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Abstract— Structure identification means determining the 
model and it’s details, like the number of  regressor in the 
least square estimation. This is one of the most important 
problems in system modeling and identification. In this 
paper a new algorithm based on reinforcement learning is 
presented for structure identification in least square 
estimation. The results of the new algorithm are compared 
with that of the subset selection methods and the steepest 
descent. Online structure identification is one of the 
advantages of the proposed method. 
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I.  INTRODUCTION  

   Modeling of real systems are of fundamental importance, 
especially when the system is nonlinear and complicated. 
System Identification (SI) and modeling can be useful for 
the analysis, Control or prediction of the processes. 
Advanced techniques of controller design, optimization, 
supervisions and fault detections are based on an 
acceptable model of the process[1]. 

   One of the most important problems in system modeling 
is structure identification. After selecting the appropriate 
model, an adequate learning algorithm is used to adapt the 
model parameters. When using Least Square Estimation 
(LSE), structure selection means which of the regressors 
should be used in the LSE method. 

   Direct search can be used to designate the model and to 
determine the number of its parameters. In this method all 
of the possible models should be considered, their 
parameters should be identified and then based on a 
predefined and calculated criterion e.g. sum of square error 
(SSE) or root mean square error (RMSE), the proper 
model would be selected. This method needs a long time to 
evaluate all of the possible models and also this is not 
suitable method for online identification. If a new batch of 

data received, the method should be stopped and restarted 
from the beginning with the new data set. Also it is not 
reasonable to consider and evaluate all of the possible 
models, especially when there is a large set of conceivable 
structures. 

   Classical methods e.g. methods for subset selection are 
used to select n  significant regressors out of a set of  n 
given regressors. The three main strategies for efficient 
subset selection are forward selection, backward 
elimination and stepwise selection. The most common 
approach to subset selection is forward selection. In this 
method the performance of each single regressors out of  n 
possible ones is evaluated and the most significant one is 
selected and eliminated from the possible regressors set. In 
the subsequent level, each of the remaining regressors will 
be evaluated and this process will be continued until n  
regressors have been selected. The methods for subset 
selection are used only for the LSE and if a new batch of 
data received from the system, these methods should be 
stopped and restarted from the beginning with the new data 
set. One approach to forward selection is the orthogonal 
least square (OLS) method which is presented in [2] and 
[3]. 

   In this paper a new method based on Reinforcement 
Learning (RL) is presented for selecting the most 
significant combination of regressors in the LSE. This 
method uses the idea of n-armed bandit problem to select 
which model leads to minimum error. The results of the 
new algorithm are compared with that of the subset 
selection methods and steepest descent and the 
performance of the proposed method is evaluated through 
the presented examples. 

II. LSE AND RL 

   First of all some basic information are considered about  
the least square estimation and  reinforcement learning.  
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A. The Least Square Estimation (LSE) Method 

   The main goal in SI is to find the parameters of a 
selected model so that the output of  model is of the most 
similarities with the main system according to input-output 
observations. Therefore it is necessary for parameter 
tuning to choose an appropriate cost function and minimize 
it, to determine the parameters’ value. One of the 
conventional cost functions in SI is sum of square error or 
SSE which is presented  in (1).  

J = ∑ | y − y |                                                       (1)                                                            

   In the equation (1), N is the number of samples in the 
data set, y  is the q   sample of the achieved real output 
from the system and y  is the q   sample of the estimated 
model output. In equation (1) 	y  can be estimated by 
linear regression model like (2). In equation (2), the known 
parameters x  are called the regressors and the unknown 
parameters θ  are regression coefficients[1]. 

y = θ x + θ x + ⋯+ θ x                                        (2)                                                 

   The estimated model output is linear according to the 
unknown parameters θ  and x  can be any nonlinear 
function of q  input sample. If  y  was estimated with 
linear regression model the regression coefficients can be 
calculated from (3) which is called the least square 
estimation. 

θ = [θ θ …θ ] = (X X) (X Y)                          (3)                                         

   The matrix X and vector Y in (3) are defined as (4) and 
(5) respectively and the matrix  X X  must be full rank to 
be invertible. 

X =
x ⋯ x
⋮ ⋱ ⋮

x ⋯ x
                                                          (4)                                                                   

Y = [y 	y … 	y ]                                                            (5)                                                           

B. Reinforcement Learning and n-Armed Bandit Problem 

   Reinforcement learning is learning what to do and how 
to select actions according previous rewards and situations 
in order to maximize a numerical reward signal. Unlike 
most forms of machine learning, the learner is not told 
which actions to take and there is not any teacher for the 
learner or the agent. Instead of that, the learner must 
discover the actions concluding the most reward by trying 
them. In the most interesting and challenging cases, the 

actions may not only affect the immediate reward, but also 
the next situation and, through that, all the subsequent 
rewards[4].  

