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Abstract In this paper, an important inequality for T , a contraction integral operator, is
obtained. From a practical programming point of view, this inequality allows us to express
our iterative algorithm with a “for loop” rather than a “while loop”. The main tool used
in our research is the fixed point theorem in the Banach space of continuous functions,
X := C([a, b], R

k).
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1 Introduction

The solutions of integral equations play an important role in the various fields of sciences and
engineering [15,24]. Most of physical phenomena can be modeled by differential equations,
integral equations, integro-differential equations or a system of these equations [6,10]. Since
only few of these equations have explicit solution, we often have to use numerical methods
[3,19]. There are several numerical methods for solving linear system of Volterra integral
equations of the second kind, such as Galerkin method [11], Collocation method [7], Taylor
series [20], Legendre wavelets [21,32], Jacobi polynomials [17] and recently Chebyshev
polynomials [9], homotopy perturbation method [5,14,25], Block-Pulse functions [23] and
expansion methods [30,31]. On the other hand, investigations on existence theorems for
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326 M. Gachpazan, O. Baghani

diverse functional-integral equations have been presented in other references such as [1,4,8,
12,13,16,18,22,26–28]. Nevertheless, it seems that no one has studied the systems of integral
equations by the analogue method mentioned in this paper yet.

The paper is organized as follows. In Sect. 2, by the successive approximation method a
contraction mapping for K is obtained. Thereafter in Sect. 3, a simple technique the stopping
rule for our iterative algorithm has been introduced. Finally, in Sect. 4, we give numerical
results and demonstrate the efficiency and accuracy of the proposed numerical scheme.

Consider the system of linear Volterra integral equations of second kind of the form:

U(x) = F(x) +
x∫

a

K(x, t)U(t)dt ≡ KU, (a ≤ x ≤ b, U ∈ X), (1)

where

U(x) = [u1(x), u2(x), . . . , ul(x)]T ,

F(x) = [ f1(x), f2(x), . . . , fl(x)]T ,

K(x, t) = [ki j (x, t)], i, j = 1, 2, . . . , l.

In (1), the vector function F and the matrix function K are given, and U is the vector function
of the solution that will be determined. We assume that F and K are continuous on the interval
[a, b] and the triangular region D := {(x, t) : x ∈ [a, b], t ∈ [a, x]}, respectively.

2 A contraction mapping for the Volterra equation

In this section, first we prove that Kn in (1) is contraction when n is enough large.

Theorem 2.1 The mapping Kn is contraction when n is sufficiently large.

Proof We write

KU = F(x) +
x∫

a

K(x, ζ )U(ζ )dζ,

K2U = F(x) +
x∫

a

K(x, ζ )[F(ζ ) +
ζ∫

a

K(ζ, t)U(t)dt]dζ

= F(x) +
x∫

a

K(x, ζ )F(ζ )dζ +
x∫

a

ζ∫

a

K(x, ζ )K(ζ, t)U(t)dtdζ

= F(x) +
x∫

a

K(x, ζ )F(ζ )dζ +
x∫

a

K2(x, ζ )U(ζ )dζ,
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where K2(x, ζ ) = ∫ x
ζ

K(x, t)K(t, ζ )dt .
We repeat this successive process to get

KnU = F(x) +
x∫

a

K1(x, ζ )F(ζ )dζ +
x∫

a

K2(x, ζ )F(ζ )dζ

+ · · · +
x∫

a

Kn−1(x, ζ )F(ζ )dζ +
x∫

a

Kn(x, ζ )U(ζ )dζ,

where Kn+1(x, ζ ) = ∫ x
ζ

K(x, t)Kn(t, ζ )dt and K1(x, ζ ) = K(x, ζ ).
Since K(x, ζ ) is assumed to be continuous on domain D, then there exists a positive

number M such that ‖K(x, ζ )‖∞ ≤ M , where

‖K(x, ζ )‖∞ = max
1≤i≤l

l∑
j=1

|Mi j |, Mi j = sup
D

|ki j (x, ζ )|.

