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Abstract. Since the last decade, several studies have shown the ability of Artificial Neural 
Networks (ANNs) in modeling of rainfall-runoff process. From methodological viewpoint, 
ANN belongs to more general paradigm, i.e., soft computing or computational intelligence, in 
which independent methodologies, mostly Fuzzy Logic (FL), ANN, and Genetic Algorithms 
(GAs), are combined together in order to provide an intelligent behavior in computational 
frameworks. Consequently, in the context of rainfall-runoff modeling, this question arises 
whether hybridization of ANNs with other soft computing-related methodologies improves 
the overall performance of modeling or not. In this study, based on the idea of structure and/or 
parameter identification of ANNs with GAs, the evolutionary neural networks modeling 
paradigm is examined for describing the rainfall-runoff process. One of the benchmark data 
set of current literature, i.e., Leaf River basin (near Collins, Mississippi) data set, is used for 
simulation. The results show that on the one hand, the overall accuracy is improved; but one 
the other hand, in evolutionary neural modeling, the computational time is increased 
significantly. Hence the modeler may be faced with a trade-off problem between accuracy and 
computational difficulties which may have different importance in a particular rainfall-runoff 
problem. 
 
1.  Introduction  

Rainfall-runoff process is accepted as one of the most complex and nonlinear 
real-world phenomena in the field of water engineering [Hsu, et. al., 1995]. The 
process consists of the movement of rainfall through different media and its 
transformation to the runoff in channels either natural or man-made. Although the 
detailed investigation of the process may be more scientific-oriented than 
engineering-oriented, many engineering designs and applications need to have an 
estimation of the quantity and feature of runoff resulted from particular rainfall. 
Furthermore, in many other applications, different scenarios of future rainfall should 
be simulated in order to identify the behavior of an area. Therefore, many 
mathematical approaches can be found in the literature which are proposed for the 
purpose that an accurate estimation of runoff can be made by knowing the quantity 
and quality of rainfall for an assumed area.   

By surveying the rainfall-runoff modeling literature, it can be realized that a 
diverse set of methods and models has been introduced in this regard since 1800s. 
From classification point of view, they can be categorized in three classes. First is the 
experimental models, which almost of all are primitive methods, such as rational 
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method. Second is the conceptual models, which are designed in order to reproduce 
the real physical process of rainfall-runoff transformation, occurred in nature, such as 
SAC-SMA model [Sorooshian, et. al., 1993]. And third is the system theoretical 
models, which create a black box mapping from rainfall and/or previous runoff 
sequences to current runoff such as ARMAX. In spite of the fact that many of these 
models are very detailed and well organized and the computational strength, achieved 
recently, a lot of difficulties remain in using them. Many studies reported that 
calibration of models have many computational difficulties [Sorooshian, et. al., 
1993].  Because of the natural orientation of the process a great deal of uncertainty is 
entered to the modeling procedure. In addition, many models are based on some 
assumptions, which do not hold in the real process [Woolhiser, 1996]. Thus, the 
modeling of the rainfall-runoff process is still a challenging problem. 

Nowadays, several methods, as alternatives of probability theory, have been 
proposed to handle uncertainties in engineering systems and models. One of the most 
successful and brilliant classes of methods is soft computing or computational 
intelligence that recently have come into the limelight [Jang, et. al., 1997]. It is 
originally consisted of different independent paradigms, mostly, Fuzzy Logic (FL), 
Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs). All of these 
paradigms mimic human intelligence in someway. FL is a multi-variable logic 
inspired from human thinking process; ANNs are massive parallel computational 
nodes based on human neurons; and GA is the stochastic optimization, trying to 
simulate natural evolution based on the survival of the fittest. Although these 
paradigms can stand alone, the focus soft computing methods is more on the 
combination among them to achieve accuracy, tractability and robustness in 
computations and modeling [Gorzalczany, 2002]. The wide range of applications are 
reported in different engineering field such as control, signal processing, and real-
world events modeling. In the last decade, many application examples of 
aforementioned individual paradigms are introduced to the literature of rainfall-
runoff modeling such as [Zhu & Fujita, 1994] and [Ndiritu & Daniell, 2001].  
However, these applications used only one of these paradigms in their modeling 
procedures. 

