
Communications for Statistical Applications and Methods
2014, Vol. 21, No. 2, 115–124

DOI: http://dx.doi.org/10.5351/CSAM.2014.21.2.115
ISSN 2287-7843

A Berry-Esseen Type Bound in Kernel Density Estimation
for a Random Left-Truncation Model

P. Asgharia , V. Fakoor1,a, M. Sarmada

aDepartment of Statistics, Faculty of Mathematical Sciences,
Ferdowsi University of Mashhad, Iran

Abstract
In this paper we derive a Berry-Esseen type bound for the kernel density estimator of a random left truncated

model, in which each datum (Y) is randomly left truncated and is sampled if Y ≥ T , where T is the truncation
random variable with an unknown distribution. This unknown distribution is estimated with the Lynden-Bell
estimator. In particular the normal approximation rate, by choice of the bandwidth, is shown to be close to n−1/6

modulo logarithmic term. We have also investigated this normal approximation rate via a simulation study.

Keywords: Asymptotic normality, Berry-Esseen, kernel density estimation, rate of convergence,
left-truncation.

1. Introduction

Left truncated data are widely occurring in medical studies mostly in lifetime analysis of patients that
have a particular disease. In epidemiology they are usually referred to as prevalent cases. In other
research that deals with survival analysis, the data cannot be seen completely and we do not have
sufficient information about the individuals before the time of recruiting the data. This is the reason
that the left truncation model and the left truncation random variable appear. Truncation also occurs
in industrial and insurance studies. So many works have been done to non-parametrically estimate
the density function of left truncated data. A kernel estimation procedure is used in most of these
works. It is of interest to obtain a rate of convergence of these non-parametric density estimators to
the normal distribution known as Berry-Esseen bound.

Many works have been done in different data sampling models due to the importance and appli-
cability of density estimation and Berry-Esseen bounds for the density estimator. Prakasa Rao (1975)
considered a density estimator and presented a Berry-Esseen type bound for the estimator when the
observations were from a stationary Markov process. Birkel (1988) gave uniform rates of convergence
in the central limit theorem for a sequence of associated random variables. Chen (1997) gained the
rate of convergence in the central limit theorem for the conditional empirical function and also for con-
ditional sample quantiles based on kernel estimation. Isogai (1994) investigated a Berry-Esseen type
bound for the kernel estimators of pth order derivative of the density for independent and identically
distributed random variables. Cheng (1998) established a Berry-Esseen type bound for the distribution
of smooth quantile density estimators. Some works have been done in a censorship model in order to
obtain a Berry-Esseen bound for a kernel density estimator by Sun and Zhu (1999); subsequently, a
uniform and a non-uniform Berry-Esseen bound for a sequence of stationary random variables have

1 Corresponding author: Assistant Professor, Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi Uni-
versity of Mashhad, Iran. E-mail: fakoor@math.um.ac.ir

Published online 31 March 2014 / journal homepage: http://csam.or.kr
c⃝ 2014 The Korean Statistical Society, Korean International Statistical Society. All rights reserved.



116 P. Asghari, V. Fakoor, M. Sarmad

been driven by Dewan and Prakasa Rao (2002). They used this bound to obtain another bound for the
expected value of the integrated mean of deviation of the kernel density estimator. About a random
left truncated model (RLTM), several works have been done to estimate distributional parameters.
Recently Zhou et al. (2006) have proposed a kernel-type estimator of the quantile function in an
RLTM scheme. Ould-Saı̈d and Tatachak (2009) have non-parametrically estimated the mode of the
distribution in RLTM using a kernel estimator. They have also investigated the strong consistency and
the normality of their estimator. Liang and Baek (2008) presented uniform Berry-Esseen type bounds
for a sequence of negatively associated random variables. They also used a kernel density estimator
for the true density function. Liang and Uña-Álvarez (2009) have derived a Berry-Esseen bound for
strong mixing censored data using a kernel estimator. For stationary processes, a Berry-Esseen bound
has been driven for kernel estimators by Huang et al. (2011). They used a martingale approximation
in their procedure. Yang et al. (2012) investigated a Berry-Esseen type bound for the sample quantiles
of a strongly mixing sequence.

There is limited work on Berry-Esseen bounds for an RLTM and this paper intends to add to the
existing literature. Here we present a Berry-Esseen type bound for the kernel density estimator in an
RLTM.

