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Abstract The propagation of cylindrical and spherical elec-
tron acoustic (EA) shock waves in unmagnetized plasmas
consisting of cold fluid electrons, hot electrons obeying
a superthermal distribution and stationary ions, has been
investigated. The standard reductive perturbation method
(RPM) has been employed to derive the cylindrical/spherical
Korteweg-de-Vries-Burger (KdVB) equation which governs
the dynamics of the EA shock structures. The effects of non-
planar geometry, plasma kinematic viscosity and electron
suprathermality on the temporal evolution of the cylindri-
cal and spherical EA shock waves are numerically exam-
ined.

Keywords Electron acoustic waves · Nonplanar shock
waves · Superthermal electrons · KdVB equation

1 Introduction

Electron acoustic waves (EAWs) are one of the basic wave
processes in plasmas and they have been studied for sev-
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eral decades. EAWs can be created in a two-temperature
(cold and hot) electron plasma. Multispecies models were
originally used for laser-plasma interaction but there are
several similar situations. The evidence of two popula-
tions of electrons in laboratory and space plasmas has al-
ready been reported. The observations (Parks et al. 1984;
Onsager et al. 1993) in the plasma sheet boundary layer
have shown that there exist two types of electrons, namely
background plasma electrons and cold electron beams hav-
ing energies of the order of few eV to few hundreds of eV.
Intense broadband electrostatic noise is commonly observed
in the plasma sheet boundary layer of the Earth’s magneto-
sphere (Gurnett et al. 1976). Matsumoto et al. (1994) have
shown that broadband electrostatic noise emissions in the
plasma sheet boundary layer are not continuous noise but
consist of electrostatic impulsive solitary waves. Polar cap
boundary layer (Tsurutani et al. 1998), the magnetosheath
(Pickett et al. 2003), the bow shock (Bale et al. 1998), and
strong currents associated with the auroral acceleration re-
gion (Ergun et al. 1998) are other examples of plasmas con-
sisting of two and three similar particle population. The
EAWs are typically high frequency waves in comparison
with the ion plasma frequency. On the EAW time scale, the
ions are generally assumed stationary forming a neutralizing
background. The phase speed of the EAW lies between the
cold and hot electron thermal velocities, so that the Landau
damping effects are ignored for the consistency of the fluid
theory. To provide new insight into previously published pa-
pers, we propose here to examine the time evolution of non-
planar electron acoustic shock waves in a plasma with su-
perthermal electrons. Watanabe and Taniuti (1977) used a
linear electrostatic Vlasov dispersion equation to show that
electron acoustic waves can be destabilized in such plasma.
Later on, Yu and Shukla (1983) and Gary and Tokar (1985)
obtained a dispersion relation for EAWs in a two (electron-
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ion) and three (two-temperature electrons and ions) com-
ponent plasmas, respectively. The electron-acoustic solitary
wave (EASW) is a localized nonlinear wave which arises
due to a delicate balance between nonlinearity and disper-
sion. EASWs have been studied both theoretically (Schamel
2000) and numerically (Valentini et al. 2006). These waves
have been observed in experiments with pure electron plas-
mas (Kabantsev et al. 2006) and in laser-produced plasmas
(Sircombe et al. 2006) and have been studied in related sub-
jects using numerical simulations (Ghizzo et al. 2006). The
propagation of EASWs in a plasma system has been stud-
ied by several investigators in unmagnetized two electron
plasmas (Mace et al. 1991; Dubouloz et al. 1991; Chatter-
jee and Roychoudhury 1995; Berthomier et al. 2000; Ma-
mun and Shukla 2002; Clarmann et al. 2002; Berthomier
et al. 2000) as well as in magnetized plasmas (Mace and
Hellberg 2001; Berthomier et al. 2003; Shukla et al. 2004).
Energetic electron distributions are observed in different re-
gions of the magnetosphere. Gill et al. (2006) studied small
amplitude EASWs in a plasma with nonthermal electrons.
Recently, El-Shewy (2007) studied the higher order solu-
tion of EASWs with nonthermal electrons. However, nu-
merous observations of space plasmas (Vasyliunas 1968;
Leubner 1982; Armstrong et al. 1983) are often character-
ized by a particle distribution function with high energy
tail and which deviates from the well-known Maxwellian.
Vasyliunas (1968), was the first, who proposed an empir-
ical functional form for describing the distribution of en-
ergy over the whole spectrum of the high-energy power-
law tail, and is widely known as the kappa distribution.
In order to provide the missing link between the Tsallis
nonextensive q-statistics to the family of the phenomeno-
logically introduced κ-distributions favored in space and as-
trophysical plasma modeling, we stress that fundamental
and generalized physics is provided within the framework
of an entropy modification consistent with q-nonextensive
statistics, and we perform the transformation κ = 1/(q − 1)

