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 Abstract – In this study, one of the most complicated problems in 
Water Resources Engineering, i.e., Rainfall-Runoff modeling is 
introduced and nine soft computing-based modeling approaches are 
considered to describe the rainfall-runoff process in a particular 
case study. For each of these nine approaches, many modeling 
choices are evaluated and the best modeling choice is selected by an 
intuitive two-stage competition among all modeling choices for a 
particular modeling approach. This competition is then applied 
among the best modeling choice of applied approaches and the best 
one is highlighted. The results shows that the modeling efficiency 
increases by moving toward neural modeling; particularly, the fuzzy 
clustering-based neural network is the most efficient and accurate 
paradigm among performed systems for modeling rainfall-runoff 
process in the considered case study. In addition, for interpreting 
the results, a new concept, i.e., intelligence space, and its 
consequent definitions are introduced that can be used as a general 
framework for comparing intelligent systems.  
 

I.  INTRODUCTION 
 In many modeling problems, numbers of modeling alternatives 

exist that can be considered as a suitable system for modeling a 
particular problem. This condition is more highlighted, when we are 
in the context of computational intelligent systems. In many 
situations, we are faced with many, for example, feedforward neural 
network structures that model a process with a low error index; 
however, we should take a particular system as the final model. In 
addition, there may exist more than one successful approach. 
Generally, in every modeling problems  many conceptual, system-
theoretical and soft computing-based models can be considered as 
a powerful system for modeling the process. Traditionally, this 
problem is solved by considering a case study and an error index 
for models under consideration and evaluating this error measure 
among them in validation phase. However, is it logical to stick on 
the behavior of the system in validation phase, only based on one 
error index?                 

Considering the ever-increasing computational abilities and 
introduction of new methods of deduction and multi-criteria 
decision making, it is now justified to use different criteria for 
evaluating models and considering every phase of modeling 
procedure for behavior analysis of different systems. With a well-
established method, it is possible to get an insight to the 
performance and the ability of different modeling approaches in a 
particular problem. 

It is proved that Rainfall-Runoff process is one of the most 
complex phenomena for modelling in Water Resources Engineering 

[1]. The problem is inherently non-linear and dynamic; therefore, 
simple modelling approaches collapse in tracking the process 
especially in continuous modelling problems . In this study, nine 
approaches are applied for one of the most famous data set of the 
current rainfall-runoff modelling literature, i.e., Leaf River basin, 
near Collins, USA and the behaviour of these models are evaluated 
in different time intervals. For model development in all of 
approaches, many modelling choices are tested and then, based on 
performance evaluation of these choices in different modelling 
intervals, the best choice is highlighted. This is done by an 
intuitive two-stage competition among these choices in a way that 
a choice that gathers the most scores is selected. These scores are 
allocated based on different error indices in all of modelling 
intervals. Then, based on this procedure, some new concepts such 
as intelligence space, intelligence vector, and intelligence index are 
introduced for comparing these nine modelling approaches, which 
can be used as a general framework for determining computational 
intelligence quotation (CIQ).  

II. RAINFALL-RUNOFF PROCESS 
 Rainfall-runoff process is accepted as one of the most complex 

and nonlinear real-world phenomena in the field of water 
engineering. The process consists of the movement of rainfall 
through different media and its transformation to the runoff in 
channels either natural or man-made. Many mathematical 
approaches can be found in the literature, which are proposed for 
the purpose that an accurate estimation of runoff can be made by 
knowing the quantity and quality of rainfall for an assumed area 
[11]. 

Rainfall-runoff modeling is assumed to find a description for 
transformation of the total rainfall volume to the corresponding 
reduced runoff volume in an area [1]. The total volume of the 
rainfall during one rainy event rfW  is determined based on the 

data collected on the watershed area A , by the following 
equation: HAWrf *= , where H  represents the average height of 

rainfall. The other convenient way to estimate the total rainfall 

volume is given as follows: ∫=
rT
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* , where i  is the 

rainfall intensity in meter per second, 0T  and rT  are starting and 

ending time of rainfall event. The runoff volume qW , is estimated 

on the basis of hydrograph data in the following way: 
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** , where Q  represents hydrograph 

runoff ordinate on the outlet of the watershed, ei  is net or effective 

intensity of the rainfall. The runoff volume or effective rain is 
defined by the following equation: AWH Qe /= . The difference is 

defined by the following way: Qrf WW −  is the retained water 

volume (water volume deficit) that varies with time, i.e., similar 
rainfall volumes may result in significantly different runoff volumes 
on the same watershed profile, proving the non-stationary of the 
rainfall-runoff processes. The strongly emphasized non-linearity of 
the rainfall-runoff process is the other manifestation of the 
complexity of the internal watershed structure. This internal 
structure is a consequence of the composition of a large number of 
relatively permanent and changeable essential features.. There is 
no universal model designed for the rainfall-runoff process, since 
the model developed for the certain watershed may appear to be 
quite unusable for the other area [1].  

