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Abstract 

Kernel density estimators are the basic tools for density estimation in non-

parametric statistics.  The k-nearest neighbor kernel estimators represent a special 

form of kernel density estimators, in  which  the  bandwidth  is varied depending 

on the location of the sample points. In this paper‎, we  initially introduce the k-

nearest neighbor kernel density estimator in the random left-truncation model,  ‎ 

and then  prove some of its asymptotic behaviors, such as strong uniform 

consistency and asymptotic normality.  ‎In particular‎, ‎we show that the proposed 

estimator has truncation-free variance‎. ‎Simulations are presented to illustrate the 

results and show how the estimator behaves for finite samples‎. Moreover, the 

proposed estimator is used to estimate  the density function of a real data set. 
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Introduction 

    Suppose  Y  and T  are two continuous  

independent random variables with unknown 

cumulative distribution functions (d.f.) F  and G  

respectively, and let ),(,),,( 11 NN TYTY   be N  

independent and identically distributed (i.i.d.) copies 

of       , where the sample size N  is fixed, but 

unknown. In the random left-truncation (RLT) model, 

the random variable (r.v.) of interest Y  is interfered 

by the truncation r.v. T , when both quantities Y  and 

T  are observable only if TY  , whereas nothing is 

observed if TY < . Without possible confusion, we 

still denote )(,1,=),,( NnniTY ii  , the 

observed i.i.d. pairs from the original N -sample. As a 

consequence of truncation, the size of the actual 

observed sample, n  is a ),( NBin  random variable 

with )(:= TY P . Obviously, if 0= , no data 

is observed and therefore, we suppose 0>  

throughout this paper.  

   Truncation plays an important role in a variety of 

statistical applications including medicine, actuary, 

astronomy, demography, epidemiology, reliability 

testing and other studies. More examples and 

references dealing with truncated data can be found in 

Woodroofe [25], Wang et al. [24], Tsai et al. [22], 

Andersen et al. [1], He and Yang [7] and Chen et al. 

[3]. For instance, in medical studies, when one wants 

to study the length of survival after the start of the 

disease, if   denotes the elapsed time between the 

onset of the disease and death, and if the follow-up 

period starts T  units of time after the onset of the 

disease then, clearly, Y  is left truncated by T . 

Denote by      the probability density function of    

with respect to Lebesgue measure. 

   At first, some results from the literature for the 

univariate RLT model are presented,  which will be 

used to define our nonparametric kernel density 

estimator with the nearest neighbor bandwidth. Since 

N  is unknown and n  is known (although  random), 

our results will not be stated with respect to the 

probability measure P  (related to the N -sample) but 

will involve the probability P  (related to the n -

sample). 

Under the RLT sampling scheme, the conditional 

joint distribution of an observed ),( TY  (Stute, [21]), 

is given by  

                                    

} | ,{=),(* TYtTyYtyH P  

),( )(= 1 udFutG
y

 

                            (1) 

 

 where ),(min= utut  . The marginal 

distributions are defined by  

),()(=),(:=)( 1** udFuGyHyF
y
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and their empirical estimators are given by  
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respectively, where      denotes the indicator 

function. Thus, 
*

nF  and 
*

nG  estimate the  marginal 

functions 
*F  and 

*G . 

For any d.f. ,W  let 0}>)( :{inf= xWxaW  and 

1}<)(:{sup= xWxbW  be respectively left and 

right endpoints of its support. Woodroofe [25] pointed 

out that F  and G  can be estimated completely only 

if  
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F
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 Then, under (3),  

0,>)()(=)(= udFuGTY P  

is the truncation probability. Define 

   (4) 

),,[),()(=)()(:=)( 1**  

FayyFyGyFyGyC   (4) 

 where FF 1= , and consider its empirical 

estimate  

    (5)  
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 Assuming no ties in the data, the nonparametric 

maximum likelihood estimate (NPMLE) of F  is 

given by  

,
)(

1
11=)(

:



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n
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(6) 

 The estimator of nF , was derived by Lynden-Bell 

[11]. Asymptotic properties of (6) have also been  

studied by Woodroofe [25] who established the 

uniform consistency result  
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Additional results were obtained by Keiding and 

Gill [8]. 