(Beck 2000) or q = 1 + 1/k (Leubner 2002). The family of
κ-distributions are obtained from the positive definite part
1/2 ≤ k ≤ ∞ corresponding to −1 ≤ q ≤ 1 of the gen-
eral statistical formalism where in analogy the spectral in-
dex κ is a measure of the degree of nonextensivity. In con-
trast to using Tsallis Statistical Mechanics, attempting to
theoretically derive a κ-distribution from the standard BG
Statistical Mechanics is highly problematic because the ki-
netically defined temperature Tk (Livadiotis and McComas
2009) in κ-distribution is not properly defined, and phys-
ical temperature Tq (Livadiotis and McComas 2009) de-
fined in q-nonextensive distribution constitutes the appro-
priate definition of temperature over kinetic temperature Tk

in κ-distribution. In fact, the Tsallis q-distribution provides
a set of proven tools, including a grounded definition of tem-
perature for systems in stationary states out of thermody-
namic equilibrium. κ-distributed particle perceived a lack

of theoretical justification, therefore, distribution very close
to κ-distribution, particularly the nonextensive-q distribu-
tion, is a consequence of the generalized entropy favored
by nonextensive statistics. It is proposed that this slightly
modified functional form, qualitatively similar to the tra-
ditional κ-distribution, be used in fitting particle spectra
in the future. Nonextensive q-distribution is successfully
applied to demonstrate the solar neutrino problem (Kani-
adakis et al. 1996), peculiar velocity distributions of galax-
ies (Lavagno et al. 1998), fractal like space-times, etc. On
the other hand, kappa-distributions are favored in any kind
of space plasma modeling (Mendis and Rosenberg 1994)
among others, where a reasonable physical background was
not apparent.