Modern literature of rainfall-runoff modeling contains two main 
approaches: the conceptual (physical modeling) and system 
theoretic modelling [11]. The conceptual rainfall-runoff models 
attempts to provide reliable approximation of physical mechanisms, 
determining the hydrologic cycle. The conceptual models are 
convenient for understanding of the hydrologic process, but they 
are not efficient in stream flow forecasting (prediction at specified 
watershed location). In such situations, the system theoretic 
approach is a more convenient tool. The system theoretic approach 
is generally based on the differential equation models designed for 
direct mapping between the inputs and outputs. The ARMAX 
(auto-regressive moving average with exogenous inputs) linear 
models for time series analysis, developed by Box and Jenkins, 
have been frequently used [5]. These models are easy to develop 
and practical for use, but they are not appropriate tools for 
modelling of nonlinear dynamic processes such as the rainfall-
runoff, and may show unsatisfactory performance [1]. Furthermore, 
many studies reported that calibrations of models have many 
computational difficulties [14] and the natural orientation of the 
process imposes a great deal of uncertainty in to the modeling 
procedure. In addition, many models are based on some 
assumptions, which do not hold in the real process [16]. Thus, the 
modeling of the rainfall-runoff process is still a challenging 
problem. 

Since the early of 1990s applications of soft computing 
paradigms have been reported in the context of rainfall-runoff 
modelling [2], [3], [4], [5], [7], [8], [10]. These researches show that 
soft computing-based approaches can be considered as a powerful 
alternative and/or complement for describing rainfall-runoff 
process. 

III. MATHEMATICAL FRAMEWORK, CASE STUDY AND 
APPLIED MODELS 

The first step in all modeling problems is obtaining an 
Information set about system behavior and parameters. The 
information may be numerical, linguistic, physical or experimental 
laws, and generally, the combination of these sources. However, in 
many modeling problems , the dimension of information set tends to 

be very large. So the modeller is forced to extract the most efficient 
information parameters and identify the Data set. Mathematically, it 
can be shown as: 
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In above equation I is information set, D is data set, 1f  is 

extracting operator and en  is the number of parameters considered 

in data set.  It must be noted that D contains both input and 
output data: 

oi ntntent DDD ××× ⊕=                                                          (2) In 

which, in  and on  are number of input and output parameters 

respectively. It is obvious that eoi nnn =+ . If on  is not equal to 

one it means that we have multi-output system. This system can be 
easily converted to on single output systems. 

After data identification phase, the modeling phase should be 
started. The first step is selecting an approach or mathematical 
engine which relates input to output. Mathematically it can be 
shown as: 

o
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In which 2f  is the mathematical paradigm, which relates input to 

output. It can be a Neural Network, Fuzzy system or any other 
modeling approach. After proper approach selection, the structure 
of the system, which relates input values to output ones, should be 
identified. . As an illustration, if feedforward neural network is 
selected for modeling, the number of hidden layers, the number of 
neurons in each hidden layer, the activation functions and etc. 
should be identified by the modeler before training. Mathematically 
it can be shown as: 

o

f
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⇒ such that )( 23 fFf ∈                           (4) 

In above equation, 3f  is the proper structure, and )( 2fF indicates 

to family of possible structures in modeling framework 2f . When 

proper structure is identified, the model parameter should be 
identified. Model parameters are determined in order to minimize an 
error or a set of error measures. In other words, the proper structure 

3f  is calibrated to produce a mapping between inputs and output 

values: 

0
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In above equation 4f is the final model which produces an optimal 

mapping between inputs and output and )( 3fF indicates to family 

of possible calibrated models for particular structure 3f . After 

calibration of the model, the behavior of the model should be 
evaluated by an unseen data set and a vector of error measures. It 
can be shown as:  

0
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In which, E is the error measure for calibrated structure 4f in 

confronting with unseen data D ′ . Now, the model can be 
established by: 

},,{ 4 EfDM
ent×=                        (7) 

That means a model as an integration of data, calibrated structure, 
and an error vector.  