Loftsgaarden and Quesenberry [10] defined a very 

simple and useful nonparametric estimation of a 

density )(xf  based on a random sample 

nXX ,,1  . If )(nk  is an integer, the nonparametric 

estimate )(xf
n

 of )(xf  is defined by  

,
)(2

)(
=)(

xnR

nk
xf

n

n
 

where  

     

              ‎     ‎  ‎     ‎    ‎‎  ‎‎ nXX ,,1  ‎‎  ‎ 

‎           

They showed that )(xf
n

 converges to )(xf  in 

probability, for each x  at which f  is continuous and 

positive, if 

(7) 

,)(          )( nka  (7) 

.    0,)/(          )(  nasnnkb  

Moore and Henrichon [14] showed that  

0,|)()(|sup  xfxf n
x

 

in probability, if f  is uniformly continuous and 

positive on   and if,  

 

 ,       ,
log

)(
 nas

n

nk

              
(8) 

 

additionally. Wagner [23] showed that     ̂     is a 

strongly consistent estimate of )(xf  at each 

continuity point of f  if, in addition to )(7b ,  

0.>            <)}({exp
1=

 allfornk
n




             

(9) 

 

 Notice that (10) is always implied by (8) but )(7a  

and (9)  are needed to imply (8).  

Moore and Yackel   [16] considered a more general 

class of estimators defined by  

,
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where      is a bounded kernel  function on   and 

)(xRn  is the Euclidean distance between x  and the 

)(nk th nearest neighbor of x  among the jX ’ .‎

Moore and Yackel [16] showed that, in general, any 

consistency result for the kernel estimator with 

bandwidth nh  remains correct for the nearest neighbor 

estimator with the same kernel and nnhnk =)(  for 

any 0.>  Mack and Rosenblatt [12] treated the 

problem of the optimum choice of )(nk  for different 

criteria. Based on the paper [12], Orava [18] has 

derived a practical method that could be used for 

choosing     . Biau et al. [2]   have introduced  a 

weighted version of the k-nearest neighbor density 

estimate. They also establish some limit theorems of 

this estimator, such as pointwise consistency and the 

central limit theorem.  In addition, they obtain strong 

approximation for their estimator.  Furthermore, 

Ouadah [19] has proved a uniform-in-bandwidth limit 

law for the nearest-neighbor density estimator. 

Under the right censorship model, Mielniczuk [13] 

based on Kaplan-Meier estimator, introduced the 

)(nk th nearest uncensored neighbor estimator. He 

also established strong uniform consistency (under 

Assumption (8) ) and asymptotic normality of his 

proposed estimator. Furthermore, as indicated in 

Mielniczuk [13], the asymptotic variance of  the )(nk

  ‎        ‎ u c      d‎    g b  ‎     m    ‎   ‎ “c     -

    ”.‎ I ‎   u d‎b ‎m       d‎     ‎ ‎    ‎     g‎u     m‎

consistency of )(xf  can be established under the 

weaker condition than (8) i.e.,  

 

,
loglog

)(


n

nk
 

 

as n . (see, Moore and Yackel, [16]).  

