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1 Introduction

Higher-derivative couplings in string theory can be captured by exploring its wonderful

string dualities. T-duality relates type IIA superstring theory at weak (strong) coupling to

type IIB superstring theory at weak (strong) coupling [1]–[9] . At low energy, this duality

relates the type IIA to the type IIB supergravities. S-duality, on the other hand, relates the

type IIB theory at weak (strong) coupling to the type IIB at strong (weak) coupling [10]–

[15]. At low energy, this is the symmetry of type IIB supergravity. The stringy behaviors

of the superstring theory which are encoded in the higher-derivative corrections to these

supergravities should have the same properties. That is, the higher-derivative couplings of

type IIB supergravity should be invariant under the S-duality, and the higher-derivative

couplings in type IIA supergravity should be related to the higher-derivative couplings

in type IIB supergravity under the T-duality. These properties may be used as guiding

principles to find the stringy corrections to the supergravity. See [16]–[28] for related work

on higher-derivative couplings of D-brane action, and [29]–[36] for the higher-derivative

couplings of the type II supergravities.

The higher-derivative corrections to the supergravity start at the eight-derivative level,

and were first found from the sphere-level four-graviton scattering amplitude [37, 38] as

well as from the σ-model beta function approach [39, 40]. The result in the string frame is

S ⊃ γζ(3)

3.27

∫
d10xe−2φ

√
−G

(
t8t8R

4 +
1

4
ε8ε8R

4

)
(1.1)

where γ = α′3

25
and t8 is a tensor which is antisymmetric within a pair of indices and is

symmetric under exchange of the pair of indices (see equation (2.10) for its precise form).

The couplings given by t8t8R
4 have nonzero contribution at four-graviton level, so they

were found from the sphere-level S-matrix element of four graviton vertex operators [37, 38],
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whereas the couplings given by ε8ε8R
4 have nonzero contribution at five-graviton level [41].

It has been recently shown this term is consistent with the sphere-level S-matrix element

of five graviton vertex operators in the Ramond-Neveu-Schwarz formalism [35].

The action (1.1) is valid for both type IIA and type IIB theories. In the type IIB case,

this action should be extend to the S-duality invariant form. For constant dilaton, the

action (1.1) in the Einstein frame becomes

S ⊃ γζ(3)

3.27

∫
d10xe−3φ/2

√
−G

(
t8t8R

4 +
1

4
ε8ε8R

4

)
(1.2)

The presence of the dilaton factor in this action indicates that it needs the genus and

nonperturbative corrections to become S-duality invariant. The SL(2,Z) invariant form of

this action has been found in [42]–[59] to be

S ⊃ γ

3.28

∫
d10xE(3/2)(τ, τ̄)

√
−G

(
t8t8R

4 +
1

4
ε8ε8R

4

)
(1.3)

where E(3/2)(τ, τ̄) is the SL(2,Z) invariant non-holomorphic Eisenstein series which has the

following weak-expansion [42]:

E(3/2)(τ, τ̄) = 2ζ(3)τ
3/2
2 + 4ζ(2)τ

−1/2
2 + 8πτ

1/2
2

∑
m 6=0,n≥1

∣∣∣m
n

∣∣∣K1(2π|mn|τ2)e2πimnτ1 (1.4)

where τ = τ1 + iτ2 = C0 + ie−φ and K1 is the Bessel function. The above expansion

shows that there are no perturbative corrections beyond the one-loop level, but there are

an infinite number of D-instanton corrections. By explicit calculation, it has been shown

in [53] that there is no two-loop correction to the action (1.3). The odd-odd coupling

ε8ε8R
4 at one-loop level has been confirmed in [33, 60] by explicit calculation of torus-level

S-matrix element of five graviton vertex operators. In the type IIA case, the sign of the

odd-odd term is minus at one-loop level, and of course there is no D-instanton corrections.

There is also a Chern-Simons term in type IIA case [61, 62] in which we are not interested

in this paper.

The non-constant B-field and dilaton couplings at four-field level have been added to

(1.1) by extending the Riemann curvature to the generalized Riemann curvature at the

linear order [63],1

R̄ab
cd = Rab

cd − η[a[cφ,b]d] + e−φ/2Hab
[c,d] (1.5)

where the bracket notation is Hab
[c,d] = 1

2(Hab
c,d−Hab

d,c), and comma denotes the partial

derivative. Using the relation between the Einstein frame metric and the string frame

metric Gµν = e−φ/2Gsµν , one observes that the dilaton term in above equation is canceled

in transforming the linearized Riemann curvature from the Einstein frame to the string

frame [30], i.e.

R̄abcd =⇒ e−φ/2Rabcd (1.6)

1Note that the normalizations of the dilation and B-field here are
√

2 and 2 times the normalization of

the dilaton and B-field in [63], respectively.

– 2 –



J
H
E
P
0
5
(
2
0
1
4
)
1
0
0

where on the right hand side the metric is in the string frame. In above equation, Rabcd is

the following expression

Rabcd = Rabcd +Hab[c,d] (1.7)

which is the Riemann curvature of the connection with torsion at the linear order, i.e. the

curvature two-form is

Rαβ = dω̃αβ ; ω̃αβ = ωαβ +
1

2
Ha

αβdxa (1.8)

The action involving four Neveu-Schwarz-Neveu-Schwarz (NS-NS) fields at the sphere level

then becomes

S ⊃ γζ(3)

3.27

∫
d10xe−2φ

√
−G

(
t8t8R4 +

1

4
ε8ε8R4

)
(1.9)

where the metric is in the string frame. The odd-odd coupling ε8ε8R4 is total derivative

at four-field level. It has been observed in [30, 32, 33] that the even-even coupling t8t8R4

is invariant under T-duality.

The natural nonlinear extension of the generalized Riemann curvature (1.8) is

Rαβ = dω̃αβ + ω̃αγ ∧ ω̃γβ (1.10)

which has the following spacetime components:

Rabcd = Rabcd +Hab[c;d] −
1

2
Hae[cH|be|d] (1.11)

Rab = Rab +
1

2
Hacb;c −

1

4
H2
ab ; R = R− 1

4
H2

where Rab = Racbc and the semicolon denotes the covariant derivative. The tours-level

coupling of two B-fields and three Riemann curvatures and the coupling of four B-fields

and one Riemann curvature in the even-even part have been found in [64] and shown that

they are fully consistent with the corresponding couplings in t8t8R4. However, the B-field

couplings in the odd-odd sector are not given by ε8ε8R4. The one-loop coupling of two

B-fields and three Riemann curvatures and the coupling of four B-fields and one Riemann

curvature in the odd-odd part have been found in [33, 69] and shown that they are not

reproduced by the B-field couplings in ε8ε8R4. One may still extend the curvature in the

odd-odd part to the generalized curvature. Then there are extra couplings in this sector

involving the field strength H which does not show up in R [33]. In this paper we are not

interested in fixing such H-couplings, so we use only the generalized curvatures throughout

this paper.

Using the combination of S- and T-dualities on the action (1.9), the tensorial structure

of various four-field couplings, including Ramond-Ramond (R-R) fields, have been found

in [31], and confirmed by the S-matrix calculations in [35]. In particular, it has been

observed that the Eisenstein series E(3/2)(τ, τ̄) appears in all couplings, and the extra

dilaton and the axion and their derivatives combine with the other massless fields to become
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invariant under the SL(2,R) transformation. In the SL(2,R) form of couplings, one finds no

term which has one dilaton perturbation and three gravitons or three dilaton perturbations

and one graviton because it is impossible to write such couplings in SL(2,R) invariant form.