Leaf River basin rainfall-runoff data set, the case study of this 
research, is one of the frequently used case studies in current 
rainfall-runoff investigations [3], [4], [5], [10]. The basin is located 
north of Collins, Mississippi, with an area of approximately 1950 

2km . A reliable data set is available that represents a variety of 
hydrologic conditions and phenomena. The data set consists of 

forty (1948-1987) years of mean daily streamflow ( sm /3 ), daily 
potential evapotranspiration (mm/day), and incremental six hours 
areal rainfall (mm per 6 hours. The modelling objective is simulating 
on step ahead of stream flow quantity based on past stream flows, 
evapotranspiration and rainfall measures. For continuos 
simulations of Leaf River rainfall-runoff process, nine approaches 
are examined that described briefly as below:    

1) Mamdani fuzzy system: As proved, fuzzy systems are 
universal approximator [15] and can be used for forecasting the 
next state of a system based on previous states and inputs. We 
consider that:     

)3(),...1(),3(),...,1(()( −−−−= tRtRtQtQftQ                 (8) 

It means that the current streamflow Q in time interval t is a 
function of streamflow and rainfall R in intervals t-1, t-2, and t-3. 
Based on Mamdani view point this relation can be converted to a 
linguistic rule base system, in which both antecedents and 
consequence variables are fuzzy sets [15]. 

2) TSK fuzzy system: The only difference between TSK fuzzy 
systems and Mamdani fuzzy system is  in their consequence parts  
[15]. For considered case study, the input/output relation was 
assumed as Equation (8).  

3) Mamdani hierarchical fuzzy system: One of the main 
problems in fuzzy systems is the curse of dimensionality. This 
problem can be decreased by considering a hierarchical topology 
for fuzzy models  [6]. For considered case study it was assumed 
that all rainfall inputs was lumped in an fuzzy index, i.e., Rainfall 
index. The same procedure was applied for streamflow components 
and fuzzy variable Runoff index was produced for streamflow data. 
This hierarchical fuzzy system can be shown as below:     

R ( t -2 )  

R ( t-3 )  

Q( t - 1 ) 

Q( t - 2 ) 

Q( t - 3 ) 

R I 

Q I 

Q (t) 

R ( t-1 )  

 
Fig. 1 Structure of hierarchical fuzzy system for considered case study 

  
4) TSK hierarchical fuzzy system: The developed TSK 

hierarchical fuzzy system for considered case study is the same as 

above figure. However, the fuzzy rule consequences for each layer 
were assumed as linear relations.  

5) Feedforward neural network modeling: Since 1990s, many 
studies shows that neural networks can be very efficient in the 
context of rainfall-runoff modeling [3], [8]. Again Equation 8, was 
assumed for input/output relation in the considered case study. 

6) Cascade forward neural network modeling: Cascade forward 
neural networks can be considered as the generalization of feed 
forward ones. In this configuration, all neurons in previous layers 
can be connected to the current layer [7]. Equation (8) is the 
input/output function. 

7) ANFIS neuro-fuzzy system: In ANFIS configuration, a TSK 
fuzzy system is described as a feedforward neural network. So 
learning algorithms can be imposed to the fuzzy system [6]. The 
data set of case study was assumed as previous approaches. 

8) Fuzzy clustering-based neural network modeling [9]: in this 
approach, the idea of fuzzy clustering is combined with 
feedforward neural networks for achieving a two-layer system, in 
which the first layer classifies the rainfall-runoff patterns and the 
second maps the input values to output. In brief, n fuzzy clusters  
was assumed for rainfall-runoff data and for each fuzzy pattern a 
feedforward neural networks was trained for mapping from input to 
output values. The training data for each pattern was selected 
based on the degree of belongness of data to a particular cluster.  
Finally the results of all clusters are integrated as a weighted 
average of all n neural networks [9]. Figure 2. shows this 
hybridization between fuzzy clustering and feedforward neural 
network modeling. Input/output relation is assumed as before. 

