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ABSTRACT 

Traditional techniques for hydraulic analysis of water distribution networks, which are referred to as demand-driven 
simulation method (DDSM), are normally analyzed under the assumption that nodal demands are known and satisfied. 
In many cases, such as pump outage or pipe burst, the demands at nodes affected by low pressures will decrease. There-
fore, hydraulic analysis of pipe networks under deficient pressure conditions using conventional DDSM may cause 
large deviation from actual situations. In this paper, an optimization model is introduced for hydraulic analysis of water 
distribution networks using a meta-heuristic method called Differential Evolution (DE) algorithm. In this methodology, 
there is no need to solve linear systems of equations, there is a simple way to handle pressure-driven demand and leak-
age simulation, and it does not require an initial solution vector which is sometimes critical to the convergence. Also, 
the proposed model does not require any complicated mathematical expression and operation. 
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1. Introduction 

In the recent past, several packages originally developed 
for steady state analysis of looped water distribution sys-
tems. For instance, EPANET2 has been extended to in-
clude the possibility of “extended period simulations” 
(EPS), namely the possibility of simulating long periods 
of time by means of a succession of steady states, only 
accounting for the change in storage of reservoirs occur-
ring from one time step to the next [1]. 

This model, which is used in current engineering prac-
tice, is based on the conventional Demand Driven Simu-
lation Method (DDSM). It assumes that nodal outflows 
are fixed and are satisfied regardless of network pres-
sures. The assumption simplifies the mathematical solu-
tion of the problem but is not always appropriate because 
it is clear that the amount of outflow at nodal outlets de-
pends on network pressures. If the pressure falls below a 
minimum required level (due to some critical events such 
as mechanical and hydraulic failures or excess demand), 
the flow will be significantly reduced. Although some 
nodes may be able to satisfy their demands, others may 
meet the demand partially while the rest may fail and 
may not provide any water at all. The assumption of  

fixed nodal consumptions is therefore valid only under 
normal conditions when the pressures can be expected to 
be adequate to satisfy the stipulated demands. If the op-
eration of the system is simulated under pressure-critical 
conditions, the relationship between pressure and outflow 
should, therefore, be taken into account if the simulation 
results are to be realistic [2-8]. Furthermore, water loss 
via leakage constitutes a major challenge to the effective 
operation of municipal distribution networks since it 
represents not only diminished revenue for utilities, but 
also undermined service quality [9] and wasted energy 
resources [10]. A typical leakage control program usually 
starts with a water audit based on available flow meas-
urements. Although this is an important first step, most 
practical studies do not go beyond it. In order to assist in 
leakage reduction and conduct more accurate analysis, a 
hydraulic model capable of accounting for pressure- 
driven (also known as head-driven) demand and leakage 
flow at pipe level is introduced by Giustolisi et al. [11]. 
Meanwhile, there is still a chance to develop a new 
method for pressure-driven demand and leakage simula-
tion in water distribution networks. In this paper, an op-
timization model is introduced for hydraulic analysis of 
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water distribution networks using a meta-heuristic algo-
rithm called Differential Evolution (DE). Analysis of 
hydraulic networks can be achieved by treating it as an 
optimization problem as shown by Arora [12], Hall [13], 
and Collins et al. [14]. Arora considered a simple two- 
piped loop while Collins et al. have based their approach 
on rigorous theoretical background and developed 
nonlinear optimization models, solutions of which yield 
the hydraulic network analysis [15]. Collins’s model can 
be minimized by application of differential evolution 
algorithm. In this methodology, there is no need to solve 
linear systems of equations, there is a simple way to han-
dle pressure-driven demand and leakage simulation, and 
it does not require an initial solution vector which is 
sometimes critical to the convergence. Also, the pro-
posed model does not require any complicated mathe-
matical expression and operation. In the next part, 
Collins’s model is described. 