   Reinforcement learning is not defined by characterizing 
learning algorithms, but by characterizing a learning 
problem. Any algorithm that is well suited for solving that 
kind of problems can be considered as a reinforcement 
learning algorithm. A full specification of the 
reinforcement learning problem in terms of optimal control 
of Markov decision processes, but the basic idea is simply 
to capture the most important aspects of the real problem 
facing a learning agent interacting with its environment to 
achieve a goal. Clearly such an agent must be able to sense 
the state of the environment to some extent and must be 
able to take actions that affect that state. The agent must 
also have a goal or goals relating to the state of the 
environment. Therefore, in any reinforcement learning 
problem four things should be specified. The action set, the 
states, the numerical reward and the environment[4,5]. 

   Reinforcement learning is unsupervised learning and it is 
necessary to define the reward such that the agent, can get 
to the goal with maximizing the reward. This kind of 
learning studied in most current research in machine 
learning, statistical pattern recognition, and artificial neural 
networks. In reinforcement learning the learner should 
learn what to do through its experience in the environment. 
One of the challenges that arises in reinforcement learning 
and not in any other kinds of learning is the tradeoff 
between exploration and exploitation. To obtain a lot of 
rewards, a reinforcement learning agent must prefer 
actions that it has tried in the past and found them effective 
in producing a reward. But to discover such actions it has 
to try actions that it has not selected before. The agent has 
to exploit what it already knows in order to obtain reward, 
but it also has to explore in order to make better action 
selections in the future. The dilemma is that neither 
exploitation nor exploration can be pursued exclusively 
without failing at the task. The agent must try a variety of 
actions and progressively favor those that appear to be the 
best. On a stochastic task, each action must be tried many 
times to reliably estimate its expected reward[4,5]. 

   The most important feature distinguishing reinforcement 
learning from other types of learning is that it uses training 
information that evaluates the actions taken rather than 
instructs by giving correct actions. This is what creates the 
necessity of active exploration, for an explicit trial-and-
error search for good behavior. Purely evaluative feedback 
indicates how good the action taken was, but not whether it 
was the best or the worst action possible. Evaluative 
feedback is the basis of methods for function optimization, 
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including evolutionary methods. The particular non-
associative, evaluative-feedback problem that is explored 
is the n -armed bandit problem[4,6]. 

   Consider the following learning problem. You are  
repeatedly faced with a choice among n different options, 
or actions. After each choice you receive a numerical 
reward chosen from a stationary probability distribution 
dependent on the action you selected. Your objective is to 
maximize the expected total reward over some time period, 
for example, over  푚  action selections. Each action 
selection is called a play[5]. Each action selection is like a 
play of one of the slot machine's levers, and the rewards 
are the payoffs for hitting the jackpot. Through repeated 
plays you are to maximize your winnings by concentrating 
your plays on the best levers[4,65].   

   There are some methods for action selection in the n-
armed bandit problem. Two of them are the ε-gredy and 
softmax strategies that determine the policy of agent for 
action selection. 

C. The  ε-greedy and Softmax Strategies 

   If the estimated value of action 푎 after 푡 play denoted as 
푄 (푎), and in 푡 plays action a has been chosen 푘  times, 
yielding rewards 푟 , 푟 , … , 푟  then its value will be 
estimated by (6). 

Q (a) =
⋯

                                                         (6) 

    As  푘 → ∞  by the law of large numbers  the estimated 
value of the action will converge to the actual value of it. 
This is called the sample-average method for estimating 
action values because each estimate is a simple average of 
the sample of relevant rewards. The simplest action 
selection rule is to select the action with highest estimated 
action value, this method is called greedy action selection. 
A simple alternative is to behave greedily most of the time, 
but every once in a while, say with small probability 휀 , 
instead select an action at random, uniformly, 
independently of the action-value estimates. This method 
is called the  ε-greedy action selection. An advantage of 
these methods is that in the limited time, as the number of 
plays increases, every action will be sampled an infinite 
number of times, guaranteeing that  푘 → ∞ , the estimated 
value of the action will converge to the actual value of it, 
for each action[4,5].    

   One drawback of  ε-greedy strategy is that when it 
explores it chooses equally among all actions. This means 
that it is just as likely to choose the worst appearing action 

as it is to choose the next-to-best. In tasks that the worst 
actions are very bad, this may be unsatisfactory. The 
obvious solution is to vary the action probabilities as a 
graded function of estimated value. The greedy action is 
still given the highest selection probability, but all the 
others are ranked and weighted according to their value 
estimates. These are called softmax action selection rules. 
The most common softmax method uses a Gibbs, or 
Boltzmann, distribution. The probability of action a 
selection on the  푡th of  play is presented in (7).  

p (a) =
( )

∑
( )                                                           (7) 

   The parameter  τ is a positive number called temperature. 
High temperatures cause the actions to be all (nearly) equi-
probable. Low temperatures cause a greater difference in 
selection probability for actions that differ in their value 
estimates. In the limit as τ → 0 softmax action selection 
becomes the same as greedy action selection[4].   