 
Fig. 2 The idea of fuzzy clustering-based neural network modeling 

 
9) Evolutionary neural networks modelling: In this approach, 

genetic algorithms are used for structure and/or parameter 
identification of feedforward neural networks. For this purpose, 
first the best neural structure for describing the rainfall-runoff 
process in considered case study is found by a simple genetic 
algorithm [12] and then based on separate data set the identified 
structure is trained by hybridization between a real code genetic 
algorithm and back-propagation [12]. In this approach the best 
input variables among all potential variables of information set are 
selected based on correlation analysis. The detailed explanation of 
this approach has been reported in [10] 

As previously described case study information set consists of 
forty years (1948-1987) of 6-hour areal rainfall, daily potential 
evapotranspiration and daily runoff quantities in Leaf River basin.  

Input data 

Fuzzy C-means clustering 

NN_1 …………… NN_n 

Output 



For modelling development in the form described in equations (1) 
through (8), the information set was divided to four 10-years data 
as below: 

A) Information between 1948-1957: This information set was 
used for input selection, initial parameter identification, structure 
identification and/or calibration of modelling choices. 

B) Information between 1958-1967: This information set was 
used for calibration and/or sensitivity analysis of modelling 
choices. 

C)  Information between 1968-1977: This interval was used for 
validation of modelling choices. The behaviour of model in this 
interval can be interpreted as the short term extrapolation 
capability of modelling choices. 

D) Information between 1978-1987: This interval was again used 
for validation of modelling choices. However, the behaviour of 
model in this interval should be interpreted as the long term 
extrapolation capability of modelling choices. 

 
IV. MODELING PROCEDURE AND COMPETITION AMONG 

ALTERNATIVES 
For all of nine considered approaches, many modelling choices 

are tested. The purpose is finding the best modelling choice of a 
particular approach. For doing that following steps are done: 

1) For each approach, modelling parameters are select from more 
important and sensitive parameters to less important ones. For 
instance in neural network modelling approach, fist the best 
training method is selected. Then the optimal hidden neurons are 
identified and finally the best training supervisor is chosen. 

2) For each modelling choice, six error measures are calculated 
in all of four modelling intervals . These error measures are: 

pp QQEP ˆ−=                   (9)       

That is the error in simulating the peak of the hydrograph. pQ is 

the observed peak and pQ̂  is simulated one.  
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That is representing the ability of modelling choice in satisfying 
mass conservation. This error measure is zero when the total runoff 
volume is the same in observed hydrograph and simulated one. 

n

QQ

MAE

n

i
ii∑

=

−

= 1

ˆ

                      (11) 

That is  the mean absolute of errors and is a measure of first order 
error. 
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That is root mean square of errors and represents the average error 
of a modelling choice. 
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That is correlation coefficient and represents the linear correlation 
between observed and simulated runoff quantities. 
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That is Nash-Sutcliffe coefficient and is the sum of squares of 
differences between the estimated and observed discharges. 

3) An intuitive two-stage competition is performed among all 
modeling choices in order to identify the best modeling choice. In 
the first stage, all mentioned error measures are calculated in four 
information intervals. Therefore, totally, 24 measures were 
determined. Then, the modeling choices obtaining the best 
measures are identified and a score is allocated to them. In the 
second stage, the mean and variance of each error measures in four 
modeling intervals are determined and the modeling choice that 
gathers the most measures is identified. Overally, 36 scores can be 
allocated.  Now, the modeling choice that gathers the most scores 
is selected as the best modeling choice. It can be interpreted that 
the first step is a measure of accuracy and the second is an index 
for robustness, since in first step an individual error measures are 
important, however in the second the overall behavior of error 
measures in four modeling intervals is the goal. Table (1), shows 
this competition among 3 modeling choices. it can be found that 
the modeling choice 3 gathers 20 scores and performs better than 
other modeling choices. 