In this study the application of a rigid framework in soft computing 
methodologies, i.e., evolutionary neural modeling, is examined for modeling the 
rainfall-runoff process. In Section 2, a brief review of rainfall-runoff modeling is 
presented. In Section 3, soft computing as the different view point in modeling 
approaches is discussed. Section 4, introduces case study data and proposed model, 
based on structure and parameter optimization of feedforward ANNs with GA. In 
section 5, results are integrated and further directions of this study are introduced; 
and in Section 6, conclusion is driven. 
 
2. Rainfall-Runoff Modeling 

Rainfall-runoff modeling is assumed to find a description for transformation of 
the total rainfall volume to the corresponding reduced runoff volume in an area. The 
total volume of the rainfall during one rainy event rfW  is determined based on the 

data collected on the watershed area A , by the following equation: HAWrf *= , 
where H  represents the average height of rainfall. The other convenient way to 

estimate the total rainfall volume is given as follows: ∫= rT

Trf dtiAW
0

* , where i  is 

the rainfall intensity in meter per second, 0T  and rT  are starting and ending time of 
rainfall event. The runoff volume qW , is estimated on the basis of hydrograph data in 
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the following way: ∫∫ == rr T

T e

T

TQ dtiAdtQAW
00

** , where Q  represents hydrograph 

runoff ordinate on the outlet of the watershed, ei  is net or effective intensity of the 
rainfall. The runoff volume or effective rain is defined by the following equation: 

AWH Qe /= . The difference is defined by the following way: Qrf WW −  is the 
retained water volume (water volume deficit) that varies with time, i.e., similar 
rainfall volumes may result in significantly different runoff volumes on the same 
watershed profile, proving the non-stationary of the rainfall-runoff processes. The 
strongly emphasized non-linearity of the rainfall-runoff process is the other 
manifestation of the complexity of the internal watershed structure. This internal 
structure is a consequence of the composition of a large number of relatively 
permanent and changeable essential features. It is considered that more than ten 
factors invariably participate in the rainfall-runoff process, but this number is large 
for the certain physical, geographical and climatic conditions. There is no universal 
model designed for the rainfall-runoff process, since the model developed for the 
certain watershed may appear to be quite unusable for the other area. Therefore, the 
selection of the proper modeling approach, considering available relevant data is the 
first and crucial phase of the model designing process, and its success depends on 
whether we have good understanding or adequate initial knowledge about the process 
to be modeled in a certain watershed profile. The next stage assumes determination 
of the structure of the model and estimation of its parameters. The structure should be 
the one, which will perform satisfactorily the tasks stated by the modeler. The last 
stage, a validation of the identified model, is a test of the validity of previous 
performed steps of the modeling process, done by the new relevant validation set 
[Furundzic, 1998].  

Modern literature of rainfall-runoff modeling contains two main approaches: the 
conceptual (physical modeling) and system theoretic modeling. The conceptual 
rainfall-runoff models attempts to provide reliable approximation of physical 
mechanisms, which determine the hydrologic cycle. The conceptual models are 
convenient for understanding of the hydrologic process, but they are not efficient in 
stream flow forecasting (prediction at specified watershed location). In such 
situations, the system theoretic approach is a more convenient tool. The system 
theoretic approach to rainfall-runoff is generally based on the differential equation 
models designed for direct mapping between the inputs and outputs, not taking care 
to the exact physical process. The ARMAX (auto-regressive moving average with 
exogenous inputs) linear models for time series analysis, developed by Box and 
Jenkins, have been frequently used [Hsu, et. al., 1995]. These models are easy to 
develop and practical for use, but they are not appropriate tool for modeling of 
nonlinear dynamic processes such as the rainfall-runoff, and may show unsatisfactory 
performance [Furundzic, 1998].  

From the last decade a new modeling approach is added to the literature of 
rainfall-runoff modeling. ANNs are mathematical paradigm, which tries to represent 
low-level intelligence in natural organisms [Gorzalczany, 2002]. Although in the 
literature of rainfall-runoff modeling this paradigm is categorized in system 
theoretical approaches [Hsu, et. al., 1995], there is significant difference between 
their basis and inspiration. As a result, ANNs should be classified in a new category 
with some others having similar foundations. Usually ANNs show greater 
performances in comparison to conventional regression approaches based on 
statistical analysis. The characteristics of ANN can be approximately defined as 
follows [Furundzic, 1998]: 



Nazemi et al. 