Superthermal particles may arise due to the effect of ex-
ternal forces acting on the natural space environment plas-
mas or to the wave-particle interaction. Plasmas with an ex-
cess of superthermal electrons are generally characterized
by a long tail in the high energy region. To model such space
plasmas, generalized Lorentzian or kappa-distribution has
been found to be appropriate rather than the Maxwellian
distribution (Hasegawa et al. 1985; Thorne and Summers
1991; Summers and Thorne 1991, 1994; Mace and Hellberg
1995). Kappa-like distributions have been used by several
authors (Hellberg and Mace 2002; Podesta 2005; Abbasi
and Hakimi Pajouh 2007; Baluku and Hellberg 2008; Hell-
berg et al. 2009; Sultana et al. 2010; Baluku et al. 2010) in
studying the effect of Landau damping on various plasma
modes. “Superthermal” plasma behavior was observed in
various experimental plasma contexts, such as laser matter
interactions or plasma turbulence (Magni et al. 2005). At
very large values of the spectral index k, the Maxwellian
is recovered, whereas for low values of k, the distribu-
tion function exhibits a “hard” spectrum with a strong non-
Maxwellian tail having a power-law form at high velocities.
Direct measurement of kappa-like-distributions in associ-
ation with electrostatic solitary structures is not available.
However, studies of electron flux spectra in the auroral re-
gion where solitary waves are often observed have shown
that kappa distributions rather than Maxwellian ones give a
better fit to the observed distribution (Olsson and Janhunen
1998). Numerous observations of space plasmas (Feldman
et al. 1973; Formisano et al. 1973; Scudder et al. 1981;
Marsch et al. 1982) indicate clearly the presence of su-
perthermal electron and ion structures as ubiquitous in a va-
riety of astrophysical plasma environments. The latter may
arise due to the effect of external forces acting on the nat-
ural space environment plasmas or to the wave-particle in-
teraction which ultimately leads to kappa-like distributions.
Pakzad (2012) and Javidan and Pakzad (2012) investigated
EA solitary waves in a plasmas by considering nonplanar ge-
ometry and noextensive distribution of electrons. Recently,
Sahu and Tribeche (2012) addressed the problem of nonpla-
nar EA shock waves in a nonextensive plasma. However and
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to the best of our knowledge, the propagation of nonplanar
EA shock waves in a plasma consisting of cold fluid elec-
trons, hot superthermal electrons and stationary ions have
never been addressed in the plasma literature. In this paper,
we try to show how the EA shock waves in cylindrical and
spherical geometries differ qualitatively from previous anal-
ysis in planar geometry and how hot superthermal electrons
affect on them.

The manuscript is organized in the following fashion. In
next section, we present our theoretical model and carry out
a weakly nonlinear analysis to derive a cylindrical/spherical
KdV equation. Our results are presented and discussed in
Sect. 3. Our findings are summarized in Sect. 4.

2 Basic equations and derivation of the KdV-Bergers
equation

We consider a homogeneous, unmagnetized plasma consist-
ing of a cold electron fluid, hot electrons obeying a su-
perthermal distribution and stationary ions. In two tempera-
ture (cold and hot) electron plasmas, electron acoustic waves
can be excited due to the conservation of equilibrium charge
density ne0h + ne0c = ni0. It is basically an acoustic (elec-
trostatic) wave in which the inertia is provided by the cold
electrons and the restoring force comes from the pressure of
the hot electrons. The ions are stationary and provide only
the a charge neutralizing background. This means that the
ion dynamics does not influence the electron acoustic waves
because the EA wave frequency is much larger than the ion
plasma frequency. The nonlinear dynamics of the electron
acoustic solitary waves is governed by the continuity and
motion equations for cold electrons, along with the Pois-
son’s equation
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where m = 0, describes planar one-dimensional geometry
and m = 1,2 present cylindrical and spherical geometries,
respectively. In the above equations, nc(nh) is the cold (hot)
electron number density normalized by its equilibrium value
nc0(nh0), uc is the cold electron fluid velocity normalized by
Ce = (kBTh/αme)

1/2, φ is the electrostatic wave potential
normalized by kBTh/e, kB is the Boltzmann’s constant, e

and me are the charge and mass of the electron, respectively,
and α = nh0/nc0. The time and space variables are in units
of the cold electron plasma period ω−1

pc and the hot elec-
tron Debye radius λDh, respectively. nh is the superthermal

hot electron density and it is given by (Younsi and Tribeche
2010)

nh =
(

1 − φ

κ − 1/2

)−κ− 1
2

(2)

The parameter κ shapes predominantly the superthermal tail
of the distribution (Tribeche and Boubakour 2009) and the
normalization is provided for any value of the spectral in-
dex κ > 1/2 (Boubakour et al. 2009). In the limit κ → ∞,
(2) reduces to the well known Maxwell-Boltzmann electron
density. Low values of k represent distributions with a rela-
tively large component of particles with speed greater than
the thermal speed (“superthermal particles”) and an associ-
ated reduction in “thermal” particles, as one observes in a
“hard” spectrum. Such a very hard spectrum, with an ex-
treme accelerated superthermal component, may be found
near very strong shocks associated with Fermi acceleration
(Mace and Hellberg 1995).