The introduced competition was applied for all modeling 
approaches. A brief report about selecting the best choice of each 
approach is described as below: 

 

TABLE I 
AN EXAMPLE  FOR INTRODUCES TWO STAGE COMPETITION (A) STAGE 1 (B) 

STAGE 2 
E P  EV (%) MAE R M S E  Cor N-S Co 

261.57 5E-05 7.2734 18.92 0.967 0.93356 1

252.54 0.0029 7.4845 18.917 0.967 0.93358 2
245.28 0.0031 9.5549 20.971 0.958 0.91838 3

3 1 1 2 1 2

E P  EV (%) MAE R M S E  Cor N-S Co 

293.23 0.0158 8.9478 20.177 0.951 0.90365 1
1299.1 0.4999 25.006 66.671 0.046 -0.052 2
165.14 0.0041 6.0028 15.528 0.973 0.94294 3

3 3 3 3 3 3  
E P  EV (%) M A E  R M S E  Cor N - S  C o  

680.97 0 .0243 10.413 31 .913 0.848 0 .6696 1
710.09 0 .5475 26.739 58 .347 0.074 -0.1044 2
683.5 0.041 9.1666 77 .934 0.579 -0.9704 3

1 1 3 2 3 1

E P  EV (%) M A E  R M S E  Cor N - S  C o  
248.66 0 .0156 11.094 25 .083 0.941 0.88323 1
857.34 0 .5757 29.912 76 .108 0.048 -0.0751 2
204.96 0 .0018 7.9607 20.04 0.964 0.92546 3

3 3 3 3 3 3  
(A) 



 

EP (CMS) EV (%) MAE (CMS) RMSE (CMS) Cor N-S Co 

43023.8 1E-04 2.87287 34.7360082 0 0.014 1
186183 0.073 101.4893 631.648247 0.2 0.256 2
58280.7 4E-04 2.550572 878.488216 0 0.902 3

1 1 3 1 2 3
EP (CMS) EV (%) MAE (CMS) RMSE (CMS) Cor N-S Co 

371.108 0.014 9.43205 24.02325 0.9 0.848 1
779.768 0.406 22.28538 55.01075 0.3 0.176 2
324.72 0.013 8.17125 33.61825 0.9 0.454 3

3 3 3 1 1 1  
(B) 

1) Mamdani fuzzy system: For obtaining fuzzy rules in all 
modeling choices the counting algorithm was performed. Two or 
three fuzzy memberships were selected for input variables in their 
universe of discourse. The fuzzy membership functions were 
selected among seven different forms for fuzzy members. Also, 
MAX/MIN and PRODUCT/SUM operators are evaluated. Totally 
28 Mamdani fuzzy choices are developed and a Mamdani fuzzy 
system with 3 pi-membership functions with PRODUCT/SUM 
operators performs the best. 

2) TSK fuzzy systems: The modeling choices for TSK fuzzy 
approach are selected the same as Mamdani approach with 
PRODUCT/SUM operators. The only difference is in the fuzzy 
consequences that were obtained by Least Square Estimator. 
Again, the system with 3 pi-membership functions with 
PRODUCT/SUM operators performs as the best. 

3) Mamdani hierarchical fuzzy system: In Mamdani hierarchical 
fuzzy approach, the fuzzy rules in the first layer were found based 
on the hydrologic knowledge of rainfall and runoff patterns in 
considered case study. The rules in second layer were obtained by 
counting algorithm. Other variables are the same as Mamdani fuzzy 
approach. The results shows that a Mamdani hierarchical fuzzy 
system with 3 pi-membership functions with PRODUCT/SUM 
operators is the best modeling choice for simulating rainfall-runoff 
process in considered case study.  

4) TSK hierarchical fuzzy system: The modeling choices for 
TSK hierarchical fuzzy approach are the same as Mamdani 
hierarchical approach with PRODUCT/SUM operators. The only 
difference is in the fuzzy consequences that were obtained by 
Least Square Estimator. Again, the system with 3 pi-membership 
functions with PRODUCT/SUM operators performs as the best. 

5)  Feedforward neural network modeling: All choices had one 
hidden layer with 2 to 16 neurons. Also, 11 different algorithms are 
tested for calibrating the choices. For evaluating the influence of 
the supervisor of training, four different objective functions are 
checked. Overally, A modeling choice with 6 hidden neurons that 
uses Lovendberg-Marquat algorithm with sum squares of errors for 
calibration and 82 epoch of training, is the best choice. 

6) Cascade forward neural network modeling: Developing 
choices are the same as feedforward approach. The choice with 4 
hidden neurons that uses Lovendberg-Marquat algorithm with 
mean absolute of errors for calibration and 24 epoch of training 
performs the best.  

7) ANFIS neuro-fuzzy system: For developing ANFIS choices, 
subtractive clustering was used for rule generation. 2 to 7 fuzzy 
memberships with four different shapes were assumed for variables 

in antecedent part. The results show that an ANFIS system with 
seven Gussian-two sided membership functions performs the best. 