 Hydrology Days 2003 227 

• High degree of fault tolerance and robustness for imprecision and uncertainty in 
unconstrained information environments. 

• Distributed processing and low-level representation of information. 
• Generalization ability. 
• Massive parallelism. 
• Learning and adaptation. 

 
Many researchers in different areas of science and technology have used ANNs 

to solve problems in control, function approximation, and pattern classification. 
Among them, the multi-layer feedforward networks (MLP) is the mostly used 
network structure [Jang, et. al., 1997]. The functionality of artificial neurons is the 
same as natural neurons. All or part of artificial neurons are adaptive, which means 
that the output of these nodes depend on modifiable parameters pertaining of these 
nodes. The learning rule specifies how these parameters should be updated to 
minimize a prescribed error measure, a mathematical expression that measures the 
discrepancy between the network’s actual output and desired output [Demuth & 
Beale, 2000]. In other words, an adaptive network is used for system identification, 
and our task is to find an appropriate network architecture and a set of parameters 
which can best model an unknown target system which is described by a set of input-
output data pairs. 

While the most common neural architecture in the field of rainfall-runoff 
modeling is MLP [Hsu, et. al., 1995], [Minns & Hall, 1996], several studies, 
particularly recent publications examined other architectures [Anamala, et. al., 2000], 
[Hsu, et. al., 2002]. These studies have concluded that ANNs can be assumed as a 
powerful alternative for describing the relationship between rainfall and runoff 
sequences. 

From the methodological viewpoint, ANNs are classified with some other 
paradigms, all of them mimic the characteristics of natural life in someway. These 
paradigms have been proved as flexible tools especially in dynamic and uncertain 
information environments. The context of computational intelligence or soft 
computing contains all of these paradigms and their hybridization with each other, 
which presently is the basis of several novel investigations [Jang, et. al., 1997], 
[Gorzalczany, 2002]. 
 
3.  Soft Computing: The Innovative Approach in Modeling 

As described, soft computing is a contribution of different methodologies, i.e., 
fuzzy systems, neural networks and evolutionary algorithms especially genetic 
algorithms in order to deal with uncertainty, partial truth and ambiguity in modeling 
of a process and/or environment. FL represents a broader class of theoretical tools, 
which is termed as methods of granular information processing and granular 
knowledge representation. The introduction of this theory allows creating formal 
mathematical models for imprecise and ambiguous defined terms, relations and 
mechanisms of approximate inference, typical of human reasoning; and for the 
perception of the environment by a human being. Fuzzy systems are the most used 
application of fuzzy sets in the field of engineering and can find many different 
applications in engineering problems [Bardossy and Duckstein, 1995]. The small 
computational time requirement, the numerical robustness, transparent programming 
of rule base systems, and the ability to handle non-probabilistic uncertainties are the 
most important properties of fuzzy systems. The second basic theoretical tools used 
in the construction of soft computing-based systems are ANNs. As mentioned in 
Section (2), they are systems of information processing which take their roots in the 
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biology and neuro-physiology including the knowledge of the operation of nervous 
systems in living organisms. The ANNs are treated as formal computation systems, 
which have specific properties and can be useful in the solution of some problems in 
the field of information processing and classification. The third essential component, 
beside fuzzy sets and artificial neural networks, used in the construction of soft 
computing-based systems, are method of evolutionary computations, which are the 
information processing methods based on principles imitating mechanisms of 
evolution, heredity and natural selection that occur in living populations. GAs are the 
most widely known category of evolutionary computation systems. They are method 
of global searching in the solution domain of the considered problem, mainly, in 
complex optimization tasks. Searching procedures are based on the mechanisms of 
natural selection of heredity, including the evolutionary principles of survival and 
leaving behind offspring by individuals, the best adapted to the environment, and 
extinction of individuals, which have the worse adaptation to the environment 
[Coley, 1999].  

