matrix. By use of the shape
functions, we could write the Cartesian variables
x, y, zð Þ as function of local variables �, �, 	ð Þ

x ¼
X8
i¼1

Nixi ð47Þ

y ¼
X8
i¼1

Niyi ð48Þ

z ¼
X8
i¼1

Nizi ð49Þ

where xi, yi, zið Þ and Ni are locations of element nodes
and shape functions, respectively. Hence, the Jacobian
matrix and [B] would be obtained.

B½ �ðeÞ¼

@N1=@x 0 0 . . . @N8=@x 0 0

0 @N1=@y 0 . . . 0 @N8=@y 0

0 0 @N1=@z . . . 0 0 @N8=@z

0 @N1=@z @N1=@y . . . 0 @N8=@z @N8=@y

@N1=@z 0 @N1=@x . . . @N8=@z 0 @N8=@x

@N1=@y @N1=@x 0 . . . @N8=@y @N8=@x 0

2
666666664

3
777777775

6�24

ð44Þ
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