8) Fuzzy clustering-based neural network modeling: The fuzzy 
entropy of information set is assumed one. Modeling choices may 
have 2 to 40 clusters. The neural structure for each cluster is 
constant and has four neurons in its hidden layer. Training data for 
clusters neural networks are found in three different degree of 
belongness, i.e., 0.1, 0.5, and 0.9 levels of possibility. The results 
show that the system with 40 clusters and threshold level 0.9 for 
selecting training data is the best fuzzy clustering-based neural 
network model. 

9) Evolutionary neural networks modeling: A detailed 
description of modeling procedure for this approach has been 
reported in [10] During the competition, the 12-input parameters 
system, with considering elitism for genetic algorithms that finally 
converge to a four layer feedforward neural network with 6 and 8 
neurons in hidden layers performs as the best evolutionary neural 
networks model for considering case study.   

        
V. COMPARISON AMONG APPROACHES AND THE CONCEPT 

OF INTELLIGENCE SPACE    
The proposed competition was performed among the best 

choices of all applied modelling approaches. Beside the 
aforementioned paradigms, a famous conceptual rainfall-runoff 
model, i.e., HEC-HMS model of US Army Corps of Engineers was 
also used for describing the process in the applied case study. 
Generally, soft computing-based approaches perform better in 
describing the rainfall-runoff process. The only superiority of HEC 
model is its least error in peak. It means that HEC-HMS maybe 
better simulate the flood peak which is an initial parameter in all 
engineering designs. However, it has a lower performance in 
continuous description of the process and forecasting the next 
stage runoff. Specifically, the fuzzy clustering-based neural 
networks modelling approach gives the most accurate system for 
describing rainfall-runoff process in Leaf River watershed. 

It may be interesting to link the results to the concept of 
computational intelligence and compare these approaches based 
on this definition. Based on Bezdek viewpoint, computational 
intelligence systems have three main features, i.e., learning 
capability, accuracy and robustness. If three different numerical 
measures are defined for these features, then a 3-dimentional space 
can be distinguished, in which each dimension represents one of 
the above 3 characters. For scaling this space, first a measure 
should be selected. This measure can be one of the applied error 
indices. Then, for a particular system, three different values should 
be identified in order to locate it in this space. Regarding to 
introduced modelling procedure, and separating the data set to 
four modelling intervals, it is simple to allocate a measure that 
describes the location of a particular system on each dimension. 
The learning capability measure can be defined by the error index 
value in calibration period, i.e, duration between 1948-1957. For 
accuracy, the error values in four modelling intervals can be 
averaged in order to produce an overall estimation for accuracy. 
For robustness, the behaviour of model in verification phase 
should be focused. As described before, 2 different modelling 
intervals were used for evaluating the behaviour of each system in 



confronting with unseen data. Therefore, the mean value of error 
indices for 1968-1977 and 1978-1987 can represent a measure of 
robustness. By this approach, for each system an intelligence 
vector define the system in the intelligence space. The 
intelligence index for a particular system can be defined as: 

222
ROBUSTNESSACCURACYLEARNING Γ+Γ+Γ=Σ                         (15) 

In which Σ is the intelligence index and Γ is the measure for each 
dimension of intelligence space.  If the locations of different 
systems are fixed in the intelligence space, then an intelligence 
path can be distinguished for a particular problem that shows the 
way to the best system approach. For applied case study, the 
intelligence path is shown in Figure 3. The Nash-Sutcliffe error 
index is used for measuring the values of each dimension of 
intelligence space. Figure 4. shows the objections of this path on 
learning-accuracy surface. The least intelligence system among 
applied models, as can be expected, is HEC-HMS that is not an 
intelligence-based approach. Other stations on this path are 
Mamdani fuzzy approach, TSK fuzzy approach, Mamdani 
hierarchical fuzzy system, TSK hierarchical fuzzy approach, ANFIS 
neuro-fuzzy model, evolutionary neural network modeling, cascade 
forward neural network approach, feedforward neural network 
approach, and fuzzy clustering-based neural modeling, 
respectively.     