The main features of soft computing-based systems in addition to artificial 
intelligence systems are (1) computational adaptivity; (2) computational fault 
tolerance; (3) speed approaching human-like turnaround, and (4) error rates that 
approximate human performance [Gorzalczany, 2002]. From a superior viewpoint it 
can be seen that soft computing components are inspired from diverse domains of 
logic, biology and physiology in natural intelligent systems. In regard to specific 
application, different hybridization procedures can be done 

The particularly complementary nature of fuzzy systems and artificial neural 
networks is worthwhile. On the one hand fuzzy systems are high-level information 
processing systems, which have the ability of computing with linguistic variables. On 
the other hand, as described before, neural networks are low-level computational 
framework. Both paradigms have universal approximation capability [Jang, et. al., 
1997]. Thus, their hybridization provides a very powerful information system. The 
learning abilities of the hybrid system can be additionally strengthened by applying, 
evolutionary computations in a supportive role, which enable us to adapt both the 
parameters and the structure of the system. No other combination of soft computing 
paradigms provides a comparably high degree of mutual benefit. 

Since the early of 1990s applications of soft computing paradigms have been 
reported in the context of rainfall-runoff modeling; however these examples almost 
focused on one paradigm rather than their hybridization. Section (2) referenced 
several applications of ANNs in the field. In all of these examples, neural networks 
provide a mapping between sequence of rainfall and/or other assumed inputs to 
sequence of runoff. Fuzzy systems also can be used as mapping paradigm; for 
instance, in [Bardossy and Disse, 1993] a fuzzy rule based system was proposed for 
describing infiltration process; and, Han et al., in 2000 used a fuzzy logic approach to 
river flow modeling. In addition, because of the nature of fuzzy methods, they can 
enter in different steps and/or frames of modeling. As an illustration, Yu and Yang in 
2000 used fuzzy multi-objective function for calibration a conceptual rainfall-runoff 
model. In another application, [Xiong et al., 2001] used first order Takagi-Sugeno-
Kang (TSK) fuzzy system for obtaining a non-linear combination of the forecasts of 
different rainfall-runoff models. In [Ozelkan and Duckstein, 2001] fuzzy conceptual 
rainfall-runoff models were introduced. With the support of these applications, it 
seems that FL methods may have other potentials in this context. GAs almost have 
been used for parameter optimization of rainfall-runoff models. The first attempt in 
using genetic algorithms (GA) in the field of rainfall-runoff modeling calibration was 
reported by Wang in 1991. Franchini in 1996, modified the Wang procedure in order 
to improve the efficiency. GAs are flexible and they can modified in order to increase 
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performance; for instance, Kuczera in 1997, reported a study to reduce the 
computational effort by confining the search to a subspace within which the global 
optimum is likely to be found. Furthermore, [Ndiritu and Daniel, 2001] reported an 
improved genetic algorithm for rainfall-runoff model calibration and function 
approximations that converge to better results than can be achieved by SCE-UA. 
Other evolutionary methods have also shown to be effective, as an example, Khu et. 
al. in 2001, used Genetic Programming (GP) in real-time runoff forecasting based on 
filtering the output of a certain conceptual rainfall-runoff model. 

Recently, some hybrid applications have been reported as [Liong et al., 2001] 
used a combination of ANNs and GA for finding pareto optimal solution of a 
conceptual rainfall-runoff model. As an another example, Chang and Chen in 2001 
used counter propagation fuzzy-neural networks modeling approach to real time 
stream flow prediction. These applications show that hybrid applications of soft 
computing in unique rainfall-runoff modeling problem may have more advantages 
than single paradigm approach. 
 
4. Case Study and Proposed Model 

Leaf River basin rainfall-runoff data set is one of the frequently used case studies 
in current rainfall-runoff investigations [Sorooshian, et. al., 1993], [Hsu, et. al., 
1995],  [Ndiritu and Daniel, 2001] [Hsu, et. al., 2002], [Hsu, et. al., 2002]. The basin 
is located north of Collins, Mississippi, with an area of approximately 1950 2km . A 
reliable data set is available that represents a variety of hydrologic conditions and 
phenomena. The data set consists of forty (1948-1987) years mean daily streamflow 
( sm /3 ), daily potential evapotranspiration estimates (mm/day), and 6-hourly mean 
areal precipitation totals (mm per 6 hours) [Sorooshian, et. al., 1993].  