On the other hand, the following bound can be obtained for Kn(x, ζ ):

‖Kn(x, ζ )‖∞ ≤ Mn

(n − 1)! (x − ζ )n−1, a ≤ ζ ≤ x, (2)

since,

‖Kn+1(x, ζ )‖∞ = ‖
x∫

ζ

K(x, t1)Kn(t1, ζ )dt1‖∞

≤
x∫

ζ

‖K(x, t1)‖∞‖Kn(t1, ζ )‖∞ dt1

≤
x∫

ζ

‖K(x, t1)‖∞‖
t1∫

ζ

K(t1, t2)Kn−1(t2, ζ )dt2‖∞ dt1

≤
x∫

ζ

‖K(x, t1)‖∞
t1∫

ζ

‖K(t1, t2)Kn−1(t2, ζ )‖∞dt2 dt1

≤
x∫

ζ

t1∫

ζ

‖K(x, t1)‖∞‖K(t1, t2)‖∞‖Kn−1(t2, ζ )‖∞dt2 dt1

...

≤
x∫

ζ

t1∫

ζ

· · ·
tn−1∫

ζ

‖K(x, t1)‖∞‖K(t1, t2)‖∞ · · · ‖K(tn, ζ )‖∞ dtn · · · dt1
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≤ Mn+1

x∫

ζ

t1∫

ζ

· · ·
tn−1∫

ζ

dtn · · · dt1

≤ Mn+1 (x − ζ )n

n! .

By (2), it can be shown that

d(KnU, KnV) = ‖KnU − KnV‖∞

= ‖
x∫

a

Kn(x, ζ )[U(ζ ) − V(ζ )]dζ‖∞

≤
x∫

a

‖Kn(x, ζ )‖∞‖U(ζ ) − V(ζ )‖∞dζ

≤
x∫

a

Mn

(n − 1)! (x − ζ )n−1‖U(ζ ) − V(ζ )‖∞dζ

≤ Mn‖U(ζ ) − V(ζ )‖∞
x∫

a

(x − ζ )n−1

(n − 1)! dζ

≤ Mn (b − a)n

n! d(U, V) = αnd(U, V),

where αn = Mn(b−a)n

n! . Since limn→∞ αn = 0, there exists N1 ∈ N such that αn < 1, for any
n ≥ N1 and n ∈ N. So, the proof is complete.

3 Main results

Suppose N1 is the smallest number in N, such that αN1 < 1. Therefore KN1 is a contraction.
From now, Let T := KN1 .

Since T : X → X is a contraction mapping, then

d(T mU1, T mU2) ≤ K md(U1, U2), m ≥ 1,

where K := M N1 (b−a)N1

N1! .
By the triangle inequality, we have

d(U1, U2) ≤ d(U1, T U1) + d(T U1, T U2) + d(U2, T U2)

≤ d(U1, T U1) + K d(U1, U2) + d(U2, T U2),

Thus

d(U1, U2) ≤ 1

1 − K
(d(U1, T U1) + d(U2, T U2)). (3)

In particular, if U1 and U2 be the fixed points of T , we get d(U1, U2) = 0, hence the
contraction mapping T can have at most one fixed point. For any U ∈ X , by substituting
U1 = T nU and U2 = T mU in (3), we have
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d(T nU, T mU) ≤ 1

1 − K

(
d(T nU, T n(T U)) + d(T mU, T m(T U))

)

≤ K n + K m

1 − K
d(U, T U),

and since K < 1, K n → 0, so d(T nU, T mU) → 0 as n and m tend to infinity. Because X is
a complete metric space, this Cauchy sequence converges to a point U∗ of X , and this U∗ is
clearly a fixed point of T .