Let P be a finite population with large and deterministic size N. Each element of P contains two
independent and positive random variables that are denoted by Y and T with continuous distribution
functions, respectively shown by F and G. So until now we have N independent and identically
distributed random variables (Yi,Ti) 1≤i≤N . In order to correspond this population with the RLTM,
suppose that T is the truncation random variable and (Y,T ) is observed if Y ≥ T , otherwise we have
no information about them. So among the N random variables we only observe a limited number of
them, shown by n, n ≤ N. As a direct result n is a binomial random variable, with sample size N and
success probability α = P (Y ≥ T ). In application, α is unknown. Among several estimators for α, in
this paper we use the more familiar one that is proposed by He and Yang (1998).

In what follows, we focus on estimating the probability density function of Y that is denoted by
f (·), using a kernel density estimator. In this sequel, we would also have to estimate G. Here we
use its non-parametric maximum likelihood estimator (NPMLE). As for our main result, we obtain a
Berry-Esseen type bound for the estimator of f .

The layout of this paper is as follows. In Section 2, we introduce our notations and we also present
some preliminaries. In Section 3, we derive our main theorems and results. In Section 4 we perform
a simulation study. The proofs of the theorems and corollaries of Section 2 are deferred to Section 5.

2. Preliminaries and Notation

As it is mentioned in the Introduction, in an RLTM, we observe n pairs (n ≤ N) of (Yi,Ti)(1≤i≤N) if
Yi ≥ Ti. Let (Y,T ) be the generic random variables distributed identical to (Yi,Ti)(1≤i≤N). Y is the
variable of interest and T is the left truncation random variable. Now let the conditional distribution
of (Y,T ) be denoted by H∗. So we have

H∗ (y, t) = P (Y ≤ y,T ≤ t|Y ≥ T )

= α−1
∫ y

−∞
G (t ∧ u) dF (u), (2.1)

from the Introduction we know that α = P (Y ≥ T ).
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So the marginal distribution function of Y is

F∗ (y) = H∗ (y,∞) = α−1
∫ y

−∞
G (u) dF (u),

and the marginal probability density function of Y is

f ∗ (y) = α−1G (y) f (y) . (2.2)

As it is discussed before, we are interested in estimating f (·), so from (2.2) we have

f (y) =
α

G (y)
f ∗ (y) . (2.3)

Here we use the following kernel density estimator for f (y)

fn (y) =
1

nhn

n∑
i=1

K
(

Yi − y
hn

)
α

G (Yi)
, (2.4)

in which {hn}n≥1 is a bandwidth sequence, such that hn → 0 as n→ ∞, and K(·) is a kernel function.
In what follows, for any distribution function L on [0,∞], let aL := inf{x > 0 : L(x) > 0} and

bL := sup{x > 0 : L(x) < 1}.
fn(y) is applicable when G is known, but in most applications, it is unknown. So we need to use an

estimator. Here we use the non-parametric maximum likelihood estimator of G, modified by Lynden-
Bell (see Lynden-Bell, 1971), which we refer to it by Gn(·). If there are no ties in the data, it is given
by

Fn (y) = 1 −
∏

i:Yi≤y

[
nCn (Yi) − 1

nCn (Yi)

]
, Gn (t) = 1 −

∏
i:Ti>t

[
nCn (Ti) − 1

nCn (Ti)

]
, (2.5)

in which

Cn (y) = G∗n (y) − F∗n
(
y−

)
=

1
n

n∑
i=1

I{Ti≤y≤Yi}, y ∈ [aF ,+∞) ,

it is the empirical estimator of

C (y) := G∗ (y) − F∗ (y) = α−1G (y) (1 − F (y)) , y ∈ [aF ,+∞) . (2.6)

(2.6) suggests using the following estimator for α,

αn =
Gn (y)

[
1 − Fn (y−)

]
Cn (y)

. (2.7)

This estimator is defined for all y such that Cn (y) , 0 and it is shown that it is not a function of y. In
addition, He and Yang (1998) have shown that αn is strongly consistent for α. According to (2.5) and
(2.7), we are now in a place to present the plug-in version of fn(·) which we refer to it by f̂n(·)

f̂n (y) =
αn

nhn

n∑
i=1

K
(

Yi − y
hn

)
1

Gn (Yi)
. (2.8)

Note that in (2.8) the sum is taken over i’s for which Gn(Yi) , 0. Let σ2
n(y) := nhnVar( fn(y)) and

σ2(y) := α f (y)/G (y)
∫ 1
−1 K2 (t) dt.
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3. Main Results

Before presenting the main results, we should mention some basic assumptions that are used in the
following theorems and lemmas. In the sequel C is a compact set such that C ⊂ {y : y ≥ aF}. Here is
the required definition:

Definition 1. The kernel function K(·) is said to be a second order kernel function if
∫

K (t) dt = 1,∫
tK (t) dt = 0 and

∫
t2K (t) dt > 0.