Let now study small but infinite amplitude EA waves in
plasmas with superthermal electrons by using the reductive
perturbation method. Firstly, we introduce the stretched co-

ordinates as, τ = ε
3
2 t , ξ = −ε

1
2 (r + λt), η = ε

1
2 η0 where ε

is a small dimensionless expansion parameter and λ is the
wave speed normalized by Ce. Secondly, dependent vari-
ables are expanded as follows,

⎡

⎣
nc = 1 + εn1c + ε2n2c + · · ·
uc = εu1c + ε2u2c + · · ·
φ = εφ1 + ε2φ2 + · · ·

(3)

Substituting (3) into (1) and collecting the terms in different
powers of ε the following equations can be obtained at the
lowest order of ε
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To the next higher order in ε, we obtain the following set of
equations
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Finally, Eqs. (4) and (5) yield
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where

A = −
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)
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2
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2
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with 1
λ2 = 2κ+1

2κ−1 .
Equation (6) is the cylindrical/spherical KdV-Burger

equation describing the nonlinear propagation of the elec-
tron acoustic solitary waves in plasmas consisting of su-
perthermal hot electrons and stationary ions.

3 Numerical results and discussion

There is not known exact analytical solution for the modi-
fied KdV-Burger equation (6) when the geometrical effect
is taken into account (m �= 0). Instead, we have to solve
Eq. (6) numerically. The effects of superthermal electrons
as well as other plasma parameters on the propagation of
electron acoustic shock waves have been investigated using
numerical simulations. During the numerical process, the
equation is advanced in time using the standard fourth-order
Runge-Kutta method (Press et al. 1992) with a time step of
10−4. The spatial derivatives were expanded with centered
finite difference approximations with a grid spacing of 0.1
(Maxon and Viecelli 1974a, 1974b). At large values of |τ |
(e.g., τ = −10), the spherical and cylindrical waves are sim-
ilar to the one-dimensional waves in a flat geometry. In this
situation, the term m

2τ
φ1 is no longer dominant and we obtain

the usual planar KdV-Burger equation. This equation has the
following shock wave

φ1(ξ, τ ) = a0 + a1 tanh
{
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}
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Solution (8) can be reasonably used as an initial condition
for the numerical integration of (6) starting from large val-
ues of |τ |. However, as the value of |τ | decreases, the term
m
2τ

φ1 becomes more and more significant until the spheri-
cal and cylindrical solutions become different from the one-
dimensional solution of the KdV-Burger equation.

Figures 1 and 2 present the time evolution of the shock
wave profiles in cylindrical and spherical geometries, re-
spectively. These figures show that the effect of geometry
becomes more pronounced for smaller values of |τ |. This is
attributed to the fact that the extra term m

2τ
φ1 becomes dom-

inant for small values of |τ |. Figure 1 shows that the shock

Fig. 1 Time evolution of Shock wave profile created in a plasma with
parameters α = 0.5, κ = 0.6, η = 0.5 and V = 0.5 in cylindrical ge-
ometry

Fig. 2 Time evolution of Shock wave profile created in a plasma with
parameters α = 0.5, κ = 0.6, η = 0.5 and V = 0.5 in spherical geome-
try

amplitude increases as time elapses. A sort of oscillation ap-
pears in the knee of the shock profile during the time evolu-
tion. On the other hand, the steepness of the profile increases
as the value of |τ | decreases. Figure 2 presents the time evo-
lution of the shock wave profile in a spherical geometry. The
situation is similar to what we have already seen in the case
of the cylindrical geometry. But the increasing rate, oscilla-
tion amplitude and steepness of the shock wave profile are
larger in spherical geometry in comparison with cylindrical
one.