The first step in modeling with ANNs is the selection of appropriate set of input 
variables. In many studies this step is performed by trial and error; or presumption of 
input variables. Furthermore, in most of the previous studies, only rainfall and runoff 
sequences were used for modeling. This is probably caused by the accepted habit 
from the past when the reliable technologies conditioned constraint dimensions of the 
model, or may be the insufficiency of other relevant data. Some parameters such as 
evapotranspiration may be useful, since they can be assumed that they have 
considerably influence on the rainfall-runoff process, both directly resulting in 
evaporation and indirectly as one of the main global determinants of the season. This 
appeared quite reasonable since the existing level of the hardware and software 
technologies is convenient for such an undertaking, so this may result in model 
performance improvement [Furundzic, 1998]. In this study, based on correlation 
analysis, proper input variables are selected from a set of potential inputs. It is 
considered that runoff volume in time t is a function of several potential variables as 
follows: 
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In Equation (1), t  is day index, Q is runoff volume, Evpt  is potential 
evapotranspiration, 1R , 432 ,, RRR  are total rainfalls in first, second, third, and forth 6 
hours, respectively; and R is total daily rainfall. In other word, it is assumed that 

)(tQ is dependent variable of 48 above independent variables, and our aim is finding 
the most effective independent variables based on correlation analysis. Based on the 
correlation analysis performed for three years 1948-1950, 12 variables, which have 

(1) 
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the most correlation among above 48 inputs, are selected as inputs for ANN 
modeling: 
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The second part of ANN modeling is finding a proper structure of network, 

which best describes the input-output relation. Figure (1), shows a typical structure 
for MLP networks. In previous studies this step was performed by trial an error, 
which is time consuming. In addition, there is no guarantee that the selected structure 
found by trial and error is the best.  

Finding the best structure of MLP is an optimization problem, which can be 
handle by GAs. For this purpose first some assumption should be considered.  

 
Figure (1): A typical feedforward MLP 

 
There is a mathematical proof, describing that three layer MLP can approximate 

any continuous input-output mapping with any desired degree of accuracy. In this 
study it is assumed that MLPs have one or two hidden layer with at most 15 neurons 
in each layer. Activation functions are assumed as tangent sigmoid activation 
functions as below: 
 

)exp(1
1)(

u
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Consequently, GA should find optimal neurons in first and second hidden layers. 
Before applying evolutionary structure identification data are normalized. Data 
collected between 1951-1955 are used for structure identification. A simple GA 
procedure with binary coding is performed as below: 

            
• Step 1: Initialize a population with randomly generated individuals; these 

individuals are MLPs genotype and evaluate the fitness value of each 
individual by converting them to corresponding phenotypes, i.e., MLPs. The 
fitness is the error criterion after particular epoch training with 
backpropagation.  

 
• Step 2: 

(a) Apply elitism, if required. Elitism is a policy of always keeping a certain 
number of best members when each new population is generated 

(2) 

(3) 
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(b) Select two members from the population of genotypes with probability 
proportional to their fitness values. 

(c) Apply a crossover operator with a probability equal to the crossover rate. 
(d) Apply mutation with a probability equal to the mutation rate. 
(e) Repeat (a) to (d) until enough members are generated to form the next 

generation. 
 
• Step 3: Repeat step 2 and 3 until stopping criterion is met. 

 
After meting the termination criterion, a particular MLP structure is produced. This 
structure is the best individual in the last generation.  

The third part of modeling with ANNs is finding optimize set of parameters for 
an assumed structure, which best describe the relation between a set of input-output 
pairs. In this section, hybridization between real coding GA and backpropagation is 
used. The real coding GA is performed for finding a set of proper initial weights for 
starting backpropagation procedure. The process of real code GA is the same as 
described above, but instead of using binary representation for genotypes, real 
number representation is used. Data between 1956 and 1965 is used for this part.  
 