A1 K(·) is a positive kernel function such that
∫ 1
−1 K (t) dt = 1, K(t) = 0 for |t| > 1 and it is bounded

for any t within [−1, 1].

A2 For the distribution functions F and G, aG < aF , bG ≤ bF .

A3 (i) nhn → ∞ as n→ ∞.

(ii) hn log log n→ 0 as n→ ∞.

(iii) nh5
n → 0 as n→ ∞.

A4 K(·) is a second-order kernel function.

A5 f (·) is two times continuously differentiable for y ∈ C.

Discussion on the Assumptions. Assumption A1 is commonly used in non-parametric estimation.
From Woodroofe (1985) Assumption A2 is needed to estimate F and G. It is mentioned that if aG ≤ aF

then F is estimable. The uniform convergence rate of Gn to G is true for y’s that do not include aG.
This means that we should have aG < aF .
Assumptions A3(i) and A3(iii) are used for consistency of the kernel density estimator in the lit-
erature. Assumptions A3(i)–A3(iii) are used in Theorems 2 and 3 and they are needed for normal
approximation in this paper. Assumptions A4 and A5 are needed to use Theorem 1 of Ould-Saı̈d and
Tatachak (2009) in Corollary 2.

Theorem 1. Suppose that A1–A3(i) are satisfied and also f and G have bounded first derivatives in
a neighborhood of y for y ≥ aF , then for such y’s we have

sup
x∈R

∣∣∣∣P ( √
nhn

[
fn(y) − E fn(y)

] ≤ xσn(y)
)
− Φ(x)

∣∣∣∣ = O
(
(nhn)−

1
2

)
.

Theorem 2. Under the assumptions of Theorem 1 and A3(ii), for y ≥ aF we have

sup
x∈R

∣∣∣∣P ( √
nhn

[
f̂n(y) − E fn(y)

]
≤ xσn (y)

)
− Φ(x)

∣∣∣∣ = O
(
(nhn)−

1
2 +

(
hn log log n

) 1
4

)
.

Theorem 3. Suppose that A1–A5 are satisfied and let f and G have bounded first derivatives in a
neighborhood of y ≥ aF , then for such y’s we have

sup
x∈R

∣∣∣∣P ( √
nhn

[
f̂n(y) − f (y)

]
≤ xσ(y)

)
− Φ(x)

∣∣∣∣ = O (an) ,

where an = (nhn)−1/2 +
(
hn log log n

)1/4
+ hn + n1/2h5/2

n .
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Remark 1. When f and G are unknown, Theorem 3 cannot be used in statistical applications such
as finding a confidence interval for f (y) or hypothesis testing. So we have to estimate σ2 (y). Here
we propose the following estimator for σ2 (y)

σ̂2
n (y) =

αn f̂n (y)
Gn (y)

∫ 1

−1
K2 (t) dt.

Use of this estimator forces a change in the rate achieved in Theorem 3. This change is discussed in
the following corollaries.

In the following corollaries, we substitute A3(i) with nhn/log n→ ∞ as n→ ∞.

Corollary 1. Let the assumptions of Theorem 3 be satisfied. We have

sup
y∈C

∣∣∣σ̂2
n (y) − σ2 (y)

∣∣∣ = O

max


√

log n
nhn

, h2
n

 +
√

log log n
n

 a.s.

Corollary 2. If the assumptions of Corollary 3 are satisfied, then for y ∈ C we have

sup
x∈R

∣∣∣∣∣∣∣∣P

√

nhn

(
f̂n(y) − f (y)

)
σ̂n (y)

≤ x

 − Φ (x)

∣∣∣∣∣∣∣∣ = O (an + bn) ,

in which bn = max(
√

log n/nhn, h2
n) +

√
log log n/n.