Many authors have  investigated the asymptotic 

properties of nearest neighbor estimators under 

dependent samples. Yang [26] proved the consistency 

of fn for samples based on negatively associated r.v., 

also  Csörgö and Szyszkowicz [4] established an 

invariance principle of fn* for long-rang dependent 

samples. Consistency and asymptotic normality of fn  

based on strong mixing assumption were investigated 

by Yanyan and Yanli [27]. 
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In this article, we introduce a )(nk th nearest 

truncated neighbor estimator of f  that is based on the 

Lynden-Bell estimator:  

 

),(
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(10) 

 

 where K  is a  kernel  function, )(yRn  is the 

distance from y  to its )(nk th nearest truncated 

neighbor and )(nk  is a given sequence of integers 

such that )(nk  and 0,)/( nnk  as .n  

We show some properties of the estimator (10) 

which might be deduced from the properties of classic 

kernel estimators when the observations are not 

truncated. We will make use of the assumptions 

gathered together hereafter for easy reference. In what 

follows, we suppose that .,< FGFG bbaa   

 

Assumptions   

A1: 1};{ jYj  is a sequence of i.i.d. interesting 

variables with continuous d.f. F  and   

    density function f .  

A2:  1};{ jTj  is a sequence of i.i.d. truncating 

variables with common continuous d.f. ,G   

  density function g  and are independent from 

1}.;{ jYj   

A3:    (i) K  is a bounded  kernel  function with 

support in 1,1][ . 

 (ii)  )()( uKcuK   for any 1.0  c   

A4: Let fG  be continuous and positive on 

],[   ba  for some 0,>  where  

  FF bbaa <<<    and g  is continuous 

on ].,[   ba   

A5:  The sequence )(nk  satisfies 

 (i) )(nk , and 0)/( nnk  as ,n  

 (ii) nnk log)/(  as ,n  

 (iii) nnk loglog)/(  as ,n  

 (iv)  


<))((exp
1=

nck
n

 for any 0.>c   

 

The rest of the paper is as follows. In the next 

section, we give the main results. Some 

  simulations are drawn to grant further support of 

our theoretical results regarding   the 

consistency  as  well  as  the  asymptotic normality.  

Proofs of the main results are deferred  

to the Appendix.  

 

Results 

1.1. Strong consistency  

Following Moore and Yackel [16], for any fixed 

 

Figure.  1. True density,  black line  and its estimates ,nf  dashed line, for  Weibull  distribution with      ,  

,9.0,75.0,6.0  respectively. 
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sequence )(nk , we consider an arbitrary consistency 

result holding for the estimator with kernel K  (that 

satisfies Assumption A3) and bandwidth 

.)/(= nnkhn  Then this result holds for the nearest 

neighbor estimator with kernel K  and the bandwidth 

based on )(nk . The only prerequisite for this 

argument is that the conditions on nh  must also be 

satisfied by nh  for any 0> .    

 

Theorem 1.  Under Assumptions A1-A4 and  A5(i), 

(iii) , (iv),  for bya  , we have   

  

..0=])()([lim sayfyfn
n


                          

(11) 

  

Proof. See  Appendix. 

In what follows, we prove strong uniform 

consistency of the  nearest neighbor density  

estimator  in  the  RLT  model. 

 

Theorem 2.  Under Assumptions A1-A4 and A5 

(i),(ii),  

 

..0|=)()(|suplim sayfyfn
byan




                

(12) 

   

 

Proof. See  Appendix.  

 1.2.   Asymptotic  Normality 

Let f*  be a density function of F* and  

).(
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1
=)(

~ * udF
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K
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yf n

nn

n 
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
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


 
  

To state and prove the asymptotic normality, we 

need the following assumption on density function of 

observed data.  

  

A6:   0,  )()())(( **1/2  xfxfnk n  in 

probability, when ).)/((|=| nnkOxxn   

 

Theorem 3.  Under Assumptions  A1-A4,  A5 (i)-

(ii), and  A6,  for bya  , we have  

  )),((0,      )()())(( 21/2 yNyfyfnk n 
D


    

(13) 

 where  

.)()(2=)( 222 dyyKyfy   

 

 Proof. See the Appendix.  

Remark 1. We observe that asymptotic variance of 

nf  does not depend on truncation    distribution.  

