
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
 
 
 
 
 

 
 
Abstract 
By increasing the velocity of flow in coarse grain 
materials, local turbulences are often imposed to the 
flow. As a result, the flow regime through rockfill 
structures deviates from linear Darcy law; and nonlinear 
or non-Darcy flow equations will be applicable. Even 
though the structures of these nonlinear equations have 
some physical justifications, they still need empirical 
studies to estimate parameters of these equations. Hence 
there is a great deal of uncertainty as an inherent part of 
the estimation process. In this paper we investigate fuzzy 
systems paradigm to combine three of the most 
commonly validated and utilized empirical solutions in 
the current literature. In this way, the results of the three 
empirical equations serve as inputs, and the combination 
framework serve as fusion algorithm. The results show 
that when learning injected to fuzzy logic based models, 
the system provides a powerful solution with a strong 
ability to track reality. Specifically, this paper concludes 
that ANFIS provide accurate combination framework 
with greatest performance among the considered 
conventional alternatives as well as Mamdani structures. 
 
1. Introduction 

In recent years, there has been considerable increase 
in application of rockfill and coarse grain materials for 
construction of hydraulic structures such as rockfill 
dams, breakwaters, and gabions [4, 5]. The availability of 
construction materials, increased knowledge about 
behavior of rockfill, and short construction duration are 
the main reasons for this development. The main feature 
of rockfill structures is that, because of increased local 
turbulence, flow through them is not accurately described 
by Darcy linear flow equation, and non-Darcy or 
nonlinear flow law is required to describe the flow. 
Furthermore, hydraulic behavior of rockfill depends on 
many parameters such as: size and size distribution, 
porosity, orientation, shape and roughness of the grains 
[4]. Hydraulic behavior resulting from interaction of 
these variables is hard to quantify and therefore  

 
 
 
uncertainty will be an inherent element in estimation of 
hydraulic parameters. A commonly used method to 
obtain hydraulic parameters is the use of empirical 
relations, based on the physical features of the media. 
Although the research in this area has been extensive, 
there is no general agreement on one specific equation. In 
other words, the empirical equations are biased and 
therefore produce underestimated and/or overestimated 
results [5]. Additionally, empirical studies based on 
laboratory conditions do not encompass all situations and 
therefore do not always reflect reality. 

Considering the ever-increasing computational 
abilities and introduction of new methods of deduction, 
combination and modeling, it is now reasonable to use 
different equations simultaneously and then combine 
them together [16]. Averaging is the simplest method for 
combination. An improved but more complex method is 
weighted averaging or linear regression. However, these 
methods may produce weak results when interrelations 
among simultaneous equations are nonlinear. Hence, 
some nonlinear methods may be deemed superior. But, 
traditional nonlinear regression often leads to a time 
consuming and complex mathematical programming. 
These methods are also very sensitive, and a little change 
in parameters may change the regression line violently 
[7]. As an alternative to above conventional combination 
approaches, soft computing and specifically fuzzy logic-
based methods are proposed to handle uncertainty and 
ambiguity in natural systems through the past decades. 
The core of soft computing is neural computation and 
fuzzy logic [3, 7]. On one hand neural networks are low-
level (numeric) distributed processing units that have 
capability to learn and generalize nonlinear relations. On 
the other hand, fuzzy logic provides a high-level 
(linguistic) robust and accurate framework to model 
conceptual knowledge. Neuro-fuzzy systems are a 
combined framework of these two paradigms taking 
advantage of their strength for a more powerful approach. 
There is an extensive literature in soft computing, and 
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everyday it finds new applications in solving real 
engineering problems. 

In this study, a classic fuzzy system i.e. Mamdani and 
more recently developed neuro fuzzy system ANFIS are 
examined.  Inputs to the above systems are the result of 
three most accurate empirical equations, and we hope to 
build a decision fusion algorithm that will track the 
observed output. In the next section, previous studies in 
the area of non-Darcy flow equations are summarized 
and three most accurate equations (as proposed by 
McCorquodale, Stephenson, and Adel) are selected using 
previous study of Hosseini [5]. In section 3, the data set 
of our case study will be introduced and the performance 
of selected equations will be evaluated. In section 4, the 
motivations and applications of combination methods are 
discussed and the combination model for this problem is 
presented. Then in section 5, Mamdani fuzzy system and 
ANFIS as a combination framework are introduced and 
different architecture are trained, checked and tested with 
the laboratory data. In section 6, the results are presented 
and finally, in section 7, conclusions are derived. 
 