In this study, however, the on-shell relations have been used frequently.

At the four-field level, it is not hard to study the S-duality of various on-shell couplings

because there are no massless poles at order α′3. However, at five-field level and higher,

there are various massless poles that one should take into account. In general, one expects

the S-matrix elements of a field theory which include both massless poles and contact terms

to be invariant under the S-dual ward identity [65]–[68]. For example, when transforming

the couplings (1.9) to the Einstein frame, one would find non-zero couplings for three

dilatons and two gravitons which are not consistent with the S-duality. However, when

one combines them with the corresponding massless poles, which produces then the S-

matrix element of three dilatons and two gravitons, one would expect the result to be zero

according to the S-dual ward identity [65]–[68]. The on-shell action (1.9) then is expected

to be consistent with the on-shell S-duality after taking into account the massless poles.

To avoid the massless poles, however, one may require the field theory action to be

consistent with the S-duality without using the on-shell relations. Then one would find

the action (1.9) is not consistent with the S-duality. In particular, when transforming

the Riemann curvatures in (1.9) to the Einstein frame, one would find non-zero couplings

between one dilaton and three gravitons. These couplings and all other couplings involving

the gravitons and odd number of dilaton perturbations are not consistent with the S-

duality. In this paper, in order to make this action to be consistent with the S-duality,

we are going to include the appropriate Ricci and scalar curvatures as well as the dilaton

couplings in the action (1.9).

An outline of the paper is as follows: in section 2 we show when transforming the

action (1.9) to the Einstein frame one finds couplings involving odd number of dilatons. In

this section we include various couplings in the even-even, t2nt2n, and the odd-odd, εnεn,

sectors to remove such undesirable couplings. To construct the even-even couplings, we use

the expansion of the Born-Infeld action to construct the t2n tensors. We fix the coefficients

of the Ricci and the scalar curvature couplings by constraining them to have no coupling

of one dilaton and three gravitons in the Einstain frame. We observe that, this constraint

not only removes the odd number of dilatons, but also it removes all the couplings between

the dilatons and the gravitons in the Einstein frame. In section 3, we then include various

couplings between the dilatons and the gravitons in the string frame. In this section we also

include the appropriate couplings of the Ricci and scalar curvatures to make the dilaton

couplings to be consistent with the S-duality. In section 4, we briefly discuss our results.

2 R4 couplings

We have seen that for the constant dilaton, the couplings (1.1) can be extended to the

S-duality invariant form (1.3). However, for non-constant dilaton there must be various

other couplings to make the acion invariant under the S-duality. In this section we are

going to show that in the presence of non-constant dilaton, the S-duality of action (1.1)
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requires the effective action to have couplings involving the Ricci and scalar curvatures. So

let us first review the SL(2,R) transformation of various bosonic fields in the supergravity.

Under the SL(2,R) transformation, the B-field and the R-R two-form transform as

doublet [70, 71]. Since the parameters of the duality are constant, their field strengths, i.e.

H = dB and F = dC, are also transform as doublet,

H ≡

(
H

F

)
→ (Λ−1)T

(
H

F

)
; Λ =

(
p q

r s

)
∈ SL(2,R) (2.1)

The dilaton and the R-R scalar transform non-linearly as τ → pτ+q
rτ+s . The matrixM defined

in terms of the dilaton and the R-R scalar, i.e.

M = eφ

(
|τ |2 C0

C0 1

)
(2.2)

then transforms as [72]

M→ ΛMΛT (2.3)

The derivative of this matrix, ∂M, also transform as above. The Einstein frame metric

and the R-R four-form are invariant under the SL(2,R) transformations. Using the above

transformations, one can construct various couplings which are invariant under the SL(2,R)

transformations. For example, the coupling HTMH which has the following components:

HTMH = e−φ(1 + e2φC2
0 )HH + eφFF + eφC0(HF + FH) (2.4)

is invariant under the SL(2,R) transformations. The perturbations of dilaton or axion

appears only as δM. One can easily construct the SL(2,R) invariant couplings from two

Hs and one dilaton perturbation, e.g.

HTM,hH = eφ(HF + FH)C,h + 2eφHHC0C,h + eφFFφ,h

+eφ(HF + FH)C0φ,h + eφHHC2
0φ,h − e−φHHφ,h (2.5)

However, one can verify that it is impossible to construct SL(2,R) invariant terms from the

gravity and odd number of δM. In particular, the couplings involving one ∂2φ and three

gravitons can not be extended to the SL(2,R) invariant form. Therefore, the effective action

in type IIB theory must have no coupling with odd number of dilaton perturbations. This

is the constrain that we are going to impose on the couplings (1.9) to find new couplings

involving the Ricci and scalar curvatures.

In order to study the S-duality transformation of the couplings (1.9), it is convenient

to transform the string frame metric to the Einstein frame metric, i.e. Gsµν = eφ/2Gµν .

For those terms which have no derivative of the metric, the transformation gives only an

overall dilaton factor, e.g.

e−2φ
√
−G =⇒ eφ/2

√
−G (2.6)
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In other cases, there are some extra terms involving the derivative of the dilaton, e.g. the

transformation of the Riemann curvature is given by [28]

Rµναβ =⇒ eφ/2Rµναβ + eφ/2
[
G[µ[β∇ν]∂α]φ+

1

4
G[µ[α∂ν]φ∂β]φ+

1

8
G[µ[βGν]α]∂λφ∂λφ

]
(2.7)

where on the right hand side the metric is in the Einstein frame. Using the above trans-

formations, one can transform the couplings (1.9) to the Einstein frame to find various

couplings between the dilatons and the gravitons.

Let us start by transforming the odd-odd Riemann curvature term in (1.9) to the

Einstein frame,

1

4
e−2φ
√
−Gε8ε8R4 =⇒ e−3φ/2

√
−G
[

1

4
εµ1···µ8εν1···ν8Rµ1µ2ν1ν2Rµ3µ4ν3ν4Rµ5µ6ν5ν6Rµ7µ8ν7ν8

−εµ1···µ7εν1···ν7∇µ1∇ν1φRµ2µ3ν2ν3Rµ4µ5ν4ν5Rµ6µ7ν6ν7

+
3

2
εµ1···µ6εν1···ν6∇µ1∇ν1φ∇µ2∇ν2φRµ3µ4ν3ν4Rµ5µ6ν5ν6

−εµ1···µ5εν1···ν5∇µ1∇ν1φ∇µ2∇ν2φ∇µ3∇ν3φRµ4µ5ν4ν5

+
1

4
εµ1···µ4εν1···ν4∇µ1∇ν1φ∇µ2∇ν2φ∇µ3∇ν3φ∇µ4∇ν4φ+ · · ·

]
where dots refer to the higher order fields which are resulted from the nonlinear dilaton

terms in (2.7). Our notation in the Levi-Civita tensors εnεn is that 10 − n indices of the

10-dimensional Levi-Civita tensors are contracted, e.g. εµ1···µ88 εν1···ν88 = εµνµ1···µ810 εµνν1···ν810 .

Using the Bianchi identity, one observes that the above couplings which are resulted from

the linear dilaton term in (2.7), are total derivatives. However, the higher order terms

are not total derivative. In particular, there are couplings between three dilatons and two

curvatures. There are two source for these couplings. One of them is coming from the

integration by part of the third term in above equation. The other one is coming from the

direct replacement of (2.7) into the odd-odd coupling where appears in the dots in above

equation. We have checked that these couplings are not zero.