2. Co-Content Model Approach 

Arora [12] is the first researcher who suggested an ap-
proach based on the principle of conservation of energy. 
This principle states: “Flow in the pipes of a hydraulic 
network adjust so that the expenditure of the system en-
ergy is minimum.” Next, Collins et al. [14] proposed a 
model termed the co-content model, that is based on 
equations having the unknown nodal heads as the basic 
unknowns, i.e., based on H equations. The unknown pipe 
flows are expressed in terms of the nodal heads and the 
known pipe resistances, so that the energy loss in pipe 
 xx E  is given by [15] 
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In which Rx is the hydraulic resistance function, hx is 
head loss in pipe x, iH  and  are pressure heads in 
node i and node j. 

jH

Now consider the network of Figure 1, with the 
known and unknown parameters as shown therein. Let 
the unknown nodal heads at nodes 3, 4, and 5 be H3, H4, 
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Figure 1. Schematic representation of the looped pipe net-
work with 5 pipes. 

and H5, respectively. Herein also consider a ground node 
G with fixed known level H0G, as shown in Figure 1. 
The nodes 3, 4, and 5 are connected to the ground node 
G with pseudo pipes, carrying the known nodal outflows 
q3, q4, and q5 as shown in Figure 1. 

The co-content optimization model is expressed as 
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01H  and 02H  are known pressure heads for source 
nodes. The first five terms of the objective function rep-
resent the energy loss in real pipes 1,  of the net-
work, respectively, and the last three terms show 

,5

 1 1n 
 

times the energy loss in the pseudo pipes [15]. 
It should be noted that there are no constraints and there-
fore an unconstrained model in three decision variables is 
made. For minimization of optimization model, which 
are partially differentiating in unknown heads, the node- 
flow continuity equations are created. Therefore, the so-
lution of the co-content model gives the values of the 
unknown heads such that the node-flow continuity rela-
tionships are satisfied [15]. For simplicity, oGH  can be 
taken as zero, so that the General co-content model can 
be expressed as 
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Collins et al. [14] suggested the solution of the NLP 
optimization of the model. Their method were 1) the 
Frank-Wolfe method; 2) a piece-wise linear approxima-
tion; and 3) the convex simplex method. These methods 
are highly depends on initial guesses and in some cases 
they converged to an incorrect solution [14]. 

3. Head Dependent Analysis 

In the common approaches, it is presumed that the nodal 
demands are always satisfied at all demand nodes, irre-
spective of the available HGL values at demand nodes 
[15]. But in practice, if the head at a node is insufficient, 
a reduction in the water flowing from the tap is expected 
and, in the worst case, the discharge that can be drafted 
will be zero, regardless to the actual demand [1]. There 
are several solutions in the literature for these conditions. 
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Wagner et al. [16] and Chandapillai [17] suggested a 
parabolic relationship between required nodal head and 
minimum head. Their relationships are 

min
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H* is the required nodal head. This formulation is eas-
ily handled to co-content model without any mathemati-
cal complexity.  

4. Leakage Simulation 

Water losses via leakages constitute a major challenge to 
the effective operation of municipal WDN since they 
represent not only diminished revenue for utilities, but 
also undermined service quality [9] and wasted energy 
resources [10]. In order to conduct more accurate analy-
sis of a WDN, such as a better estimate of flow through 
the network (with respect to both satisfied demand and 
losses through leakage), a hydraulic analysis based on 
capable of accounting for pressure-driven (also known as 
head-driven) demand and leakage flow at the pipe level 
should prove invaluable. To reach this goal, a leakage 
model is expressed as follows [3] 
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0 if
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β l P P
q
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        (5) 

Where Pk = average pressure in the pipe computed as 
the mean of the pressure values at the end nodes I and j 
of the kth pipe; and lk = length of that pipe. Variables αk 
and βk = two leakage model parameters [11]. The alloca-
tion of leakage to the two end nodes can be performed in 
a number of ways [18]. Here the nodal leakage flow 
qj−leak is computed as the sum of qk−leak flows of all pipes 
connected to node j as follows: 
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where   2k i jP P P  . This formulation is also easily 
handled to co-content model without any mathematical 
complexity. 