   Whether softmax action selection or  ε-greedy action 
selection is better is unclear and may depend on the task 
and on human factors. Both methods have only one 
parameter that must be set. In this study both methods are 
used as an  action selection strategy. 

III. THE NEW ALGORITHM BASED ON RL FOR 

REGRESSOR SELECTION IN LSE 

   In the proposed method, a bandit machine with 푛 arms (n 
possible models) is produced. The action set (A) of the 
problem is the set of 푛  possible models and action 
selection means to select one of the arms or one of the 
possible models. In the beginning a member from A  is 
selected randomly. This member is a model that can be 
used to identify the initial data set. Identification will be 
done with this model and the error (푒 ) will be calculated. 
Then another member from A  is selected randomly and 
identification will be done with this model and the error 
(푒 ) will be calculated. If the error difference or  ∆푒 =
푒 − 푒  is positive the second model gets a positive reward 
and if ∆e  is negative the second model gets a negative 
reward. The rewarding process is shown in the figure 1. 

   The initial data set should be large enough to identify 
with any of the possible models (actions). The data set for 
the second model (action) is the union of the initial data set 
and the new data which can be received from the system 
(online identification) or can be selected from an offline 
and pre-produced data set. This procedure will be 
continued until the end of the data set or when there is no  
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Figure 1- The rewarding process 

new data in the data set. The block diagram of the 
proposed algorithm in offline mode is shown in the figure 
2. For online mode the action (model) with most reward at 
any play or any time in the exploitation introduces the 
proper model. 

IV. CASE STUDIES 

   In this section performance of the proposed method is 
examined through two examples. 

 
Figure 2-The proposed algorithm in offline mode 

Example 1_ Selection the appropriate combination of the 
regressors (Offline): 
   In this example, the appropriate combination of the 
regressors for least square estimation is determined by the 
proposed algorithm, steepest descent and the OLS method. 
Data set of this example is generated by (8). In equation 
(8) e is zero mean guassian noise with standard deviation 
0.001. For this example X will be defined as (9). 

푦 = 1 + 푢 + 푢 + 푢 + 푢 + 푒                                     (8)   

푋 =

⎣
⎢
⎢
⎡1 푢 푢 … 푢

1 푢 푢 … 푢
… … … … …
1 푢 푢 … 푢 ⎦

⎥
⎥
⎤
                                           (9) 

   The possible models set can include 9
3   models with 3 

regressors, 9
4  models with 4 regressors, 9

5  models with 

5 regressors 9
6  models with 6 regressors, 9

7  models 

with 7 regressors and 9
8  models with 8 regressors and 

even more models for example models with 2 or 9 
parameters.  The proposed algorithm has been tested for 
the described models set but here as to showing the results 
clearly, a model set with 35 possible models (a 35-armed 
bandit problem) has been used.  The used model set is 
presented in Table 1. The data set for this example 
produced by using equation (8) and it contains 20000 
samples.  
   The OLS method select regressors No. 1, 3, 4, 6 and 8 
which means 1, 푢 , 푢 , 푢  and 푢 . The steepest descent 
method select the model with regressors No. 1, 2, 3, 4, 5, 
6, 7 and 8  means 1, 푢, 푢 , 푢 , 푢 ,  푢 , 푢  and  푢 .The 
proposed method selects the model No.21 (푦 = 1 + 푢 +
푢 + 푢 + 푢 ) with softmax action selection and the 
model No.22 (푦 = 1 + 푢 + 푢 + 푢 + 푢 + 푢 ) with  ε-
greedy action selection strategy. In the proposed method 
the agent played 20000 times, one play for each data and 
휀 = 0.01. Figure 3 (a) shows the average reward achieved 
by each action with softmax action selection, figure 3 (b) 
shows the average reward achieved by each action with  ε-
greedy action selection and figure 3 (c) and (d) shows the 
estimation error of equation 8 with the selected models by 
each methods. Figure (3) (c) and (d) plotted for 1000 
samples of data and without noise to show the difference 
between the different methods. It is clear that the 
estimation errors of the proposed algorithm with softmax 
strategy and the OLS are less than two other methods. 

Example 2_ Selection the appropriate combination of the 
regressors (Online): 
     



5 
 

 
Figure 3- (a) the average reward with softmax (b) the 
average reward with  ε-greedy (c) and (d) shows the 
estimation error 

   In this example the number of regressors to online 
estimation of (10) determined using the proposed method 
with  ε-greedy and softmax strategies. 
푦 = 1 + 푠푖푛 (푢) + 푒                                                   (10)  
  In equation (10), 푒  is zero mean guassian noise with 
standard deviation 0.01.   
For online structure identification of  the data set produced 
by (10),  the proposed algorithm will be used with 
휀 = 0.01. For this identification 푋 is defined as (11). 