The even-even part also produces odd number of dilatons. The transformation of the

even-even part to the Einstein frame is

e−2φ
√
−Gt8t8R4 =⇒ e−3φ/2

√
−G
[
tµ1···µ8tν1···ν8Rµ1µ2ν1ν2Rµ3µ4ν3ν4Rµ5µ6ν5ν6Rµ7µ8ν7ν8

−4tµ1···µ8tν1···ν7µ8∇µ1∇ν1φRµ2µ3ν2ν3Rµ4µ5ν4ν5Rµ6µ7ν6ν7
+6tµ1···µ8tν1···ν6µ7µ8∇µ1∇ν1φ∇µ2∇ν2φRµ3µ4ν3ν4Rµ5µ6ν5ν6
−4tµ1···µ8tν1···ν5µ6µ7µ8∇µ1∇ν1φ∇µ2∇ν2φ∇µ3∇ν3φRµ4µ5ν4ν5

+tµ1···µ8tν1···ν4µ5µ6µ7µ8∇µ1∇ν1φ∇µ2∇ν2φ∇µ3∇ν3φ∇µ4∇ν4φ+ · · ·
]

where dots refer to the higher order fields which are resulted from the nonlinear dilaton

terms in (2.7). Since the t8 tensor is not totally antisymmetric, the above dilaton cou-

plings are not total derivative terms. In particular, the couplings of one dilaton and three

curvatures or three dilatons and one curvature are not zero. Therefore, as in the odd-odd

sector, there are couplings which have odd number of dilatons.
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Since there are couplings of odd number of dilatons, one concludes that the couplings

in (1.9) are not consistent with the S-duality for non-constant dilaton field. To remedy

this failure one may add some new four-curvature couplings to (1.9). Such couplings can

not be captured by the S-matrix calculations, so they must involve the Ricci and/or scalar

curvatures. The transformation of these couplings to the Einstein frame should then chancel

the above couplings which have odd number of dilatons. Since the couplings of one dilaton

and three curvatures are not zero, we impose the above condition on these coupling.

To construct various couplings between four curvatures, we need to define some tensors

that contract appropriately with the indices of the four curvatures. Assuming the Kawai-

Lewellen-Tye relation [73] is holed for the closed string couplings, the tensors should be

square of some lower rank tensors. We call these lower rank tensor, the open string tensors

and the square of them, the closed string tensors. For example, to have the coupling of

three Riemann curvatures and one Ricci curvature, we need an open string tensor of rank

seven. The only possibility for the closed string tensor with rank 14 is εµ1···µ7εν1···ν7 . The

coupling is then ε7ε7R4. Similarly, one may use the 10-dimensional Levi-Civita tensor

to construct the closed string tensors with lower rank, i.e. ε6ε6R4, ε5ε5R4, ε4ε4R4 which

have no scalar curvatures. The couplings which have one scalar curvature are Rε6ε6R3,

Rε5ε5R3, Rε4ε4R3, and Rε3ε3R3. The couplings which have two scalar curvatures are

R2ε4ε4R2 and R2ε2ε2R2. And there is one coupling which has four scalar curvatures, i.e.

R4. The rank of the odd-odd tensor εnεn dictates how many of the curvatures in the above

couplings are the Ricci curvature, so we don’t need to specify how many of the curvature

are the Riemann and how many of them are the Ricci curvature. For example the coupling

ε6ε6R3 has three Riemann curvatures, and the coupling ε6ε6R4 has two Ricci and two

Riemann curvatures. These odd-odd couplings can be expanded using the relation

εµ1···µnε
ν1···νn = −n!δν1[µ1 · · · δ

νn
µn]

(2.8)

Using the expansion form of each coupling, one finds that there is no coupling for odd

number of B-field strength, which is consistent with parity.

For the open string tensor with rank even, however, there are other possibilities. Since

the open string tensors should appear also in the effective action of D-brane, we construct

these tensors from expanding the Born-Infeld Lagrangian. So consider the following ex-

pansion:

√
−det(η +M) = 1 +

1

2
Tr(M)− 1

4
Tr(M2) +

1

8
(Tr(M))2 +

1

6
Tr(M3) +

1

48
(Tr(M))3

−1

8
Tr(M)Tr(M2)− 1

32
(Tr(M))2Tr(M2) +

1

32
(Tr(M2))2

+
1

12
Tr(M)Tr(M3)− 1

8
Tr(M4) +

1

384
(Tr(M))4 + · · · (2.9)

where M is an arbitrary matrix. When one deals with the couplings which involve only

the generalized Riemann curvature, the matrix M should be chosen to be antisymmetric.

In other cases, this matrix has both the symmetric and the antisymmetric parts.
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The coupling of four arbitrary antisymmetric matrices M1, · · · ,M4 gives the tensor

t8 which was first defined in [37] by other means, i.e.

1

8
t8M

1M2M3M4 = −
[
Tr(M1M2M3M4) + Tr(M1M3M2M4) + Tr(M1M3M4M2)

]
+

1

4

[
Tr(M1M2)Tr(M3M4) + Tr(M1M3)Tr(M2M4) + Tr(M1M4)Tr(M2M3)

]
(2.10)

where we have added the factor 1/8 to have the same normalization for t8 as in [37].

Our prescription for constructing the above tensor is the following: we have first replaced

the matrix M in (2.9) with M = M1 + M2 + M3 + M4 and kept the terms which have

M1M2M3M4. Then we have replaced each structure with average of all independent

contractions with identical wight, i.e. 3Tr(M1M2M3M4) is replaced by the expression in

the first line above. Note that there are 6 non-cyclic permutations for this term, however,

only three of them are independent.

Writing similar expression for four other antisymmetric matrices M̃1, · · · , M̃4, and

writing the Riemann curvature as Rµναβ = M i
µνM̃

i
αβ, one finds the coupling t8t8R4 which

has the following expansion [32]:

t8t8R4 = 3.27
[
RhkmnRkrnpRrsmqRhspq +

1

2
RhkmnRkrnpRrspqRhsmq

−1

4
RhkmnRhknsRpqmrRpqrs +

1

8
RhkmnRhkrsRpqnrRpqms

+
1

4
RhkmnRkrmnRrspqRhspq +

1

8
RhkmnRkrpqRrsmnRhspq

+
1

16
RhkmnRhkpqRrsmnRrspq +

1

32
RhkmnRhkmnRrspqRrspq

]
(2.11)

where the antisymmetry property of the first and the second pairs of the indices in the

generalized Riemann curvature has been used in above expansion. The above couplings do

not produce odd number of B-field strength [32].