Remark 2. If we choose hn = O (n−α) for 1/3 < α < 2/3, the Berry-Esseen bound in Theorem 3
and Corollary 2 reduces to O(n−α/4) modulo logarithmic term, therefore if we choose α near 2/3, the
convergence rate approximately equals to O(n−1/6) modulo logarithmic term as n → ∞. This means
that estimating σ2 (y) does not affect the rate of convergence.

4. Simulation Study

We perform a simulation study in this section to investigate the normality of f̂n. As it is mentioned
after Theorem 3, Corollary 2 is the applicable form of Theorem 3 which is the main theorem. So it is
of interest to perform the simulation for this applicable form.

In order to generate a random left truncated sequence of (Yi,Ti) we assume that Y has exponential
distribution truncated by aF with mean 1/3 + aF for aF = 0.5, 1, 2. T is also exponentially distributed
with mean 1/λ for λ > 0. This parameter is used in order to obtain different truncation proportions
that are α = 0.3, 0.7, 0.9 . We employ the kernel K(u) = 3/4(1 − u2)I(|u| ≤ 1).

N = 1000 pairs of (Yi,Ti) are simulated and those in which Yi ≤ Ti are put aside and a sample of
size n is achieved. Then we evaluate

P


√

nhn

(
f̂n (y) − f (y)

)
σ̂n (y)

≤ x

,
using Monte Carlo based on M = 1000 replications for x = 1 and y = 3. Let this estimate be denoted
by P̂(

√
nhn( f̂n(y) − f (y))/σ̂n(y) ≤ x). Then we calculate

An (x, y, aF) :=

∣∣∣∣∣∣∣∣P̂

√

nhn

(
f̂n (y) − f (y)

)
σ̂n (y)

≤ x

 − Φ (x)

∣∣∣∣∣∣∣∣ . (4.1)
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Table 1: Simulation results
α An (1, 3, 0.5) An (1, 3, 1) An (1, 3, 2)

0.3 0.1338 0.1446 0.1586
0.7 0.1156 0.0776 0.06026
0.9 0.1206 0.0766 0.0034

The bandwidth that is used to perform the simulation is what that minimizes the observed integrated
square error (ISE) between the estimate f̂n and the actual density f with respect to the restriction that
is assumed in Remark 2 which says that hn should be equal to n−a for 1/3 < a < 2/3. The ISE is given
by

ISE
(

f̂n, hn; f
)
=

∫ [
f̂n (y) − f (y)

]2
dy, (4.2)

and as it is mentioned, the optimal bandwidth is

hIS E = argmin
n−

2
3 <hn<n−

1
3

ISE
(

f̂n, hn; f
)
. (4.3)

The procedure of achieving hIS E is as follows. f̂n would be calculated for a simulated sample and as
it is mentioned, f is known. So the ISE would be a function of hn. For each of 1000 replication of
simulations, the minimizing point of this function would be the hIS E . Table 1 summarizes the results
as well as shows that the Berry-Esseen Theorem works better for high proportions of truncation like
90%, rather than low proportions such as 30%. It can be seen that in high proportions of truncation,
when the difference between aF and aG increases, our normal convergence rate improves.

5. Proofs

Below we mention some lemmas that are used in the proofs of the main theorems. Note that from
now on, C is a purely numerical positive constant that may change from one line to other line in the
procedure of proof of a theorem.

Lemma 1. Suppose that A1 and A2 are satisfied and let f and G have bounded first derivatives in a
neighborhood of y. For y ≥ aF ∣∣∣σ2

n(y) − σ2(y)
∣∣∣ = O (hn) .

Proof: From the definition of σ2
n(y) and σ2(y) we have

∣∣∣σ2
n(y) − σ2(y)

∣∣∣ = ∣∣∣∣∣∣∣ 1
hn

∫
K2

(
u − y

hn

)
α2 f ∗ (u)
G2 (u)

du − 1
hn

[∫
K

(
u − y

hn

)
α f ∗ (u)
G (u)

du
]2

− α f (y)
G (y)

∫ 1

−1
K2 (t) dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ 1

−1
K2 (t)

α f (y + hnt)
G (y + hnt)

dt − hn

[∫ 1

−1
K (t) f (y + hnt) dt

]2

− f (y)
G (y)

∫ 1

−1
K2 (t) dt

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ 1

−1
αK2 (t)