5. Results, Discussion, and Further Research 

The above mentioned procedure is programmed with MATLAB® release 6.5. A 
Pentium IV, 1.8 GHz CPU with 256 MB RAM is used for simulation. Three different 
scenarios for input variables are performed. First the 12 variables assigned by 
correlation analysis; Second, considering the most six important variables among 
them, i.e., )3(),2(),1(),3(),2(),1( −−−−−− tRtRtRtQtQtQ ; and third is choosing 
the most important input variables with evolutionary process. In later scenario, 
selection of proper input variables among the 12 potential variables is added to GA 
procedure as another decision variable. These scenarios are run in two modes, either 
considering elitism or not. Table (1) shows the internal parameters used in GA 
process.     
 

Table (1): Properties of GAs performed in structure and parameters identification 
 

Section Probability of 
crossover 

Probability of 
mutation 

Number of 
individuals 

Number of 
generation  

Structure 
identification 0.8 0.01 50 50 

Parameter 
identification 0.8 0.015 100 50 

Section Number of 
elitism if used 

Number of 
training epoch  

Selection 
method 

Genotypes 
representation 

Structure 
identification 3 50 Roulette wheel   Binary coding 

Parameter 
identification 5 200 Roulette wheel Real coding  

 
Another matter to be addressed to is the unusual method of modeling. In 

previous studies, the data set is divided into two distinct subsets for training and 
validation phases. In spite of the fact that input identification, structure identification 
and parameter identification are related to training phase, in this study, they are done 
within 3 different data sequences. This unusual method has a natural inspiration. In 
natural systems, in which the behavior of system progresses with events, these steps 
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take place within different phases of system formation. In confronting with external 
events, a natural organism first identify the event and its characteristics, then tries to 
find the suitable approach in confronting and finally, by considering the new events, 
adopts the approach to face with it efficiently.                  

In addition to the fact that the above mentioned method has a natural evidence, it 
can represent some other features of intelligent-based systems. One of the main 
features of intelligence in natural organisms is the ability to memorize the indirect 
experiences. In psychology this is referred to unconscious memory. As it was 
discussed before, in training the model, the data of input identification and the 
structure identification is used implicitly within the model. The former is used for 
identification of inputs applied for structure identification and training the model and 
the later finds the optimal structure to be adopted with data of 1956-1965. It is 
interesting to find how the obtained model will be confronted with these implicitly 
used data. The answer to this “how” would help us to understand if any unconscious 
memory exists in the obtained model. Table (2), presents the error indices for six 
different scenarios. As mentioned, we consider 3 scenarios of input variables and the 
program is run by either considering elitism or without it. Consequently six different 
models are achieved. This table also represent the optimize structures obtained by 
evolutionary structure identification. Four error indices are used for comparing the 
performance of these different models. They are Root Mean Square of Errors 
(RMSE), Percentage of Volume Error (%VE), Percentage of error in Maximum Flow 
(%MF) and Correlation Coefficient (CORR). These measures are considered in 
Training phase (T), i.e., 1956-1965; input identification phase (V1), i.e., data of 
1948-1950; structure identification phase (V2), i.e., data of 1951-1955; and an unseen 
verification data (V3), i.e., data of 1966-1975.  
 

Table (2): Error indices and performance evaluation of six evolutionary neural 
networks describing the rainfall-runoff process in Leaf River  

Scenario 6par 6par-
elitism Float par Float par- 

elitism 12par 12par-
elitism 

Structure [6 9 14 1] [6 7 12 1] [6 11 10 1] [8 11 14 1] [12 4 10 1] [12 6 8 1] 
Error 
indices       

RMSE (T) 8.4685 9.5001 9.2033 8.1351 10.0244 9.1476 
RMSE (V1) 73.3091 59.4810 65.1426 76.6021 41.1112 30.1811 
RMSE (V2) 42.9551 33.6021 32.1009 43.2971 25.9411 27.6795 
RMSE (V3) 37.8533 32.7684 32.9890 52.0487 31.6302 33.5924 

%VE (T) -0.0212 -0.1452 0.0562 -0.2529 0.0067 0.0096 
%VE (V1) 11.4486 -2.9578 -9.3137 -0.1448 -5.7981 4.0563 
%VE (V2) 8.5920 -7.6882 -5.5639 -3.0525 -5.6246 2.0029 
%VE (V3) 25.7441 22.3847 16.6512 27.0211 14.9439 30.6113 
%MF (T) 0.2487 0.3779 0.0022 0.1257 0.0088 0.4606 