Now to construct the tensor which contracts with two generalized Riemann and two

generalized Ricci curvatures, we first write the Ricci curvature as Rµν = LiµL̃
i
ν . Then we

write the matrixM to beM = 1
2(L1L2+L2L1)+M3+M4 where the antisymmetric matrices

M3 and M4 correspond to the Riemann curvatures. Replacing it in (2.9), keeping the

terms which have L1L2M3M4 and replacing each structure with average of all independent

contractions, one finds our definition of tensor t6 which is

1

8
t6L

1L2M3M4 =
1

2

[
L1 ·M4M3 ·L2 + L1 ·M3M4 ·L2

]
− 1

4
L1 ·L2Tr(M3M4) (2.12)

Writing similar expression for t6L̃
1L̃2M̃3M̃4, and using the relations Rµναβ = M i

µνM̃
i
αβ for

i = 3, 4 and Rµν = LiµL̃
i
ν for i = 1, 2, one finds the coupling t6t6R4 which has the following

expansion:

t6t6R4 = 64

[
1

2
RhmRknRhpnrRkpmr +

1

2
RhmRknRhpmrRkpnr

−1

2
RhmRkmRhpnrRkpnr +

1

16
R2
hmR2

kpnr

]
(2.13)
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We have checked that the above couplings do not produce odd number of B-field strength,

which is consistent with parity.

To construct the tensor which is contracted with four generalized Ricci curvatures, we

write the matrix M = 1
2(L1L2 + L2L1) + 1

2(L3L4 + L4L3). Performing the same steps as

before, one finds our definition of tensor t4 which is

1

8
t4L

1L2L3L4 =
1

4

[
− L1 ·L4L2 ·L3 − L1 ·L3L2 ·L4 + L1 ·L2L3 ·L4

]
(2.14)

Writing similar expression for t4L̃
1L̃2L̃3L̃4, and using the relation Rµν = LiµL̃

i
ν for i =

1, 2, 3, 4, one finds the coupling t4t4R4 which has the following expansion:

t4t4R4 = 64

[
− 1

8
RhmRhnRkmRkn +

3

16
R2
hmR2

kn

]
(2.15)

We have checked that the above couplings do not produce odd number of B-field strength.

The above even-even couplings are the only four curvature couplings which have Ricci

and Riemann curvatures. However, there are even-even couplings which involve scalar cur-

vature. These couplings can also easily be constructed. The even-even couplings involving

one scalar curvature must have three Riemann curvatures which can be constructed by

inserting the antisymmetric matrix M = M1 +M2 +M3 into (2.9). It gives the following

result:

1

8
t′6M

1M2M3 = Tr(M1M2M3) (2.16)

Witting similar expression for t′6M̃
1M̃2M̃3, one finds

Rt′6t′6R3 = 64RRhkmnRhpmrRkpnr (2.17)

The couplings R2R2
hkmn and R2R2

hk can also be constructed which have two scalar cur-

vatures. However, these two couplings are not independent of the coupling that we have

considered in the odd-odd sector.

Having found all independent couplings of four curvatures, we now add them to the

couplings (1.9) with unknown coefficients, i.e.

L ⊃ γζ(3)

3.27
e−2φ
√
−G
[
t8t8R4 + a1t6t6R4 + a2t4t4R4 + a3Rt′6t′6R3 + a4R4 (2.18)

+
1

4
ε8ε8R4 + b1ε7ε7R4 + b2ε6ε6R4 + b3ε5ε5R4 + b4ε4ε4R4 + b5Rε6ε6R3

+b6Rε5ε5R3 + b7Rε4ε4R3 + b8Rε3ε3R3 + b9R2ε4ε4R2 + b10R2ε2ε2R2

]
Using the identity (2.8) for expanding the odd-odd couplings, and using the expansion form

of the couplings in the even-even sector, one may rewrite the above couplings in terms of

contractions of four curvatures. Then using (2.7), one transforms the resulting couplings

to the Einstein frame and imposes the condition that there must be no coupling of one

dilaton and three curvatures in the Einstein frame. We have found that the even-even
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couplings together do not satisfy this constraint. They should be combined with the odd-

odd couplings to satisfy the S-duality constraint. This constraint fixes uniquely all the

unknown coefficient to be the following:

a1 = −3, a2 =
3

4
, a3 = 0, a4 = −539

18
(2.19)

b1 = −2, b2 = 9, b3 = −24, b4 = 29, b5 =
2

3
,

b6 = −8, b7 = 36, b8 = −60, b9 = 2, b10 = −28

These constants depend on the spacetime dimension which we have evaluated them for

D = 10. Note that the four Riemann curvature couplings
(
t8t8 + 1

4ε8ε8
)
R4 which have

been used to fix these numbers are valid only in 10 dimensions. One may use the identity

ε2ε2R2 = −R2 + t2t2R2 where t2t2R2 = RµνRµν , to write the last term in (2.18) in terms

of R2t2t2R2. In that case the coefficient of R4 would be a4 = −35
18 .

We have found the above numbers by imposing the condition that the couplings of one

dilaton and three curvatures in the Einstain frame is zero. However, using these numbers,

one finds the Lagrangian (2.18) produces no coupling between gravity and odd number of

dilatons. Even more, it produces nigher the coupling between dilatons nor the couplings

between dilatons and gravity when transforming it to the Einstein frame. Such couplings

must then be included in the action as new couplings in the string frame. Moreover, the

above action produces couplings between dilatons and B-fields. In particular the couplings

between two dilatons and two B-fields are not zero. However, these couplings are not

consistent with the corresponding S-matrix element. On the other hand, if we consider only

the first term in (2.18), then the couplings of two dilatons and two B-fields are reproduced

exactly by the S-matrix element [35]. The reason for this strange point is that the Ricci

curvature couplings in (2.18) which are zero on-shell, produce nonzero dilaton couplings

when transforming them to the Einstein frame, i.e.

Rµν =⇒ Rµν − 2φ;µν −
1

4
∇2φGµν +

1

2
∂µφ∂νφ−

1

2
(∂φ)2Gµν (2.20)

while the left hand side is zero on-shell, the right hand side is not zero. This inconsistency

with the S-matrix again indicates that there must be another coupling between two dilatons

and two B-fields in the string frame. We will study these couplings in the next section.

After transforming the Lagrangian (2.18) to the Einstein frame, it produces the cou-

plings between one dilaton, one graviton and two B-fields which can be written in SL(2,R)

invariant form (2.5). On the other hand, it has been shown in [35] that such couplings

which are produced by the first term in (2.18), are exactly reproduced by the correspond-

ing S-matrix element. This indicates that the corresponding couplings from all other terms

in (2.18) must be zero on-shell. We have checked this explicitly and found positive answer.

We have found the gravity couplings in (2.18) by imposing the condition that there is

no odd number of dilaton in the Einstein frame. The B-field couplings in (2.18) can be

transformed to the Einstein frame using the transformation

∇µHναβ =⇒ ∇µHναβ −
3

4

[
Hµ[να∂β]φ+Hναβ∂µφ−Gµ[νHαβ]λ∂λφ

]
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However, the S-duality does not constraint that there must be no odd number of dilatons

because one can construct SL(2,R) scalars from odd number of dilatons and even number

of B-fields. In fact, since the gravity and the B-field behave totally differently under the S-

duality, one does not expect the S-duality invariant action to be in terms of the generalized

curvatures in which the graviton and B-field appear symmetrically at the linear order. As

a result, one expects, not all the B-field couplings are given by the generalized curvatures

in (2.18). There are other couplings involving the field strength H in which we are not

interested in this paper.

Before ending this section, let us make a comment about the presence of the Ricci and

scalar curvatures in the higher-derivative action. If one is interested only in the gravity,

then such couplings can be absorbed by field redefinition of metric into the Hilbert-Einstein

action [38]. So they can be simply dropped from the action. However, if one is interested

in the couplings of all components of the supergravity multiplet, as we are, then removing

the Ricci and scalar curvatures by field redefinition produces new couplings between other

components of the supergravity multiplet.