푋 =

⎣
⎢
⎢
⎡1 sin	(푢 ) 푠푖푛 (푢 ) 푠푖푛 (푢 )

1 sin	(푢 ) 푠푖푛 (푢 ) 푠푖푛 (푢 )
… … … …
1 sin	(푢 ) 푠푖푛 (푢 ) 푠푖푛 (푢 )⎦

⎥
⎥
⎤
               (11)            

  If the minium model order will be of order 2,  the model 

set contains 4
2  models with 2 regressors, 4

3  models 

with 3 regressors and 4
4  models with 4 regressors. After 

producing 1000 samples from (10), both softmax and  ε-
greedy strategies lead to regressors No. 1 and 3 means 1 
and  푠푖푛 (푢).  

   Figure 4 (a) shows the average reward of the proposed 
algorithm using softmax strategies,  figure 4 (b) shows the  

 

Figure 4- (a) the average reward of the proposed 
algorithm using softmax strategies (b) the average 
reward of the proposed algorithm using  ε-greedy 
strategies, (c) the variation in the selected model 
during 160 play (d) the estimation error of the selected 
models 

average reward of the proposed algorithm using  ε-greedy 
strategies, figure 4 (c) shows  the variation in the selected 
model during 160 plays and figure 4 (d) shows the 
estimation error.   
    In this example the model set is not large and the results 
of the two different action selection strategies are the 
same. 
   The result of the proposed algorithm and the OLS 
method is the same in both of the examples but the 
advantage of the proposed algorithm is the ability to 
online determine the proper model. 
   When ε-greedy strategy explores, it chooses equally 
among all actions while softmax strategy assigns a 
selection  probabolity   related to action values  to each 
action so the result of softmax startegy is better than ε-
greedy’s. 

V. CONCLUSION 

   In this paper a new algorithm based on reinforcement 
learning is presented for structure identification in least 
square estimation. The results of the new algorithm are 
compared with that of the subset selection methods and  
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the steepest descent. Online structure identification is one 
of the advantages of the proposed method that is shown in 
the second example, figure 4 (c). 
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APPENDIX 

Table 1- model set in example 1 
No. of the model Model Equation 

1 푦 = 1 + 푢 + 푢  
2 푦 = 1 + 푢 + 푢  
3 푦 = 1 + 푢 + 푢  
4 푦 = 1 + 푢 + 푢  
5 푦 = 1 + 푢 + 푢  
6 푦 = 1 + 푢 + 푢  
7 푦 = 1 + 푢 + 푢 + 푢  
8 푦 = 1 + 푢 + 푢 + 푢  
9 푦 = 1 + 푢 + 푢 + 푢  

10 푦 = 1 + 푢 + 푢 + 푢  
11 푦 = 1 + 푢 + 푢 + 푢  
12 푦 = 1 + 푢 + 푢 + 푢  
13 푦 = 1 + 푢 + 푢 + 푢  
14 푦 = 1 + 푢 + 푢 + 푢  
15 푦 = 1 + 푢 + 푢 + 푢  
16 푦 = 1 + 푢 + 푢 + 푢 + 푢  
17 푦 = 1 + 푢 + 푢 + 푢 + 푢  
18 푦 = 1 + 푢 + 푢 + 푢 + 푢  
19 푦 = 1 + 푢 + 푢 + 푢 + 푢  

20 푦 = 1 + 푢 + 푢 + 푢 + 푢  
21 y = 1 + u + u + u + u  
22 y = 1 + u + u + u + u + u  
23 푦 = 1 + 푢 + 푢 + 푢 + 푢 + 푢  
24 푦 = 1 + 푢 + 푢 + 푢 + 푢 + 푢  
25 푦 = 1 + 푢 + 푢 + 푢 + 푢 + 푢  
26 푦 = 1 + 푢 + 푢 + 푢 + 푢 + 푢  
27 푦 = 1 + 푢 + 푢 + 푢 + 푢 + 푢  
28 푦 = 1 + 푢 + 푢 + 푢 + 푢  
29 푦 = 1 + 푢 + 푢 + 푢 + 푢  
30 푦 = 1 + 푢 + 푢 + 푢  
31 푦 = 1 + 푢 + 푢 + 푢  
32 푦 = 1 + 푢 + 푢 + 푢  
33 푦 = 1 + 푢 + 푢 + 푢  
34 푦 = 1 + 푢 + 푢 + 푢  
35 푦 = 1 + 푢 + 푢 + 푢  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