Figure 3 depicts our numerical results for different values
of the superthermal parameter (κ = 0.6,1,2,5,10) in cylin-
drical (m = 1) geometry at time t = −2.5. The remaining
parameters are kept constant, viz., α = 0.1, η0 = 0.5 and
V = 0.5. It is observed that the shape of developed shock
wave appreciably changes as k decreases. The shock wave
amplitude as well as the steepness of its profile increase with
decreasing values of the superthermal parameter κ . More-
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Fig. 3 Shock wave profiles with different values of superthermal pa-
rameter κ in cylindrical geometry at time τ = −2.5. The other param-
eters are: α = 0.1, η = 0.5 and V = 0.5

Fig. 4 Shock wave profiles with different values of superthermal pa-
rameter κ in spherical geometry at time τ = −2.5. The other parame-
ters are: α = 0.1, η = 0.5 and V = 0.5

over, a monotonic shock wave may change into an oscil-
latory one when the relative fast particles proportion is in-
creased in the medium.

Similar behavior occurs in spherical geometry (see
Fig. 4). Nevertheless, the effects of the electron superther-
mality seem to be more significant in the spherical ge-
ometry than in the cylindrical one. All the figures show
that increasing the shock amplitude, steepness of the pro-
file and small oscillations in the shape of the wave in-
crease with decreasing values of superthermal parame-
ter. These effects are also intensified in spherical geome-
try.

For the sake of comparison, we plot (simultaneously)
in Fig. 5 the shock wave profile in different geometries
(m = 0,1,2) at τ = −2.5, with α = 0.1, η0 = 0.5, V = 0.5
and κ = 0.6. It is evident that the spherical shock wave ex-
hibits the largest temporal growing rate. Figure 6 depicts
the spatial variation of the spherical shock wave profile for

Fig. 5 Shock wave profiles as functions of ξ in different geometries
at τ = −2.5. Other parameters are: α = 0.1, κ = 0.6, η = 0.5 and
V = 0.5

Fig. 6 Shock wave patterns as functions of ξ in spherical geometry
with different values of α at time τ = −2.5. Other parameters are:
κ = 0.6, η = 0.5 and V = 0.5

different values of α at τ = −2.5. It can be seen that the
shock amplitude increases as α decreases. This means that
the wave amplitude is proportional to the cold electrons pop-
ulation. Propagation of electron acoustic shock waves in
plasmas with Tsallis distributed hot electrons has been in-
vestigated in Sahu and Tribeche (2012). The general results
for the time evolution of the shock waves are the same in
comparison with our results. Simulations in the paper Sahu
and Tribeche (2012) have been done for plasmas in which
hot electron equilibrium density is greater that the cold elec-
tron density i.e. α > 1. Unfortunately, the effect of the pa-
rameter αon the behavior of the shock waves has not in-
vestigated in that paper. Nevertheless, the derived equations
in Sahu and Tribeche (2012) reveal that the shock ampli-
tude increases as α decreases, in accordance with the results
shown in Fig. 6. Similar results have also been observed
for ion acoustic shock waves in some other plasma systems.
Formation of nonplanar ion acoustic shock waves in plasmas
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consisting of nonextensive electrons and thermal positrons
has been investigated in Sahu (2012). It has been shown that
the amplitude of the shock wave, its velocity, steepness and
the small oscillations around the knee of the shock profile
grow as time elapses.

4 Conclusions

Time evolution of nonplanar electron acoustic shock waves
and its specifications have been investigated in plasmas con-
taining superthermal distributed hot electrons and thermal
cold electrons.

It is shown that the amplitude of shock wave, its steep-
ness and its velocity increases as |τ | decreases. In this sit-
uation the term m

2τ
φ1 becomes dominant and nonplanar ef-

fects changes the wave specifications. Nonplanar effects are
more significant in spherical geometry. Simulations also
show that nonplanar effects are intensified by smaller val-
ues of superthermal parameter κ as well as smaller val-
ues of hot electron population which is characterized in
parameter α. The results also compared with the results
of other published related studies and it is shown that the
presented results are in agreement with other investiga-
tions.
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