3 Dilaton couplings

We have seen that the string frame action (2.18) produces no couplings between the dilatons

and the gravity or among the dilatons when transforming it to the Einstein frame. However,

the S-matrix element of NS-NS vertex operators produces such couplings in the Einstein

frame. Therefore, there must be dilaton couplings in the S-duality invariant action in the

string frame. To find such couplings, we use the construction of the even-even couplings

from the Born-Infeld action as in the previous section.

3.1 (∇2φ)2R2 and (∇2φ)4couplings

The S-matrix element of four NS-NS vertex operators produces couplings between two

dilatons and two gravitons, and also couplings between two dilatons and two B-fields. We

have seen that the former couplings are not produced by the couplings (2.18) at all and a

part of the latter coupling are produced by (2.18). One can verify that in the odd-odd sector

the couplings of two Riemann curvatures and two dilatons at order α′3, i.e. ε6ε6(∇2φ)2R2,

are total derivative terms at the four-field level, hence, we have to construct the on-shell

string theory couplings in the even-even sector.

To find the couplings between two dilatons and two Riemann curvatures at eight

derivative level in the even-even sector, we write ∇µ∇νφ = LiµL̃
i
ν for i = 1, 2. Then

doing the same steps that lead to the coupling (2.13), one finds the coupling t6t6(∇2φ)2R2

which has the following expansion:

t6t6(∇2φ)2R2 = 64

[
1

2
φ;hmφ;knRhpnrRkpmr +

1

2
φ;hmφ;knRhpmrRkpnr

−1

2
φ;hmφ;kmRhpnrRkpnr +

1

16
φ2;hmR2

kpnr

]
(3.1)

Interestingly, the above couplings are exactly the couplings of two dilatons and two Rie-

mann curvatures which have been found in [31] from the combination of the S- and T-
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dualities on the couplings (1.9), and have been verified by the S-matrix calculations in [35]

(see eq. (25) in [31]). The above equation includes also the couplings of two dilatons and

two B-fields which are not consistent with the couplings that have been found in [31]. In

particular, no coupling with the structure φ2;hmH
2
kp[n,r] has been found in [31] (see eq. (32)

in [31]). The reason for this discrepancy is that as we mentioned before, the Lagrangian

(2.18) produces also the on-shell couplings between two dilatons and two B-fields. We have

checked that the sum of these two contributions is reproduced exactly by the corresponding

S-matrix element.

The even-even coupling (3.1) however produces the couplings of three dilatons and

one Riemann curvature when transforming it to the Einstein frame which is not consis-

tent with the S-duality. So as in the previous section we have to add the generalized

Ricci and/or scalar curvatures in the string frame to remove such undesirable couplings.

There are two such couplings in the even-even sector and five couplings in the odd-odd sec-

tor. The couplings in the odd-odd sector are ε5ε5(∇2φ)2R2, ε4ε4(∇2φ)2R2, Rε3ε3(∇2φ)2R
and R2ε2ε2(∇2φ)2. One may also consider the generalized Riemann curvature coupling

ε6ε6(∇2φ)2R2 which is a total derivative term at the four-field level.
To construct the couplings in the even-even sector, we write∇µ∇νφ = LiµL̃

i
ν for i = 1, 2

and Rµν = LiµL̃
i
ν for i = 3, 4. Then doing the same steps that lead to the coupling (2.15),

one finds the coupling t4t4(∇2φ)2R2 which has the following expansion:

t4t4(∇2φ)2R2 = 4

[
2φ;hmφ;knRhnRkm + 2φ;hmφ;knRhmRkn − 4φ;hmφ;hnRkmRkn + φ2;hmR2

kn

]
The other coupling in this sector is R2t2t2(∇2φ)2 = R2∇µ∇νφ∇µ∇νφ. Note that the

coupling R2(∇2φ)2, is not independent of the couplings R2ε2ε2(∇2φ)2 and R2t2t2(∇2φ)2.

Using the normalization of the coupling (3.1) which is consistent with (1.9), and adding

the other couplings with unknown coefficients, i.e.

L⊃ γζ(3)e−2φ

27

√
−G
[
t6t6(∇2φ)2R2+α1t4t4(∇2φ)2R2+α2R2t2t2(∇2φ)2+β1ε6ε6(∇2φ)2R2

+β2ε5ε5(∇2φ)2R2 + β3ε4ε4(∇2φ)2R2 + β4Rε3ε3(∇2φ)2R+ β5R2ε2ε2(∇2φ)2
]

(3.2)

one can find the coefficients by imposing the condition that there is no coupling of three

dilatons and one curvature when transforming them to the Einstein frame. This fixes

uniquely the constants to be

α1 = −1

2
, α2 =

1

9
(3.3)

β1 =
7

15
, β2 = −4

3
, β3 = 0, β4 = 2, β5 = −1

Using the above numbers, we have checked that the couplings (3.2) do not produce four

dilaton couplings when transforming them to the Einstein frame. So the four dilaton

couplings should be added in the string frame as new couplings.

To construct the tensor which is contracted with four dilatons in the even-even sector,

we write ∇µ∇νφ = LiµL̃
i
ν for i = 1, 2, 3, 4. Then using the expansion (2.14), one finds the
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coupling t4t4(∇2φ)4 which has the following expansion:

t4t4(∇2φ)4 = 64

[
− 1

8
φ;hmφ;hnφ;kmφ;kn +

3

16
φ2;hmφ

2
;kn

]
(3.4)

Using the on-shell relation φ2;hmφ
2
;kn = 2φ;hmφ;hnφ;kmφ;kn [30], one finds the above couplings

are exactly reproduced by S-matrix element of four dilaton vertex operators [35]. Using

the normalization which is consistent with (1.9), the dilaton coupling is

L ⊃ γζ(3)

25
e−2φ
√
−Gt4t4(∇2φ)4 (3.5)

One may also consider the odd-odd coupling ε4ε4(∇2φ)4 which is the same as (3.4) using

the on-shell relations. The S-duality constraint can not relate these two couplings.

The couplings (3.2) and (3.5) produce non-zero couplings for five dilatons when trans-

forming them to the Einstein frame. This is resulted from the transformation of the second

derivative of the dilaton in these couplings to the Einstein frame, i.e.

∇µ∂νφ =⇒ ∇µ∂νφ−
1

2
∂µφ∂νφ+

1

4
Gµν∂αφ∂αφ , (3.6)

The nonlinear term produces odd number of dilatons in transforming the couplings in (3.2)

and (3.5) to the Einstein frame which is not consistent with the S-duality. To avoid this

undesirable property, we have to add some couplings in the string frame which involve

higher order of the dilaton. To this end, we define the operator ∇̄2
µν in the string frame to

be

∇̄2
µνφ ≡ ∇µ∂νφ+

1

2
∂µφ∂νφ−

1

4
Gµν∂αφ∂αφ (3.7)

Then under the transformation from the string frame to the Einstein frame, it obviously

transforms as

∇̄2
µνφ =⇒ ∇µ∂νφ (3.8)

Using this operator, we extend the couplings (3.2) and (3.5) to

L⊃ γζ(3)

27
e−2φ
√
−G
[
t6t6(∇̄2φ)2R2− 1

2
t4t4(∇̄2φ)2R2 +

1

9
R2t2t2(∇̄2φ)2 +

7

15
ε6ε6(∇̄2φ)2R2

−4

3
ε5ε5(∇̄2φ)2R2 + 2Rε3ε3(∇̄2φ)2R−R2ε2ε2(∇̄2φ)2 + 4t4t4(∇̄2φ)4

]
(3.9)

which includes higher order of dilaton couplings in the string frame. This Lagrangian does

not produce odd number of dilatons when transforming it to the Einstein frame, so it is

consistent with the S-duality.