5. Application of Differential Evolution 
Algorithm for Minimizing Co-Content 
Model 

For the hydraulic analysis, this study introduces Differ-
ential Evolution (DE) algorithm. Because the algorithm 
was originally developed for solving optimization prob-

lems, the hydraulic network analysis wasintroduced into 
an optimization problem (co-content model). One ad-
vantage of the DE algorithm is the fact that it does not 
require an initial solution vector which is sometimes 
critical to the convergence. Also, application of DE algo-
rithm in co-content model does not require any compli-
cated mathematical expression and operation. In this mo- 
del, pressure-driven demand and leakage can be simu-
lated. 

5.1. Differential Evolution (DE) 

Differential evolution (DE) is a simple powerful and 
population-based stochastic optimization algorithm that 
outperforms many meta-heuristic algorithms on numeri-
cal single objective optimization problems. In DE each 
decision variable is represented in the chromosome by a 
real number. The DE algorithm requires only three con-
trol parameters: weight factor (F), crossover rates (CR), 
and population size (NP). The initial population is ran-
domly generated by uniformly distributed random num-
bers using the maximum and minimum limitation of each 
decision variable. Then the fitness values of all the indi-
viduals of population are calculated to find out the best 
individual xbest,G of current generation, where G is the 
index of generation. Three main steps of DE, mutation, 
crossover, and selection were performed sequentially and 
were repeated during the optimization cycle [19]. 

The steps in the procedure of DE are shown in Figure 
2. They are as follows: 

 

Terminate 
Competitions 

Repeat steps 
3, 4, and 5 

NI 

Step 6: Check stopping criterion 

Step 1: Initialize Parameters Step 2: Generate samples 

C(H): Objective function 

Hi: Decision variable 

(pipe diameter) 

N: Number of decision variables

P: Number of population 

CR = Crossover probability 

F = Mutation rate 

NI = Number of Iterations 

i = 1:P 
 

Randomly generate the solutions

Evaluate objective function 

Calculate cost function C(H)

Step 4: DE algorithm 

For i = 1:P (number of population)

Select a solution vector from the population 
Compute the objective function 

Crossover Mutation 
Step 5: Selection 

If new solution vector
Is better than Old one. 

Update solution vector 

 

Figure 2. DE procedure for minimization of co-content model. 
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Step 1. Initialize problem and algorithm parameters 
Step 2. Samples Generation 
Step 3. Start Iterative Process 
Step 3.1. Mutation Operator 
Step 3.2. Cross-Over Operator 
Step 4. Selection 
Step 5. Check The Stopping Criterion. 

5.2. Step 1. Initialize the Problem and Algorithm 
Parameters 

In Step 1, the optimization problem is specified as fol-
lows: 
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Where  C H  is an objective function; H is the set of 
each decision variable. In this paper, the objective func-
tion is the co-content model; the unknown heads are the 
decision variables. 

5.3. Step 2. Samples Generation 

The initial population, initial values of the mutation fac-
tor, F and initial values of the crossover rate, CR for the 
DE is created arbitrarily by following formula: 
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where 1 2 3 = independently generated random num-
bers in the range of 

τ ,τ ,τ
 0,1 .  min ,H i j

 
and Hmax(i, j) are 

maximum and minimum limits of variable j and node i. 

minF  and maxF  are maximum and minimum limits of 
mutation factor. min  and max  are maximum and 
minimum limits of crossover rate. Then, the fitness val-
ues  of all the individuals of population are cal-
culated. The position matrix of the population of genera-
tion G can be represented as: 

CR CR

 C H

 

1 1 1
1 1 2

2 2 2
2 1 2

1

N

G N

nPop nPop
nPop N

C H H H
C H H H

P

C H H

 
 
     
 

    




    
 








     (9) 

N is the number of unknown nodes.  

5.4. Step 3. Start Iterative Process 

In this step, two main steps of DE, mutation, and cross-
over, are performed sequentially and new solution vec-
tors are created. 

5.4.1. Mutation Operator 
In this step, mutation operator is used, for each solution 

vector in the population, to create new solutions in DE 
according to the following formula: 

       new , , , , H i j H i C F H i A H i B      (10) 

A, B, and C are random solution vectors. 