G (y) f (y + hnt) −G (y + hnt) f (y)
G (y + hnt) G (y)

dt − hn

[∫ 1

−1
K (t) f (y + hnt) dt

]2
∣∣∣∣∣∣∣

= O (hn) . (5.1)
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Note that in the last equation we used A1 and the fact that f and G have bounded first derivatives in a
neighborhood of y. �
Proof of Theorem 1: Set

fn (y) − E
[
fn (y)

]
=

1
nhn

n∑
i=1

{
K

(
Yi − y

hn

)
α

G (Yi)
− E

(
K

(
Yi − y

hn

)
α

G (Yi)

)}

=:
n∑

i=1

Zni. (5.2)

From the Berry-Esseen Theorem (See Petrov, 1995), it can be written that

sup
x∈R

∣∣∣∣Pr
( √

nhn
[
fn(y) − E fn(y)

] ≤ xσn(y)
)
− Φ(x)

∣∣∣∣ ≤ C
n

5
2 h

3
2
n E|Zn1|3

σ3
n (y)

, (5.3)

and

E|Zn1|3 ≤
1

(nhn)3

E

∣∣∣∣∣∣K
(

Y1 − y
hn

)
α

G (Y1)

∣∣∣∣∣∣3 +
∣∣∣∣∣∣E

(
K

(
Y1 − y

hn

)
α

G (Y1)

)∣∣∣∣∣∣3


≤ 2
(nhn)3 E

∣∣∣∣∣∣K
(

Y1 − y
hn

)
α

G (Y1)

∣∣∣∣∣∣3, (5.4)

and

E

∣∣∣∣∣∣K
(

Y1 − y
hn

)
α

G (Y1)

∣∣∣∣∣∣3 = α3
∫

K3
(

u − y
hn

)
f ∗ (u)

G3 (u)
du

= α2hn

∫ 1

−1
K3 (t)

f (y + hnt)
G2 (y + hnt)

dt. (5.5)

Since f and G are bounded in a neighborhood of y, A1 and a little calculation yields

sup
x∈R

∣∣∣∣Pr
( √

nhn
[
fn(y) − E fn(y)

] ≤ xσn(y)
)
− Φ(x)

∣∣∣∣ = O
(
(nhn)−

1
2

)
, (5.6)

and Theorem 1 is proved. �
In order to start the proof of Theorem 2, we shall state another lemma that is subsequently used.

Lemma 2. Let X and Y be random variables. For any a > 0 we have

sup
u∈R
|P (X + Y ≤ u) − Φ (u)| ≤ sup

u∈R
|P (X ≤ u) − Φ (u)| + a

√
2π
+ P (|Y | > a) .

The proof of Lemma 2 can be found in Chang and Rao (1989), page 4655.

Proof of Theorem 2: Set Kni := K ((Yi − y)/hn). By using Lemma 2 for an arbitrary a > 0, we have
the following decomposition

sup
x∈R

∣∣∣∣P ( √
nhn

[
f̂n(y) − E fn(y)

]
≤ xσn (y)

)
− Φ(x)

∣∣∣∣
≤ sup

x∈R

∣∣∣∣P ( √
nhn

[
fn(y) − E fn(y)

] ≤ xσn (y)
)
− Φ(x)

∣∣∣∣ + a
√

2π
+ P


∣∣∣∣∣∣∣∣
√

nhn

[
f̂n(y) − fn(y)

]
σn (y)

∣∣∣∣∣∣∣∣ > a

 . (5.7)
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Alternatively

E

∣∣∣∣∣∣∣∣
√

nhn

[
f̂n(y) − fn(y)

]
σn (y)

∣∣∣∣∣∣∣∣ ≤ 1
√

nhnσn (y)

n∑
i=1

E
{
|Kni|

∣∣∣∣∣ αn

Gn(Yi)
− α

G(Yi)

∣∣∣∣∣}

≤ n
√

nhnσn (y)
E

{
|Kn1|

|αnG(Y1) − αGn(Y1)|
Gn(Y1)G(Y1)

}
≤ n
√

nhnσn (y)
E

{
|Kn1|

G(Y1) |αn − α| + α |Gn(Y1) −G (Y1)|
Gn(Y1)G(Y1)

}
, (5.8)

using Woodroofe (1985) we have

sup
y≥aF

|Gn (y) −G (y)| = O


√

log log n
n

 , (5.9)

and also using He and Yang (1998) we have

|αn − α| = O


√

log log n
n

 , (5.10)

now according to (5.9), (5.10) and Lemma 1, using A1 and because f is bounded in a neighborhood
of y, it can be written that