2. Non-Darcy flow studies 

In general, two distinct approaches for describing 
nonlinear flow through coarse porous media can be found 
in the literature. The first approach was proposed by 
Forchheimer who introduced the following one-
dimensional quadratic equation as the constitutive 
relationship for nonlinear flow [4, 5, 8]. 

 
2bVaVi   

 
Where i  is hydraulic gradient, V is the bulk velocity, 

and a and b are media and fluid constants. Another 
commonly used approach is the Missbach equation, 
which assumed the following exponential relation 
between hydraulic gradient and bulk velocity [4, 5, 10]. 

 
lVi   

 
Where l  and  are constants which depend on media 

and fluid properties.   is a variable between 1 and 2, 
which changes from case to case. Although above 
equations have some theoretical justification, constants 
( a and b  in the Forchheimer equation, l  and  in the 
Missbach equation) relate to media characteristics and 
are generally estimated by empirical equations resulting 
from experimental studies. Many regulations of empirical 
equations can be found in the literature, based on the 
work of researchers such as in McCorquodale et al. [11], 
Stephenson [14], and Martins [10]. Hansen et al. [4] 
present a good review of different nonlinear empirical 
equations, which are widely used for estimating 

hydraulic properties in non-Darcy flow conditions. Also, 
there are several other studies that aim to evaluate the 
introduced nonlinear flow equations such as Joy [8], 
Hansen et al. [4] and Hosseini [5]. In general, it can be 
concluded from these studies that Forchheimer-based 
equations are superior and more accurate than Missbach 
type equations. Hosseini [5] found that the most accurate 
models are reported by Adel, McCorquodale, and 
Stephenson equations. The formulation of these 
equations can be found in many references such as [4, 5]. 
In short, these empirical equations have different 
mathematical structures, and include different media 
characteristics such as porosity, characteristic size 
( m10 dord ), and parameters related to shape and 
roughness of the grains. 
 
3. Data set used in this study 

The data set used for this study was produced by Joy 
[8, 9]. He constructed a simple experimental device to 
collect a consistent set of i. vs. V data for 23 different 
materials. The device consisted of a vertical cylinder, 
750mm long and 152mm in diameter, containing the 
media. Head losses were determined using 5 piezometer 
taps on the cylinder and discharge were determined using 
either an orifice for large flows or by timed weighting for 
smaller flows. 23 samples of different coarse media were 
tested. Mean ( 50d ) material sizes ranged from 3 to 31 
mm while hydrodynamic conditions were all outside the 
laminar range with Reynolds numbers in the range of 50 
to 600. The media was homogenous; the flow was steady 
and hydraulic gradient was from 0.014 to 1.5. Totally 
483 bulk velocity-hydraulic gradient data were observed 
for all 23 coarse materials. Physical properties related to 
three selected empirical equations were extracted from 
references [8, 9], by following the recommendations 
made by the developer of the equations to calculate or 
estimate their physical properties. Therefore this data set 
can be used to compare simulated hydraulic gradients 
(resulting from any empirical equation or combination 
method) with the observed values. 

These data are first used to investigate the 
performance of the empirical equations used in this 
study. To conduct this, physical properties associated 
with each empirical equation were applied to the 
equations to find the hydraulic gradients for all velocity 
values corresponding to permeameter tests. In Figure (1), 
plots (a) to (c) show scatter plot of i(simulated) vs. 
i(observed) curve for McCorquodale, Stephenson, and 
Adel equations, respectively. It can be seen that these 
plots scatter widely especially when the velocity 
increases. Hence there is a great deal of uncertainty in the 
mechanism of equations in representing actual hydraulic 
gradient. 
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4. Combinations methods: motivations and 
applications 
From previous section, it is realized that no single 

equation provides an exact result. On one hand these 
equations may have some subjective features that should 
be determined from engineering judgment and on the 
other hand, the process has different sources of 
uncertainty that are not fully reflected in empirical 
equations. It should be considered that all empirical 
equations have been developed based on laboratory 
conditions so the real process in nature may have an 
obvious deviation from these equations as well. 
Assuming that each single empirical equation can best 
describe only one or more particular situations, 
conditions or relations, it can be expected that the 
hydraulic gradient estimates, which are obtained by 
combining the results from a number of different 
equations together through some appropriate weighting 
procedures are more comprehensive and accurate in 
representing the relationship between hydraulic gradient 
and bulk velocity than any single equation or relation 
[16]. Mathematically, if we have p different empirical 
equations for estimating the hydraulic gradient for a 
certain velocity, this combination process is generally 
expressed as [16], 

 
)î,...,î,î(Fî p21c   

 
Where p21 î,...,î,î are the hydraulic gradients of p  

different equations, respectively, for a specified bulk 
velocity, cî is fusion of their results, and )(F is the 
decision fusion algorithm. The most obvious method for 
combining the results of different empirical equations is 
simple averaging. Another intuitive method, but more 
complex, is finding a linear relationship (Equation (4)) 
among the variables taking the results of empirical 
equations as independent variables and observed 
hydraulic gradients as dependent ones. 