Following [31], one can use the combination of S- and T-dualities to find the couplings

of two dilatons and two curvatures from the couplings of two B-fields and two curvatures

in (2.18). We have found that the (∂H)2R2 couplings in the first term of (2.18) produces

exactly the (∂2φ)2R2 coupling in the first term in above equation, however, the (∂H)2R2
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couplings in other terms in (2.18) do not produce the other (∂2φ)2R2 couplings in (3.9).

This indicates that, as we have anticipated before, not all the B-field couplings in a mani-

festly S-duality invariant theory are given by the generalized curvatures in which the gravity

and B-field appear symmetrically at the linear order. This constraint may be used to find

the complete B-field couplings in (2.18) which have structure (∂H)2R2.

The action (3.9) for the gravity part is complete and can be extended to the S-duality

invariant form by including new terms. In the Einstein frame the overall dilaton factor

becomes e−3φ/2 which is extended to the non-holomorphic Eisenstein series E3/2(τ, τ̄) after

including the one loop result and the nonperturbative effects. The second derivatives of

the dilatons, on the other hand, are extended to the SL(2,R) invariant form

Tr[M;hkM−1;mn] = −2φ;hkφ;mn + 2φ,hφ,kφ,mφ,n + 2e2φ
[
− C;hkC;mn − C,kC;mnφ,h

−C,hC;mnφ,k − C;hkC,nφ,m − C;hkC,mφ,n + C,mC,nφ;hk + C,hC,kφ;mn

+C,mC,nφ,hφ,k − C,kC,nφ,hφ,m − C,hC,nφ,kφ,m − C,kC,mφ,hφ,n

−C,hC,mφ,kφ,n + C,hC,kφ,mφ,n

]
(3.10)

after including the couplings of four dilatons and all other couplings involving the R-R scalar

field. The R-R scalar couplings should be related by the combination of S- and T-dualities

to the B-field couplings in (2.18) which have structures H(∂H)∂2φR2 and H2(∂φ)2R2 in

the Einstein frame. This gives another constraint on the B-field couplings in which we are

not interested in this paper.

The S-duality invariant form of the last term in (3.9) should have two SL(2,R) scalars

(3.10). However, there are ambiguities in choosing which pair of dilatons should appear in

the first SL(2,R) scalar. The R-R couplings in the S-duality invariant form then gives infor-

mation about the B-field couplings with structure H2(∂φ)2(∂2φ)2, H2(∂φ)6, (∂H)2(∂2φ)2,

(∂H)2(∂φ)4, H(∂H)(∂2φ)2∂φ, H(∂H)(∂φ)5, H2(∂H)2(∂φ)2, H3(∂H)(∂φ)3, H(∂H)3∂φ,

H4(∂φ)4 and (∂H)4.

3.2 (∂φ)2R3 couplings

We now consider the couplings in the string frame which have (∂φ)2 and three curvatures.

In the even-even sector, the couplings can be (∂φ)2t6t6R3, t6t6(∂φ)2R3, t4t4(∂φ)2R3 and

(∂φ)2R3. The first coupling is similar to the coupling (2.17). Using ∂µφ∂νφ = L1
µL̃

1
ν and

Rµν = L2
µL̃

2
ν , then the expansion (2.12) leads to the following expansion for t6t6(∂φ)2R3:

t6t6(∂φ)2R3 = 64

[
1

2
φ,hφ,mRknRhpnrRkpmr +

1

2
φ,hφ,mRknRhpmrRkpnr

−1

2
φ,hφ,mRhnRkpmrRkpnr +

1

16
φ,hφ,mRhmR2

kpnr

]
(3.11)

Using ∂µφ∂νφ = L1
µL̃

1
ν and Rµν = LiµL̃

i
ν for i = 2, 3, 4, then the expansion (2.14) leads to

the following expansion for t4t4(∂φ)2R3:

t4t4(∂φ)2R3 = 64

[
− 1

8
φ,hφ,mRhnRkmRkn +

3

16
φ,hφ,mRhmR2

kn

]
(3.12)
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In the odd-odd sector, there are couplings with structure εε(∂φ)2R3, Rεε(∂φ)2R2 and

R2εε(∂φ)2R in which the dilatons contract with the Levi-Civita tensors, and the couplings

(∂φ)2εεR3 and (∂φ)2RεεR2.

Consider all the above couplings with unknown coefficients, i.e.

L ⊃ e−2φ
√
−G
[
m1ε7ε7(∂φ)2R3 +m2ε6ε6(∂φ)2R3 +m3ε5ε5(∂φ)2R3 +m4ε4ε4(∂φ)2R3

+m5Rε5ε5(∂φ)2R2 +m6Rε4ε4(∂φ)2R2 +m7Rε3ε3(∂φ)2R2 +m8R2ε3ε3(∂φ)2R
+m9R2ε2ε2(∂φ)2R+m10(∂φ)2Rε4ε4R2 +m11(∂φ)2Rε3ε3R2 +m12(∂φ)2Rε2ε2R2

+m13(∂φ)2ε6ε6R3 +m14(∂φ)2ε5ε5R3 +m15(∂φ)2ε4ε4R3 +m16(∂φ)2ε3ε3R3

+m17t6t6(∂φ)2R3 +m18t4t4(∂φ)2R3 +m19(∂φ)2R3 +m20(∂φ)2t6t6R3

]
(3.13)

where m1, · · · ,m20 are the unknown coefficients. One may try to fix the coefficients by

combining the above couplings with (3.2) and then transforming them to the Einstein

frame. In that case one would find it is impossible to constrain them to satisfy the S-duality

condition. So the couplings in (3.2) must be separately extended to satisfy the S-duality

condition, as we have done by extending ∇µ∇νφ to ∇̄2
µνφ, and the above couplings should

separately satisfy this constraint.

Unlike the previous cases that the S-duality constraint connects all terms together, in

this case the constraint does not connect all the above terms. In fact the S-duality fixes

m17 = m18 = 0, and gives five multiples. Two of them, i.e.

m8

[
R2ε3ε3(∂φ)2R− 4R2ε2ε2(∂φ)2R− 2(∂φ)2R3

]
= 0

m11

[
(∂φ)2Rε3ε3R2 − 4(∂φ)2Rε2ε2R2 − 2(∂φ)2R3

]
= 0

which can easily be verified using the expansion of the Levi-Civita tensors (2.8). In fact

the above relations show that not all the couplings that we have considered in (3.13) were

independent. The other three multiplets are

L ⊃ e−2φ
√
−G
[
m1

(
ε7ε7(∂φ)2R3 − 6ε6ε6(∂φ)2R3 + 15ε5ε5(∂φ)2R3 − 15ε4ε4(∂φ)2R3

+
5

3
Rε5ε5(∂φ)2R2 − 10Rε4ε4(∂φ)2R2 +

35

2
Rε3ε3(∂φ)2R2 +

70

27
(∂φ)2R3

)
+m13

(
5

2
(∂φ)2Rε4ε4R2 − 35(∂φ)2Rε2ε2R2 + (∂φ)2ε6ε6R3

−15

2
(∂φ)2ε5ε5R3 +

45

2
(∂φ)2ε4ε4R3 − 105

4
(∂φ)2ε3ε3R3 − 770

27
(∂φ)2R3

)
+m20

(
− 7

6
(∂φ)2Rε4ε4R2 +

85

3
(∂φ)2Rε2ε2R2 +

3

2
(∂φ)2ε5ε5R3

−9

2
(∂φ)2ε4ε4R3 − 11

4
(∂φ)2ε3ε3R3 +

1438

81
(∂φ)2R3 + (∂φ)2t6t6R3

)]
(3.14)

As in the previous cases, each multiplet contain one term which is not zero on-shell. In

the first, the second and in the third multiples they are ε7ε7(∂φ)2R3, (∂φ)2ε6ε6R3, and
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(∂φ)2t6t6R3, respectively. As a result the coefficients of the above three multiplets, i.e.

m1, m13, m20, may be found from the S-matrix element of three gravitons and two dilatons

in which we are not interested in this paper.