%MF (V1) 0.0218 0.1546 1.03e-008 0.0624 7.76e-005 0.6740 
%MF (V2) 0.1242 0.1309 4.33e-012 9.23e-004 0.0750 8.10e-004 
%MF (V3) 2.5257 2.4e-004 0.0417 0.0214 0.0999 43.1647 
CORR (T) 0.9916 0.9894 0.9901 0.9923 0.9882 0.9902 

CORR (V1) 0.5936 0.8076 0.8225 0.7141 0.9299 0.9353 
CORR (V2) 0.5337 0.8000 0.8351 0.7112 0.8626 0.8212 
CORR (V3) 0.7379 0.8149 0.8249 0.6069 0.8303 0.8460 
        

 Considering the results of training phase in these scenarios, it can be realized 
that the evolutionary MLP parameter identification is quite successful. However it 
must be consider that the computational time increases significantly. This is the 



Nazemi et al. 

 Hydrology Days 2003 233 

inherent problem of evolutionary-based search methods. So the modeler may need 
some justifications to apply it. In regard to the fact that the rainfall-runoff modeling is 
an offline one, it may be reasonable to apply the method to guarantee a well-done 
calibration. 

Considering the results of 6par and 6par-elitism scenarios, it can be realized that 
reducing the number of input variables yields inaccurate modeling. So consideration 
of the other input variables is justified. Applying elitism, the results may improve; 
however, 12par and Float par, the scenario in which the input variables are identified 
by evolutionary process, show better predictions. 

In spite of the fact that evolutionary input identification procedure should result 
to improve approximation, the results of testing phases represent else. However it 
must be noted that the search space in Float par scenario is increased exponentially. 
Considering total states of 82  in 12par scenarios and 202  in Float par scenarios, it 
can consider that the evolutionary process of structure identification in Float par 
scenarios can not converge to optimal genotypes. The result of Float par (without 
applying elitism) can be considered as local optima, comparing the results of Float 
par-elitism scenario. The results may be improved by increasing the number of 
population in each generation and/or number of generation. However it must be noted 
that the evolution of structure via genetic process requires much computational effort 
than parameter identification by genetic process. In this study, the genetic process of 
structure identification with 50 generation and 50 individuals in each generation 
needs 48 hours to be terminated. So continuing the evolutionary structure 
identification may not be justified. 

The results of 12par scenarios show a better approximation among the others. It 
can be concluded that the evolution structure identification process has converged to 
optimal structure. The behavior of achieved structures show a good approximation 
capability in training and V1 testing sequences. However the results of V2 and V3 
sequences are less accurate. The results of V2 testing period can be improved by 
considering its data in training procedure.  

In this study, Mean Square of Errors (MSE) is applied as the training objective 
function. Previous studies show that consideration of this objective leads to a good 
prediction in regular events, but it converges to inaccurate results when confronting 
with extreme ones. Figure (2) shows the prediction of the best-achieved model, i.e., 
12par-elitism scenario, in considered sequences. Applying multi-objective training 
function may result to improve accuracy, which can be considered as further 
research. In addition, the concept of co-evolution, the optimization of structure and 
parameters at the same time, which has more natural justification, can be applied as 
an interesting topic.  

(a) 
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(b) 
         

(c) 

(d) 
 

Figure (2): The behavior of achieved structure, i.e., [12 6 8 1] MLP neural network in 
describing the rainfall-runoff process in Leaf River; (a) training phase (1956-1965), 
(b) input identification phase (1949-1950), (c) structure identification phase (1951-

1955), and (d) testing phase (1966-1975) 
 

6. Conclusion 
In this study, a rigid framework in hybrid soft computing-based paradigms, 

evolutionary neural networks, is applied as a modeling procedure for describing the 
rainfall-runoff process. A method based on correlation analysis is presented for input 
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identification of MLP networks. The structure of MLP is obtained through a binary 
code genetic algorithm and the parameter optimization of MLP is calculated with 
hybridization of genetic algorithm and backpropagation. An inspired procedure based 
on the behavior of natural systems is performed for modeling construction. The 
simulated results based on Leaf River data, show that the application of soft 
computing-based systems can produce an intelligence behavior in describing the 
rainfall-runoff process and may have the great potentials in new era of hydrologic 
modeling. 
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