 
Fig. 3 Intelligence path of applied approaches for introduced case study 

   
Fig. 4  The objection of Intelligence path of applied approaches on learning-

accuracy surface 
 

V. CONCLUSION  
In this study, one of the most complicated natural modelling 

problems, i.e., rainfall-runoff process was focused and different 

modelling approaches were used for simulating the process in Leaf 
River basin. For selecting the best modelling choice, a 2-stage 
competition is designed. In the considered case study, the results 
show that the modelling efficiency increases by moving toward 
neural modelling; particularly, the fuzzy clustering-based neural 
network is the most efficient and accurate paradigm among 
performed systems for modelling rainfall-runoff process.         

 
ACKNOWLEDGMENT  

The authors would like to greatly thanks Professor Soroosh 
Sorooshian and Professor K. L. Hsu for providing data of Leaf 
River basin and some of their publications.  

REFERENCES 
[1] Furundzic, D.,: “Application example of neural networks for time series 

analysis: rainfall-runoff modeling”, Signal Processing, VOL. 64, pp. 383-
396, 1998. 

[2] Han, D., Cluckie, I., D., Karbassioun, D.,: “ A fuzzy logic approach to 
river flow modeling”, Proceedings of stochastic hydraulics 2000. 

[3] Hsu, K. L., Gupta H. V., Sorooshian, S., “Application of recurrent 
network to rainfall-runoff modeling”, in  Proceedings of Aesthetics in the 
Constructed Environments,  pp. 1605-68-73 Am. Soc. of Civ. Eng. New 
York, 1997. 

[4] Hsu, K. L., Gupta, H. V., Gao, X., Sorooshian S., Imam B., “Self-
organizing linear output map (SOLO): An artificial neural network 
suitable for hydrologic modeling and analysis”, Water Resources Research, 
VOL. 38, NO. 12, pp. 1-16, 2002. 

[5] Hsu, K.,-L., Gupta, H., V., Sorooshian, S.,: “Artificial neural networks 
modeling of the rainfall-runoff process”, Water resources research, VOL. 
31, NO. 10. pp. 2517-2530, 1995. 

[6] Jang, J.,-S., R., Sun, C., T., Mizutani, E.,: Neuro-fuzzy and soft 
computing: a computational approach to learning and machine 
intelligence, Prentice Hall, Upper Saddle River, NJ, 1997. 

[7] Karunanithi, N., Grenney, W., J., Whitley, D., Bovee, K.,: “Neural 
networks for river flow prediction”, Journal of computing in civil 
engineering, VOL. 8, NO. 2, pp. 201-220, 1994. 

[8] Minns, A., W., Hall, M., J.,: “Artificial neural networks as rainfall-runoff 
models”, Hydrological sciences, VOL. 41, NO. 3, pp. 399-417, 1996. 

[9]  Nazemi, A.-R., “Some issues in modelling and development of 
intelligence in rainfall-runoff models”. MS thesis, Ferdowsi University of 
Mashhad, September 2003. 

[10]  Nazemi, A.-R., Poorkhadem, H., Akbarzadeh M.-R., Hosseini, S. M., 
“Evolutionary Neural Network Modeling for Describing Rainfall-Runoff 
Process”, Proceeding of Twenty Third Annual AGU Hydrology Days, 
March 31-April 2, 2003, Fort Collins, CO, Ramirez, J., A., (ed), Colorado 
State University, pp. 224-236, 2003. 

[11]  O’ Loughlin, G., Huber, W., Chocat, B., “Rainfall-runoff process and 
modeling”, Journal of Hydraulic Research, VOL. 34, NO. 6, pp. 733-
751, 1996. 

[12]  Osyczka, A., Evolutionary Algorithms for Single and Multicriteria 
Design Optimization, Physics-Verlag, 2002. 

[13]  Singh, V. P., “Watershed modeling”, Computer Models of Watershed 
Hydrology, Singh, V. P. (ed.), Water Resources Publications, 1995. 

[14]  Sorooshian, S., Gupta, V. K., “Model calibration”, Computer Models of 
Watershed Hydrology, Singh, V. P. (ed.), Water Resources Publications, 
1995. 

[15]  Wang X. J., A course in fuzzy systems and control, Prentice Hall Inc., 
Upper Saddle River, NJ, 1997. 

[16]   Woolhiser D., A.,: “Search for physically based runoff model: a 
hydrologic El Dorado?”, Journal of hydraulic engineering, VOL. 122, 
NO. 3, pp. 122-129, 1996. 