Stopping rule Now if we let m tends to infinity in the latter inequality, an important inequality
is obtained as follows

d(T nU, U∗) ≤ K n

1 − K
d(U, T U). (4)

To show the importance of the inequality (4), suppose we are going to reach an error of ε,
i.e., instead of the actual fixed point U∗ of T we will be satisfied with a point Un satisfying
d(Un, U∗) < ε, and also suppose that we start our iteration with some point U0 in X . Since

we want d(Un, U∗) < ε, we just have to pick N2 so large that K N2

1−K d(U0, U1) < ε. Now
the quantity d(U0, U1) is something that we can compute after the first iteration and then by
taking the log of the above inequality and solving for N2 (remember that log(K ) is negative),
we can compute how large N2 must be. The result is as follows:
If β := d(U0, U1) and

N2 >
log(ε) + log(1 − K ) − log(β)

log(K )

then d(UN2 , U∗) < ε. From a practical programming point of view, this inequality allows us
to express our iterative algorithm with a “for loop” rather than a “while loop”. Also it has
another interesting interpretation. Suppose we take ε = 10−m in our stopping rule inequality.
What we see is that the growth of N2 with m is a constant plus m

| log(K )| , or in other words, to

get one more decimal digit of precision we have to do (approximately) 1
| log(K )| more iteration

steps. From a different angle of view, if we need N2 iteration steps to get m decimal digits
of precision, then we need another N2 iterations to double the precision to 2m digits.

Note Clearly, there is a reverse relation between N1 and N2. Thus, by increasing N1, the
parameter N = N1 × N2 will be decreased.

4 Numerical examples

In this section, we present some examples of classical integral and functional equations
which are particular cases of Eq. (1) and subsequently, for some initial guesses, the value of
parameters have been calculated.

Example 4.1 (see [29]) For the first example, consider the following linear Volterra integral
equation

u(x) = f (x) − λ

x∫

0

sin[A(x − t)]u(t)dt ≡ K(u). (x ∈ [0, 1]) (5)
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Table 1 Numerical results for Example 1

u0 β K N1 N2 N ‖u∗ − uN ‖∞

cos(x) 0.6379 0.0083 5 1 5 1.1498 × 10−7

1 1.1678 0.0417 4 2 8 6.4433 × 10−11

x 1 0.0083 5 1 5 1.3868 × 10−5

Table 2 Numerical results for Example 2

U0 β K N1 N2 N ‖U∗ − UN ‖∞

F(x) 0.0813 0.0208 3 1 3 5.1175 × 10−7

x 0.2169 0.0208 3 1 3 5.42319 × 10−5

0 0.5156 0.1250 2 2 4 5.1175 × 10−7

For A(A + λ) > 0, the exact solution is

u(x) = f (x) − Aλ

k

x∫

0

sin[k(x − t)] f (t)dt, k = √
A(A + λ).

In particular, for f (x) = cos(x), λ = 1 and A = 2, this solution becomes u∗(x) =
0.6 cos(x) + 0.4 cos(

√
6 x). On the other hand, the operator KN1 is a contraction map-

ping with contraction coefficient K . So, let T := KN1 . Now by taking ε = 10−2, we guess
that after N iterative steps, m = 2 decimal digits of precision must be obtained. In Table 1,
for some initial guesses u0, the value of parameters are calculated.

Example 4.2 (see [2]) For the second example, consider the following system of linear
Volterra integral equations in interval x ∈ [0, 1

2 ].
{

u1(x) = f1(x) + ∫ x
0 (x2 − t)(u1(t) + u2(t))dt,

u2(x) = f2(x) + ∫ x
0 x(u1(t) + u2(t))dt,

(6)

where f1(x) = − x5

3 − x4

4 + x3

3 + x and f2(x) = − x4

3 − x3

2 + x2. The exact solution is

U∗(x) =
(

x
x2

)
. In Table 2, for ε = 10−2 and some initial guesses, F(x) =

(
f1(x)

f2(x)

)
,

x =
(

x
x

)
and 0 =

(
0
0

)
, the value of parameters are calculated.

5 Conclusions

In this paper, an iterative method for solving functional integral equations has been discussed.
The proof of existence and uniqueness of the solution for systems of linear Volterra integral
equations has been presented. From a practical programming point of view, an important
inequality is proposed that allows us to express our iterative algorithm with a “for loop”
rather than a “while loop”. Moreover, in this paper, we have shown that to get one more
decimal digit of precision we have to do (approximately) 1

| log(K )| more iteration steps.
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