5.4.2. Cross-Over Operator 
In the crossover operator, the new vector is generated by 
choosing some parts of mutation vector, and other parts 
come from the target vector. The crossover operator of 
DE is shown as follows: 

   
 

new
new

, if rand
,

, otherwise

H i j CR
H i j

H i j

  


    (11) 

where CR represents the crossover probability. If ran- 
dom number rand is larger than CR value, the component 
of mutation vector will be chose to the trial vector. Oth-
erwise, the component of target vector is selected to the 
trial vectors. The mutation and crossover operators are 
used to diversify the search area of optimization prob-
lems [19]. 

5.5. Step 4. Selection 

The trial vector is carried to the next generation only if it 
yields a reduction in the value of the objective function 
in the case of the minimization problem. Otherwise, the 
target vector will be selected for the next generation. 

The population of the next generation is selected as 
follows: 

 
       

 

new new

new
if

otherwise

H j C H j C H j
H j

H j

  


(12) 

where   C H j  represents the cost of the jth individ-
ual in the current generation. The F selections for the 
next generation is given by 

   min 2 max min, 1F j G F F F        (13) 

where G is the generation number. It should be noted that 
0G   in the initial generation. 

5.5. Step 5. Check the Stopping Criterion 

In this section, Steps 3, 4 and 5 are repeated until the 
termination criterion is satisfied.  

6. Numerical Examples 

In this section, the hydraulic analyses for several condi-
tions in some water distribution networks are done. All 
of computations were executed in MATLAB program-
ming language environment with an Intel(R) Core(TM) 2 
Duo CPU P8700 @ 2.53 GHz and 4.00 GB RAM. In this 
study proposes the use of mass balance and energy bal-
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ance in the network for demonstrating the effectiveness 
of DE in comparison with other methods. 

The average of mass and energy balance is shown by δ 
and is calculated by following formula: 

 1

1
 connected to
 through

mean ,

2, ,
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   (14) 

In all numerical examples ,  min max

min  and max . To check the performance 
of the DE for the minimization of co-content model, ten 
optimization runs were performed using different random 
initial solutions in all examples. 

0.2CR CR 
0.2F  0.8F 

6.1. Numerical Example 1 

In order to demonstrate the advantages of the proposed 
model in pressure-driven demand condition, the simpli-
fied water distribution network shown in Figure 3, was 
used. For the sake of simplicity, the same Hazen-Wil-
liams roughness coefficient C = 130 was assumed for all 
the 14 pipes of identical length of 1000 m, while no mi-
nor losses have been added. The following diameters 
have been used in the example: 500 mm (P-2); 400 mm 
(P-1); 300 mm (P-4, P-7); 250 mm (P-10); 200 mm (P-3, 
P-5, P-6, P-13); 150 mm (P-8, P-9, P-11, P-12, P-14). 
The nodal demands are q2 = 1, q3 = 1, q4 = 2, q5 = 15, q6 
= 15, q7 = 10, q8 = 5 (m3/min). Without loss of general- 
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Figure 3. Schematic representation of the looped pipe net-
work used in the numerical example 1. 

ity, in this example, the minimum head requirement *
iH  

has been assumed equal to the ground elevation Zi [1]. So 
the relationship between required nodal head and mini-
mum head is: 

0 j j

j
j j j

H Z
q

q Z H

  
           (15) 

Todini [1] proposed a three steps approach for solving 
this network and its solution is reported in the 4th col-
umn of Table 1. In proposed methodology, pressure- 
driven model can be applied in hydraulic analysis with-
out any mathematical formulation. In this situation, an 
if-then rule is added to co-content model and optimiza-
tion process is conducted. The DE technique is applied to 
solve this problem in three cases. DE model parameters 
selected are as follows: number of decision variables = 7; 
number of population for case 1 = 10, case 2 = 20, case 3 
= 20; number of iteration for case 1 = 1000, case 2 = 
1000 and case 3 = 5000. The bound variables were set 
between 50 and 140. The best, worst and average solu-
tions of DE algorithm in three cases are shown in Table 
2. This table compares the average of mass and energy 
balance of the three cases with those obtained using To-
dini algorithm. As it can be seen in Table 2, DE found 
the optimal solution more accurately than Todini method 
in all cases. Results of the best performance of DE and 
convergence history are reported in Table 1 and Figure 
4, respectively. 