 

Figure. 2. True density,  black line and its estimates ,nf  dashed line, for  Weibull  distribution with       

,9.0,75.0,6.0  respectively. 
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 Remark 2. A sufficient condition for Assumption 

A6 to be true is that 
*f  has an abounded derivative in 

a neighborhood of ,bya   in turn is satisfied 

when ).(=)( 2/3nonk  This suboptimal choice for 

)(nk  was used by Mielniczuk [13] in the  random 

censorship model.  

 Remark 3. In complete data, the best rate for 

)(nk  is obtained about 
4/5n  (in MSE sense, see e.g., 

Mack and Rosenblatt, [12]).  

 Corollary 1.  It is possible to construct confidence 

interval for f   using Theorem 3. For that purpose, a 

plug-in estimate  

,)()(2:=)( 222 dyyKyfy nn   

for the asymptotic variance )(2 y  can be easily 

obtained using (10). This is a consistent estimator and 

yields a confidence interval of asymptotic level ,1   

namely,  

(14) 

    ,)()/()(,)()/()( /21

1/22

/21

1/22

    znkyyfznkyyf nnnn
 

where /21 z  denotes the  /2)(1  quantile of 

the standard normal distribution.  

 

Application 

This section has two parts. The first part shows the 

behavior of the proposed estimator for  finite  samples  

and the second one deals with the density estimator 

and confidence bound  for real data.  
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1. Simulation     

To show the performance of the proposed  

estimator, we present simulated models to compute  

the estimator )(xfn
 that is presented in (10) . We 

simulated   ... diiN  random variables .),( ii TY   Here it 

is assumed that truncating variable    is distributed as 

an exponential random variable with parameter .  
The exponential parameter is needed to obtain different 

values of the theoretical proportion. The variable  Y  

is distributed as a Weibull distribution with density   

 

                                              

 

for          and      
and, a mixture  distribution with the following  

density function 

 

 

Figure. 3. True density,  black line  and its estimates ,nf  dashed line, for  mixtur   distribution,  ,9.0,75.0,6.0  

respectively. 

 
Figure. 4. Confidence bound and Q-Q plot, for  Weibull  distribution with        , .75.0  

 

 

 

 
Figure. 5. Confidence bound and Q-Q plot, for  Weibull distribution with      ,  .75.0  

 

 
Figure. 6. Confidence bound and Q-Q plot, for  mixture  distribution,  .75.0  
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                  y>1. 

 

We  then kept the data ),( ii TY  such that  .ii TY   

Using this scheme, 10m  independent samples of 

size n  were generated. For each sample, plug-in 

estimates n  and       for      and       were used 

respectively. The following figures represent the 

average of m  density estimations  and their the 

confidence bounds.  The kernel function 

  ),(||1
81

70
=)( 1)|(|

33 xIxxK x 
                        

(15) 

where )(xI A  is indicator function for set A ,  is 

used to construct a density estimator. It should be 

noted that the applied  kernel  (15)  satisfies the 

Assumption A3.   In the case where 500,=n  we 

give the confidence bound and Q-Q plot.  

As one can see from Figures 1, 2 and 3, the quality 

of the estimator does not seem to be affected by .  

By employing (13), 95%  asymptotic confidence 

band for the true Weibull distributions and mixture 

model are constructed and plotted in Figures 4, 5 and 

6.  

According to the Q-Q- normal plots, we trivially 

notice that  

(2)

(2))(2)()(( 1/2

n

n ffnk




 

 

has asymptotically standard Normal distribution. 

Furthermore Kolmogorov-Smirnov test gives the p-

values 0.59, 0.7892, 0.9306   respectively, for Weibull 

distributions  with k=0. 5, 2 and mixture  distribution, 

which suggests not to reject the Normality distribution.  