 

leMcCorquodaStephensonAdelobserved cibiaii   
 

In Equation (4), the best estimates of a, b, and c are 
obtained by applying multiple linear regression 
procedure. Figure (1), plots (d) and (e) show the results 
of simple averaging method (SAM) and multiple linear 
regression equation (MLR). As it can be realized, less 
scatter is observed in the results of multiple linear 
regression equation. However, the funnel-shaped trend is 
still dominant. By examining the results of different 
empirical equations and applied combination methods, 
the failure of these conventional methods in capturing the 

nonlinearity, which are inherent in the system, is 
understood. Therefore, the application of a decision 
fusion algorithm, based on fuzzy system that can handle 
this nonlinearity, is plausible. 
 
5. Fuzzy systems as a fusion framework 

The fuzzy systems can be easily used as a fusion 
framework [16]. In this configuration, output of each 
empirical equation is an input variable to the fuzzy fusion 
system. A fusion Mamdani fuzzy rule base consists of a 
set of rules in the following form: 

 
If i Adel is kA and i Stephenson is kB and i 

McCorquodale is kC then i is lD  
 

Where kA , kB , and kC are kth membership functions 
for Adel, Stephenson, and McCorquodale equations 
respectively. lD  is lth consequent membership function. 
The degree of membership functions is a positive real 
number in the interval [0,1]. A membership function 
assigns a degree of membership to an element and can be 
any convex shape [15]. In summary, the functionality of 
Mamdani fuzzy inference systems can be shown as 
follows: 
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For applying a fuzzy system as fusion algorithm, four 

triangular membership functions are assumed for each 
input. For rule generation, weighted counting algorithm 
[1, 13] is applied. If we choose Mamdani fuzzy system  
as the type of fuzzy inference model, algebraic product as 
AND (Tnorm) operator, algebraic sum as OR (Snorm)  
operator, Min as implication operator, Max as 
aggregation operator and center of average as the 
defuzzification method, then the results for training, 
checking and testing phases are as in Figure (2). For this 
purpose data is first randomly divided into three distinct 
sets. Training data set contains 350 data pairs, checking 
data set contains 50 data pairs, and testing data set 
consists of 82 data pairs. Each data pair contains results 
of Adel, Stephenson and McCorquodale equations to a 
specified velocity as inputs and real hydraulic gradient as 
output. Then data quantities are divided by their 
maximum value in the training data set. Hence a 
normalized training data set is created; however, 
checking and testing data sets may not be normal. 
Different simulations reveal that several other 
combinations of Snorms, Tnorms, and implication 
operators provided inferior performance. MATLAB® 
fuzzy logic toolbox was used for simulation [6]. 
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Figure (1): i(simulated) vs. i(observed) curve for selected relations; (a) McCorquodale, (b) Stephenson, (c) Adel 

equations, (d) simple averaging, (e) multiple linear regression 
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Figure (2): Combined hydraulic gradient obtained by Mamdani fuzzy system vs. real hydraulic gradient; (a) 

training phase, (b) checking phase, (c) testing phase 
 

 
Hybrid combination of fuzzy logic and neural 

systems paradigm may provide a unique framework 
where the strength of each paradigm compensates for the 
weakness of the other. Fuzzy logic is known for its 
ability to model human knowledge qualitatively, whereas 
neural networks can be considered as physical and 
quantitative model of human brain. Combining these two 
differing views of human mind in a unifying framework 

allows for a stronger approach to modeling [7]. One of 
the most popular and powerful architectures is Adaptive 
Neuro-Fuzzy Inference System (ANFIS) [7] in which a 
Takagi-Sugeno-Kang (TSK) [3, 7, 15] fuzzy system is 
represented in a special five-layer feedforward network 
architecture. For this fusion process, rules are 
implemented in the following form: 
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If i  Adel is rA ,1 and i Stephenson is rA ,2 and i 
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In Equation (7), (r=1,2,…R) is the rth rule, k is index 

of each empirical equation (Adel, Stephenson and 
McCorquodale, respectively), rkA , is the membership 
function of kth empirical equation representing linguistic 
descriptions of inputs in rth rule, ksimi , is the numerical 