As you can see in the Figure 4, after about 400 itera-
tions the parameter δ becomes convergent and then it 
doesn’t change. The minimum value of δ calculated by 
DE algorithm is 2.07E-02, while the value obtained for 
this parameter, by the method introduced by Todini 
equals to 2.76E-02. Values of δ at each node are com-
pared in the seventh and eighth columns of Table 1, us-
ing the two proposed methods and the method of Todini. 
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Figure 4. Convergence history of numerical example 1.  
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Table 1. Head and parameter δ in numerical example 1. 

DE 3 steps DE 3 steps DE 3 steps 
Node Z(m) 

H(m) H(m) [2] H-Z H-Z [1] δ δ [1] 

1 140 140 140 0 0 0 0 

2 80 129.304 130.07 49.304 50.07 7.93e-10 0.0003 

3 90 132.288 132.76 42.288 42.76 7.24e-09 0.004 

4 70 109.587 110.96 39.587 40.96 5.56e-10 0.0021 

5 80 80.000 88.54 0.000 8.54 0.0576 0.034 

6 90 90.000 91.45 0.000 1.45 0.0069 0.0173 

7 90 90.000 90.00 0.000 0.00 0.0803 0.106 

8 100 88.922 90.43 −11.078 −9.57 2.54e-09 0.0439 

 
Table 2. Average of mass and energy balance for numerical example 1. 

Mass and Energy Balance (δ) 
DE 

 best worst mean std 

Number of population 10 

Number of iteration 1000 
2.07E-02 9.01E-02 4.14E-02 2.37E-02 

Number of population 20 

Number of iteration 1000 
2.07E-02 2.08E-02 2.07E-02 3.38E-05 

Number of population 20 

Number of iteration 5000 
2.07E-02 2.07E-02 2.07E-02 6.20E-06 

Three Steps Approach [1] Maximum Accuracy 2.76E-02 

 
As you can see at all the nodes, in calculating the mini-
mum value of δ, the proposed method works better than 
the Todini method. 

 

6.2. Numerical Example 2 

The second considered network is a real planned network 
designed for an industrial area in Apulian town (Southern 
Italy). The network layout is shown in Figure 5 and the 
corresponding data are provided in Table 3. With respect 
to the leakages, they have been assumed as pressure- 
driven (see Equation (5)) since they are implemented in 
the pressure-driven network simulation model as above 
described [11]. The parameter β = 1.0632 × 10 − 7 and α 
= 1.2, as reported in Giustolisi et al. [11] for this network. 
Giustolisi et al. [11] proposed a hydraulic simulation 
model, which fully integrates a classic hydraulic simula-
tion algorithm, such as that of Todini and Pilati [20] 
found in EPANET 2, with a pressure-driven model that 
entails a more realistic representation of leakage. They 
applied their model in this network and results are dem-  

Figure 5. Schematic representation of the looped pipe net-
work used in the numerical example 4. 
 
onstrated in Table 4. The DE technique is applied to 
solve this problem and DE model parameters selected are 
as follows: number of decision variables = 23; number of 
population for all case 1 = 50, case 2 = 50, case 3 = 20,  
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Table 3. Hydraulic data relevant to the numerical example 
2. 