However, the following duality argument shows that the constant m20 may be zero:

as we have seen in the Introduction section, there are evidences to believe that the B-field

couplings in the even-even sector appear only through the generalized Riemann curvature.

Replacing the generalized curvature (1.11) into the even-even coupling t8t8R4 and using

the expansion (2.11), one finds various couplings between two Hs and three Riemann

curvatures. However, it is easy to check that the two Hs in these coupling contract only

once. The SL(2,R) transformation then indicates that the (F (3))2R3 couplings in the

even-even sector has no term in which two F (3)s contract at least twice. As a result, the

T-duality indicates that there is no coupling (F (1))2R3 in the even-even sector [31]. The

SL(2,R) symmetry then indicates that there is no coupling with structure (∂φ)3R3 where

R is the Riemann curvature tensor.

The Lagrangian (3.14) does not produce couplings between gravity and odd number

of dilatons when transforming it to the Einstein frame. So it is consistent with the S-

duality. The overall dilaton factor for three gravity part becomes e−3φ/2 which is extended

to the non-holomorphic Eisenstein series E3/2(τ, τ̄) after including the one loop result and

the nonperturbative effects. The first derivatives of the dilatons, on the other hand, are

extended to the SL(2,R) invariant form

Tr[M,hM−1,m ] = −2e2φC,hC,m − 2φ,hφ,m (3.15)

after including the first derivatives of the R-R scalar field. The R-R scalar couplings then

give information about the B-field couplings in (2.18) which have structure H2R3.

3.3 (∂φ)4R2 couplings

We now construct the couplings in the string frame which have (∂φ)4 and two curvatures.

In the even-even sector, there are the couplings t6t6(∂φ)4R2 and (∂φ)4R2. To construct

the first coupling, one considers ∇µφ∇νφ = LiµL̃
i
ν for i = 1, 2. Then using (2.12), one finds

the following expansion for the coupling t6t6(∂φ)4R2:

t6t6(∂φ)4R2 = 64

[
φ,hφ,mφ,kφ,nRhpnrRkpmr

−1

2
(∂φ)2φ,hφ,kRhpnrRkpnr +

1

16
(∂φ)4R2

kpnr

]
(3.16)

In the odd-odd sector there are couplings with structure (∂φ)2εε(∂φ)2R2, and couplings

with structure (∂φ)4εεR2. Note that there is no coupling with structure εε(∂φ)4R2 because

two ∂φ must be contracted with one of the Levi-Civita tensor which is zero. Adding these

terms with unknown coefficients and imposing the condition that there must be no coupling

between five dilatons and one curvature, one finds the coefficient of the even-even term

(3.16) to be zero. This is resulted from the fact that the terms in the odd-odd sector have
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no term like the first term in (3.16). The other terms group into two multiplets, i.e.

L ⊃ e−2φ
√
−G
[
a

(
(∂φ)2ε5ε5(∂φ)2R2 − 6(∂φ)2ε4ε4(∂φ)2R2

+
21

2
(∂φ)2ε3ε3(∂φ)2R2 +

21

9
(∂φ)4R2

)
+b

(
(∂φ)4ε4ε4R2 − 14(∂φ)4ε2ε2R2 − 91

9
(∂φ)4R2

)]
(3.17)

Here again the first terms of the multiplets are not zero on-shell, so the coefficients a, b

may be found by the S-matrix element of four dilatons and two gravitons.

Note that the even-even coupling (3.16) in the string frame is not consistent with the

S-duality. However, there is such coupling in the Einstein frame which is coming from

extending the couplings (3.9) to the SL(2,Z) invariant form using the SL(2,R) invariant

expression (3.10).

In the Einstein frame the overall dilaton factor in (3.17) for the gravity part becomes

e−3φ/2 which is extended to E(3/2)(τ, τ̄). Using the SL(2,R) invariant expression (3.15), the

dilatons can be extended to Tr[∂M∂M−1]Tr[∂M∂M−1] after including the R-R scalars.

However, there are ambiguities in choosing which pair of dilatons should appear in the first

term. The couplings of four R-R scalars and two curvatures which are unambitious, are

related by the dualities to the couplings in (2.18) which have structure H4R2 in which we

are not interested.

3.4 (∇2φ)2(∂φ)2R couplings

We now consider the couplings which have (∇2φ)2(∂φ)2 and one curvature. In the even-

even sector the coupling is t4t4(∇2φ)2(∂φ)2R. Writing ∇µ∇νφ = LiµL̃
i
ν for i = 1, 2,

∇µφ∇νφ = L3
µL̃

3
ν and Rµν = L4

µL̃
4
ν , then the expansion (2.14) leads to the following

expression:

t4t4(∇2φ)2(∂φ)2R = 4

[
2φ,kφ;hmφ,nφ;knRhm − 4φ,kφ;hmφ;kmφ,nRhn

+2φ,kφ,mφ;hmφ;knRhn + φ,kφ
2
;hmφ,nRkn

]
(3.18)

In the odd-odd sector, one has the couplings with structure εε(∇2φ)2(∂φ)2R,

(∂φ)2εε(∇2φ)2R and Rεε(∇2φ)2(∂φ)2. In this case the couplings which satisfy the S-

duality constraint are the following:

L ⊃ ce−2φ
√
−G
[
ε5ε5(∇̄2φ)2(∂φ)2R− 3ε4ε4(∇̄2φ)2(∂φ)2R+

7

6
Rε3ε3(∇̄2φ)2(∂φ)2

]
(3.19)

where we have also used the replacement ∇µ∇νφ → ∇̄2
µνφ . In above equation, the first

term is not zero on-shell, so the overall constant c may be calculated from the S-matrix

element of four dilatons and one graviton in which we are not interested in this paper.

The couplings in (3.19) are consistent with the S-duality. In the Einstein frame the

overall dilaton factor is e−3φ/2. The S-duality invariant form of the couplings has the

structure E(3/2)Tr[∂2M∂2M−1]Tr[∂M∂M−1]R which has ambiguity in the dilaton terms.
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Finally, the couplings which have (∂φ)6 and one curvature are t4t4(∂φ)6R and (∂φ)6R
in the even-even sector, and the coupling (∂φ)4ε2ε2(∂φ)2R in the odd-odd sector. Note that

coupling (∂φ)4ε3ε3(∂φ)2R is not independent of the other couplings. Writing ∇µφ∇νφ =

LiµL̃
i
ν for i = 1, 2, 3 and Rµν = L4

µL̃
4
ν , then the expansion (2.14) leads to the following

expression:

t4t4(∂φ)6R = 4(∂φ)4φ,hφ,kRhk (3.20)

So this term is not independent of the other two couplings either. One can easily check

that it is impossible to constrain the couplings (∂φ)6R and (∂φ)4ε2ε2(∂φ)2R to be con-

sistent with the S-duality. So their coefficients must be zero. It is also consistent with

our observation that each S-duality multiplet should contain one term which is non-zero

on-shell. Note that the symmetries of the Riemann curvature do not permit us to construct

the coupling between six dilatons and one Riemann curvature.