value of kth empirical equation, and 0  and 

k ( 3,2,1k ) are equation constants. The rule-base 
must be known in advance and ANFIS adjusts the 
membership functions of the antecedents and the 
consequent parameters. A hybrid of Least Square 
Estimator (LSE) and backpropagation is used for the 
learning of ANFIS. Backpropagation is used to learn the 
antecedent parameters and LSE is used to determine the 
coefficients of rules consequents [6, 7]. However, the 
learned outcome of ANFIS may be difficult to interpret. 
ANFIS is therefore more suitable for applications where 
interpretation is not as important as performance such as 
our problem. MATLAB® fuzzy logic toolbox was used 
for simulation. In ANFIS system the type of membership 
function must be identified. Also two different methods 
for rule generation, i.e., sub-clustering and grid 
partitioning [6, 7] can be used. It was seen that ANFIS 
system with 3 Inputs-1 Output, 4 Gaussian membership 
function for each variable and 4 linear consequence 
functions obtained by sub clustering with 100 epochs 
hybrid training would be the best neuro-fuzzy model. 
Figure (9) shows the structure of ANFIS system with 
3I/1O, 4 membership functions for each input variable 
obtained by grid partitioning and sub-clustering 
respectively. Performance of rule bases obtained by grid 

partitioning and sub-clustering are shown in following 
figures. 
 
6. Results 

In Table (1) the best fuzzy fusion algorithms in 
Mamdani and ANFIS structures are compared with two 
well-known conventional combination models, i.e. 
simple averaging, multiple linear regression, as well as 
three selected empirical non-Darcy equations. Four 
performance indices are selected for evaluation of these 
models. These are sum of square of errors, mean of 
errors, variance of errors and correlation between 
simulated and observed values. These parameters are 
compared in training, checking and testing phases. 
Generally, training indices represent the learning 
capability of different models, checking indices estimate 
generalization capability and testing ones show 
prediction ability. It can be seen that ANFIS system 
obtained by sub-clustering is the best fusion algorithm, 
among other illustrated models, for describing the 
nonlinear flow in porous media. 
 
7. Conclusion 

The most commonly used method for estimating 
hydraulic parameters for flow through coarse porous 
media is empirical-based equations. However, these 
equations do not fully reflect the flow behavior in coarse 
porous media. In this investigation, the results of three 
selected empirical equations, i.e., McCorquodale, 
Stephenson, and Adel, are fused by fuzzy system in order 
to find a better estimation. The results show significant 
improvement of proposed fusion algorithm based on 
ANFIS as compared with any other illustrated 
combination method or use of standard equation 
individually. Future directions of this research includes 
application of other soft computing-based methodologies 
for fusion and/or creating a direct mapping from actual 
physical properties and measurement of the system to a 
hydraulic gradient. 
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Figure (3): Combined hydraulic gradient resulting from ANFIS system obtained by sub clustering vs. real 
hydraulic gradient; (a) training phase, (b) checking phase, (c) testing phase 

(7) 

(a) (b) (c) 
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Figure (4): Combined hydraulic gradient resulting from ANFIS system obtained by grid partitioning vs. real 

hydraulic gradient; (a) training phase, (b) checking phase, (c) testing phase 
 

Table (1): Comparison between different combination procedures and empirical equations 
 

1 Mamdani 5.5794 0.0384 0.0145 0.94 0.82 -0.0710 0.0120 0.93 1.16 -0.0400 0.0130 0.95 
2 ANFIS 1.1108 0.0000 0.0032 0.98 0.16 -0.1390 0.0030 0.98 0.28 -0.0090 0.0030 0.98 
3 SAM 9.1897 0.1243 0.0100 0.94 0.85 0.1011 0.0070 0.97 1.90 0.1220 0.0080 0.95 
4 MLR 3.1980 0.0618 0.0050 0.97 0.25 0.0440 0.0030 0.98 0.57 0.0540 0.0040 0.97 
5 Adel  5.1916 0.1061 0.0086 0.95 0.72 0.0820 0.0080 0.94 1.39 0.0956 0.0080 0.95 
6 Stephenson 6.9427 0.1259 0.0135 0.93 0.93 0.1042 0.0080 0.96 2.21 0.1282 0.0110 0.93 
7 McCorquad 10.232 0.1407 0.0164 0.91 1.23 0.1170 0.0110 0.93 2.73 0.1423 0.0130 0.91 

 
(1) Sum of Square of Errors (2) Mean of Errors (3) Variance of Errors 

(4) Correlation Coefficient 
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Training phase (number of data: 350) Checking phase (number of data: 50)  Testing phase (number of data: 82)   
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