Pipe L (m) D (mm) Pipe L (m) D (mm) Pipe L (m) D (mm)

1 348.5 327 12 428.4 184 23 165.5 100 

2 955.7 290 13 419 100 24 252.1 100 

3 483 100 14 1023.1 100 25 331.5 100 

4 400.7 290 15 455.1 164 26 500 204 

5 791.9 100 16 182.6 290 27 579.9 164 

6 404.4 368 17 221.3 290 28 842.8 100 

7 390.6 327 18 583.9 164 29 792.6 100 

8 482.3 100 19 452 229 30 846.3 184 

9 934.4 100 20 794.7 100 31 164 258 

10 431.3 184 21 717.7 100 32 427.9 100 

11 513.1 100 22 655.6 258 33 379.2 100 

      34 158.2 368 

 
case 4 = 20 and case 5 = 50; number of iteration for case 
1 = 500, case 2 = 1000, case 3 = 10,000, case 4 = 5000 
and case 4 = 2500. In proposed method, there is no need 
to change mathematical formulation for hydraulic analy-
sis. An if-then rule is added to co-content model and op-
timization process is done easily. In this example, the 
bound variables were set between 0 and 36.4. 

Table 5 compares different cases of algorithm DE for 
minimization of model. The best result is related to the 
case in which the number of population is equal to 50 
and the number of iterations equal to 2500. After per-
forming 10 different runs, the best value of δ is obtained 
equal to 0.0026, while the best result is obtained equal to 
0.0181 in Giustolis method. The results of two men-
tioned methods are compared in the fifth and sixth col-
umns of Table 4. In this table, the best result is shown in 
bold, and it is considered the method DE has calculated 
the best value of δ at 17 nodes and Gistulishi method has 
calculated it at 5 nodes. The convergence process of al-
gorithm DE has been shown in two forms in Figures 6 
and 7. The absolute value of δ is calculated for each it-
eration in Figure 6 and the amount of objective function 
C(H) is calculated for each iteration in Figure 7. The 
algorithm becomes convergent after 2500 iterations. 

6.3. Numerical Example 3 

Figure 8 shows the network from Mallick et al. [21]. 
The network consists of 2 reservoirs, 13 nodes and 21 
pipes. The detailed properties are shown in Tables 6 and 
7. It is supposed that the desired pressure for each node 
(H*) is 30 m, and the minimum pressure (Hmin) is 10 m 
[22]. The pipe leakage coefficients are β = 5 × 10 − 7 and  

Table 4. Head and parameter δ in numerical example 2. 

Node H 

number
q (l/s)

(m) [1] 
H (m) δ [11] δ 

1 10.863 26.9 33.29 0.1547426 −0.0046

2 17.034 24.81 31.83 0.02131049 −0.00648

3 14.947 21.3 27.39 −0.0477137 −0.00498

4 14.28 17.22 25.34 −0.0220368 −0.00504

5 10.133 23.54 30.89 −0.0261836 −0.00378

6 15.35 20.1 29.02 0.04038949 −0.00517

7 9.114 18.91 27.94 −0.0171474 −0.00275

8 10.51 17.9 27.34 −0.0022701 −0.00351

9 12.182 17.85 26.35 0.0029365 −0.00378

10 14.579 12.66 23.24 −0.008277 −0.0043

11 9.007 16.23 25.95 0.03155407 −0.00258

12 7.575 10.12 22.05 −0.0027315 −0.00213

Node H 

number
q (l/s)

(m) [11]
H (m) δ [11] δ  

13 15.2 10.03 22.45 0.01259978 −0.00418

14 13.55 15.41 25.95 0.06347619 −0.00418

15 9.226 14 24.17 −0.0091379 −0.00287

16 11.2 14.36 24.05 −0.0070886 −0.00357

17 11.469 15.3 25.42 −0.0001028 −0.00354

18 10.818 18.83 28.38 0.01188886 −0.00384

19 14.675 19.35 28.39 −5.43E-05 −0.00505

20 13.318 10.01 23.79 −0.0377624 −0.00398

21 14.631 11.48 22.35 0.00274996 −0.00411

22 12.012 14 25.46 0.00390141 −0.0036

23 10.326 10.45 20.11 −0.0085767 −0.00296

24  36.45 36.45   

 
α = 1.18, for this network. The DE technique is applied 
to solve this problem and DE model parameters selected 
are as follows: number of decision variables = 13; num-
ber of population for all cases = 20; number of iteration 
for case 1 = 1000, case 2 = 2500, case 3 = 5000 and case 
4 = 10,000. The bound variables were set between 0 and 
60.96. 