 

2. Real Data 

In this subsection, a real data set of length-biased 

lifetimes with a size of  98 is used in order to estimate 

the density function     . These are real data that are 

mentioned here from [9] and are recruited from brake 

pads in 1000 kilometer units. It should be mentioned 

that the length-biased data are  special cases of left-

truncation data when   has a uniform distribution. We 

regenerated these data  10 times and the average of 10 

density estimators is obtained. The estimator is 

graphed in Figure 7 in addition to the 95% confidence 

band for the true density. This confidence band is 

formulated in (14). It should be mentioned that these 

data appear to be distributed as Gamma distribution. 

 

 Conclusion 

In this paper,  a  nearest neighbor kernel density 

estimator is proposed for the density function  in the 

Left-truncation model.  Uniform strong consistency  

and asymptotic normality of the proposed estimator is 

established. The performance of the estimator is 

illustrated through simulation studies. All simulations 

are drawn for different cases to demonstrate both  

consistency, and asymptotic normality and the method 

 

 
Figure. 7. Kernel density estimator and confidence bounds for the lifetime of automobile brake pads. 
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is illustrated by real automobile brake pad data.  

 

Appendix  

In order to make the proofs easier, we need some 

auxiliary results and notation.  

 

Lemma 1.  Under Assumptions A1, A2, A4  and A5 

(i) ,(iii),  for ,bya   we have 
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Proof. Since distribution 
*F  has a density which is 

continuous at point ,y  by Theorem 1 of  

Moore  and  Yackel [15]  we  obtain  the  result.                                                          

Lemma 2.  Under Assumptions A1-A2, A3(i), A4  

and A5(i) , (iii),  for ,bya   we have 
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where )( in Ya  is the value of the jump of the 

Lynden-Bell estimator in ,iY  that is  
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(cf. Woodroofe, [25]). 

Now, using Lemma 1 it is enough to show that 
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 By using (18), we have  

 

|)(
)(

1
)(

)(

1
|max|

)(
)(|max

))(,())(,(





 in

i

in

in
y

n
RyS

i
Y

in
y

n
RyS

i
Y

YF
YC

YF
YCyG

Yna


 

|)(
)(

1
)(

)(

1
|sup

))(,(







F
C

F
C

n
y

n
RyS




 
 

.|=:
)(

1

)(

1
|sup 321

))(,(

III
GyGy

n
RyS


 




            

(20) 

  

It is easy to see that  
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 Note that 0.>)(inf yCbya   By (4), (5) and the 

classical Law of the Iterated Logarithm for empirical 

processes, (see for example [5]) we have  
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 hence, by Corollary 1.3 of Stute [21] 
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 To deal with 2I , by Corollary 2.2. of Zhou and 

Yip [28] and for large enough n , we have  
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Since 3I  is majorized by  
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Now using (20)-(23), we obtain (19), and we get the 

result.  

The following lemma can be easily obtained by the 

main result of Devroye and Wagner [6].  

 

Lemma 3. Under Assumptions A1,  A2,  A4  and 

A5 (i), (ii)  
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Proof of Theorem 1. Using Lemma 2, and the 

result of Nadaraya [17] we obtain the result. 

 

 Proof of Theorem 2. First, we show that the 

strong convergence in Lemma 2 can be replaced by 

uniform strong convergence on ].,[ ba  To prove this, 

it is enough  considering  the last term of the majorant 

occurring in the proof of Lemma 2 and to show that 
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Since by Lemma 3, )(sup yRny
 on ],[ ba  tends 

to 0 a.s. and g  is uniformly continuous, we have  
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Thus the proof of Theorem 1 is completed in view 

of Lemma 3, Theorem A  of Silverman [20] and the 

fact that Gf .  is positive on ].,[ ba                                                                                    

      

                                                  

 Proof of Theorem 3. Observe that for )(
~

yfn , we 

have  

(25) 
































  dyyK

yGyf
N

yGyf
yfnk n )(

)()(
0,2      

)()(
)(

~
))(( 2

2

1/2



D

  

 (Moore and Yackel [15]). (13) follows from (25) 

and Lemma 2.                                                                  
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