(5.8) ≤ C
√

nhn

(
|αn − α| + sup

y≥aF

|Gn(y) −G(y)|
) ∫ 1

−1
|K (t)| f (y + hnt) dt

≤ C
√

nhn O


√

log log n
n


= O

( √
hn log log n

)
. (5.11)

So by letting a =
(
hn log log n

)1/4 and using (5.7), (5.11), Markov’s inequality and Theorem 1 we get
the result. �

Proof of Theorem 3: Using Lemma 2, we have

sup
x∈R

∣∣∣∣∣∣∣∣P

√

nhn

(
f̂n(y) − f (y)

)
σ (y)

≤ x

 − Φ (x)

∣∣∣∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣∣∣∣P

√

nhn

(
f̂n(y) − E fn(y)

)
σn(y)

≤ σ(y)
σn(y)

x

 − Φ (
σ(y)
σn(y)

x
)∣∣∣∣∣∣∣∣

+ sup
x∈R

∣∣∣∣∣∣Φ
(
σ(y)
σn(y)

x
)
− Φ (x)

∣∣∣∣∣∣ +
√

nhn |E fn (y) − f (y)|
σ(y)

. (5.12)

Alternatively, a little calculation yields

sup
x∈R

∣∣∣∣∣∣Φ
(
σ(y)
σn(y)

x
)
− Φ (x)

∣∣∣∣∣∣ = O
(∣∣∣σ2

n(y) − σ2(y)
∣∣∣) . (5.13)
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Under A4 and A5, a Taylor expansion gives

sup
y∈C
| f (y) − E fn (y)| = O

(
h2

n

)
. (5.14)

Now by using (5.12), (5.13), (5.14) and Theorem 2 we get the result. �

Proof of Corollary 1: By using the definition of σ̂2
n (y) and σ2 (y) we can write

sup
y∈C

∣∣∣σ̂2
n (y) − σ2 (y)

∣∣∣
= sup

y∈C

∣∣∣∣∣∣αn f̂n (y)
Ĝn (y)

− α f (y)
G (y)

∣∣∣∣∣∣
∫ 1

−1
K2 (t) dt

≤ sup
y∈C

∣∣∣∣∣∣αn f̂n (y) G (y) − α f (y) Gn (y)
Gn (y) G (y)

∣∣∣∣∣∣
∫ 1

−1
K2 (t) dt

≤ C
sup

y∈C
G (y)

∣∣∣αn f̂n (y) − α f (y)
∣∣∣ + sup

y∈C
f (y) |Gn (y) −G (y)|

 ∫ 1

−1
K2 (t) dt

≤ C
sup

y∈C
αn

∣∣∣ f̂n (y) − f (y)
∣∣∣ + sup

y∈C
f (y) |αn − α| + sup

y∈C
f (y) |Gn (y) −G (y)|

 ∫ 1

−1
K2 (t) dt. (5.15)

Under A3(iii), A4 and A5, Theorem 1 of Ould-Saı̈d and Tatachak (2009) gives

(5.15) = O

max


√

log n
nhn

, h2
n

 +
√

log log n
n

 . (5.16)

�

Proof of Corollary 2:

sup
x∈R

∣∣∣∣∣∣∣∣P

√

nhn

(
f̂n(y) − f (y)

)
σ̂n (y)

≤ x

 − Φ (x)

∣∣∣∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣∣∣∣Pr


√

nhn

(
f̂n(y) − f (y)

)
σ(y)

≤ σ̂n (y)
σ(y)

x

 − Φ (
σ̂n (y)
σ(y)

x
)∣∣∣∣∣∣∣∣ + sup

x∈R

∣∣∣∣∣∣Φ
(
σ̂n (y)
σ(y)

x
)
− Φ (x)

∣∣∣∣∣∣ . (5.17)

Now by a little calculation, from Corollary 1 we have

sup
x∈R

∣∣∣∣∣∣Φ
(
σ̂n (y)
σ(y)

x
)
− Φ (x)

∣∣∣∣∣∣ = O
(∣∣∣σ̂2

n (y) − σ2(y)
∣∣∣)

= O

max


√

log n
nhn

, h2
n

 +
√

log log n
n

 . (5.18)

From (5.17), (5.18) and with the aid of Theorem 3 we get the result and Corollary 1 is proved. �
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