The coupling with structure (∂φ)8 already appears in the SL(2,Z) invariant form of

the last term in (3.9). However, that term is not related to the coupling of eight R-R

scalars. The eight dilaton couplings which are related to eight R-R scalars or to the H8

appear in the S-duality invariant structure E(3/2)(Tr[∂M∂M−1])4.

4 Discussion

In this paper we have shown that in order to have a manifestly S-duality invariant action

for the dilaton couplings, the SL(2,Z) invariant action (1.3) should be extended to the

following action:

S ⊃ γ

3.28

∫
d10xE(3/2)(τ, τ̄)

√
−G
[
t8t8R

4 − 3t6t6R
4 +

3

4
t4t4R

4 − 28R2t2t2R
2 − 35

18
R4

+
1

4
ε8ε8R

4 − 2ε7ε7R
4 + 9ε6ε6R

4 − 24ε5ε5R
4 + 29ε4ε4R

4 +
2

3
Rε6ε6R

3

−8Rε5ε5R
3 + 36Rε4ε4R

3 − 60Rε3ε3R
3 + 2R2ε4ε4R

2

]
(4.1)

The transformation of this action to the string frame produces only an overall dilaton factor.

The couplings of the derivatives of the dilaton and gravity appears in the Lagrangian (3.9),

(3.14), (3.17) and (3.19) which can be extended to the SL(2,Z) invariant forms. The S-

duality invariant form of the dilaton couplings then includes automatically the appropriate

R-R scalar couplings. We have not found the complete B-field couplings and the other R-R

couplings.

We have used the generalized curvatures (1.11) to construct the couplings in the even-

even and the odd-odd sectors in section 2. This treats the gravity and the B-field on the

same footing. However, since the gravity and the B-field transform totally differently under

the S-duality, one expects, in a manifestly S-duality invariant action, the B-field couplings

do not appear only in the form of the generalized curvatures. So to include all the B-field

couplings in (2.18), one may construct various couplings in the even-even and the odd-odd

sectors for ∂H, H2 and R with unknown coefficients. The S-duality then requires the same
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couplings for R-R two-form. Using the constraints that the action must be invariant under

T-duality, one can relate them to the couplings of the R-R scalar that we have found in

this paper. In this way one may be able to find all the unknown coefficients. Then using

the combination of S- and T-dualities, one may be able to find all other couplings. Similar

calculation has been done in [31] for finding various on-shell four-field couplings. It would

be intersting to perform these calculations to find a manifestly T-duality and S-duality

invariant action. After finding such action, one may use appropriate field redefinitions to

rewrite the action in a simpler form, e.g. converting some of the couplings involving the

Ricci and scalar curvatures to the couplings involving other massless fields. Of course, the

action then would not be manifestly invariant under the dualities.

We have proposed a prescription for constructing the tensors t2n for any integer n.

The tensor t8 constructed in (2.10) is the same as the symmetric trace prescription given

by Tseytlin [74], i.e. Str(t8F
4) = tr(t8F

4). However, our construction for tensor t12 is

different from the symmetric trace construction of F 6. To clarify this let us construct t12
tensor. According to our prescription, we have to first consider the expansion (2.9) for six

antisymmetric matrices at order F 6 which is given by the following expression:

1

8
t12F

6 = −15

8
Tr(F1F2)Tr(F3F4)Tr(F5F6) + 10Tr(F1F2F3)Tr(F4F5F6)

+
45

2
Tr(F1F2)Tr(F3F4F5F6)− 60Tr(F1F2F3F4F5F6) (4.2)

where we have used the fact that Tr(Fi) = 0. Then we have to replace each term with

the average of all independent contractions with identical weight, i.e. there are 15 different

contractions for the first term, 10 different contractions for the second term, 45 different

contractions for the third term and 5!=60 contractions for the last term. This fixes the

ordering of the antisymmetric matrices. For the nonabelian gauge field strength, one has to

take the trace over the gauge group generators as well. The symmetric trace prescription, on

the other hand, first makes each term symmetric under all permutations of the field strength

and then takes the trace over the gauge group generators. The (F 3)2 terms in (4.2) are

removed by the symmetric trace operator. As a result Str(t12F
6) 6= tr(t12F

6). On the other

hand, it is known that the symmetric trace prescription does not work at the order of six

gauge field strengths [75, 76]. At this order one has to include the appropriate commutators

and the covariant derivatives of the field strengths to have consistency between the effective

field theory and string theory results. The (F 3)2 terms produce two commutator terms

which are zero for abelian gauge field.

We have seen that the S-duality constraint forbids us to have the couplings of three

Riemann curvatures in the even-even sector, i.e. a3 = 0 in (2.19), and m20 = 0 in (3.14).

This indicates that the even-even sector does not produce couplings between three Riemann

curvatures. Moreover, it has been observed in [77] that there is no R5 coupling in the

superstring theory either. These couplings, however, may be non-zero in the bosonic string

theory. Similar situation appears for the non-abelian gauge field couplings on D-branes

world volume theory, e.g. the coupling of three gauge field strengths is nonzero in the

bosonic string theory whereas this coupling is zero in the superstring theory. In that case

the symmetric trace prescription for non-abelian Born-Infeld action [74] removes such odd
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number of gauge field strengths from the Born-Indeld action. Here also one may speculate

that in the superstring theory the couplings in the even-even sector which have odd number

of Riemann curvatures are zero.

The S-matrix element of six gravitons has been studied in [77, 78]. The coefficient of

the R6 couplings has been found in [77] to be proportional to ζ(5). On the other hand,

the overall dilaton factor of the sphere-level R6 couplings in the Einstein frame is e−5φ/2.

Using the fact that the first term of the weak-expansion of the non-holomorphic Eisenstein

series E(5/2)(τ, τ̄) is ζ(5)e−5φ/2, one may extend the sphere-level amplitude to include the

one-loop and nonperturbative corrections by extending the dilaton factor to E(5/2)(τ, τ̄).

One may also use the tensor t12 in (4.2) to construct the tensorial structure of the effective

couplings for six Riemann curvatures in the even-even sector. There is no coupling in the

odd-odd sector in 10 dimensions for obvious reason. For constant dilaton, then the SL(2,Z)

invariant action may be the following:

S ∼
∫
d10xE(5/2)(τ, τ̄)

√
−Gt12t12R6 (4.3)

Another possibility for the tensorial structure of the couplings is the symmetric trace

prescription for t12 which removes the (F 3)2 terms in (4.2). For non-constant dilatons, one

may add to this action the appropriate couplings involving the Ricci and scalar curvatures

by making it to be consistent with the S-duality, as we have done in this paper for the

couplings at order R4. We expect one of the two choices for the tensorial structure of the

couplings to be consistent with the S-duality constraint. The above calculation may then

fix the ambiguity of the (F 3)2 terms.
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