In this example, the network has been analyzed ac-
cording to two cases. In the first case, the dependence of 
pressure on the demand is not included, but in the latter 
case, the analysis is performed by taking into account the 
dependence of pressure on the demand. Table 8 shows  
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Figure 6. Convergence history of numerical example 2 (case 
1). 
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Figure 7. Convergence history of numerical example 2 (case 
2). 
 

 

Figure 8. Schematic representation of the looped pipe net-
work used in the numerical example 3. 

Table 5. Average of mass and energy balance for numerical 
example 2. 

Mass and Energy Balance (δ) 
DE 

 best worst mean std 

Number of
population 

50 

Number of
iteration 

500 
6.00E-03 1.76E-02 1.14E-02 3.60E-03

Number of
population 

50 

Number of
iteration 

1000 
2.60E-03 1.01E-02 5.90E-03 2.20E-03

Number of
population 

20 

Number of
iteration 

10,000
3.90E-03 4.00E-03 4.00E-03 4.08E-05

Number of
population 

20 

Number of
iteration 

5000 
3.20E-03 3.80E-03 3.60E-03 1.88E-04

Number of
population 

50 

Number of
iteration 

2500 
2.60E-03 5.50E-03 3.00E-03 5.88E-04

Giustolisi 
Algorithm [11]

Maximum Accuracy 1.81E-02

 
Table 6. Pipe characteristics of Sample network from Mal-
lick et al. [21]. 

Pipe Number L (m) D (mm) C 

1 609.6 762 130 

2 243.8 762 128 

3 1524 609 126 

4 1127.76 609 124 

5 1188.72 406 122 

6 640.08 406 120 

7 762 254 118 

8 944.88 254 116 

9 1676.4 381 114 

10 883.92 305 112 

11 883.92 305 110 

12 1371.6 381 108 

13 762 254 106 

14 822.96 254 104 

15 944.88 305 102 

16 579 305 100 

17 487.68 203 98 

18 457.2 152 96 

19 502.92 203 94 

20 883.92 203 92 

21 944.88 305 90 
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Table 7. Nodes properties of Sample network from Mallick 
et al. [21]. 

Node Number q (L/S) Elevation (m) 

1 0 27.43 

2 59 33.53 

3 59 28.96 

4 178 32 

5 59 30.48 

6 190 31.39 

7 178 29.56 

8 91 31.39 

9 0 32.61 

10 0 34.14 

11 30 35.05 

12 30 36.58 

13 0 33.53 

 
Table 8. Average of mass and energy balance for numerical 
example 3. 

 Mass and Energy Balance (δ) 
DE 

 best worst mean std 

Number of 
population 

20 

Number of 
iteration  

1000 
1.90E-03 1.11E-02 5.30E-03 2.60E-03

Number of 
population 

20 

Number of 
iteration  

2500 
1.46E-04 7.03E-04 4.55E-04 1.72E-04

Number of 
population 

20 

Number of 
iteration  

5000 
1.06E-06 1.37E-06 5.00E-06 4.32E-06

Number of 
population 

20 

Number of 
iteration  

10,000 
1.18E-08 2.90E-08 1.75E-08 6.29E-09

 
how the accuracy of parameter δ depends on the iteration 
number of convergence in the first case. As it can be seen, 
the value of δ reaches the accuracy 1e-2 after 1000 itera-
tions, the accuracy 1e-4 after 2500 iterations, 1e-6 after 
5000 iterations and 1e-8 after 10,000 iterations. Figure 9 
compares the nodal pressures in the mentioned two cases. 
As it can be observed, if the dependence of pressure on 
the demand is not included, a negative pressure is made 
at the nodes 6, 8, 11 and 12, but all pressures in the sec-
ond case are greater than 5 meters and the minimum 
pressure of 10 meters has been partly supplied in most of 
the nodes. Figure 10 shows the process of changing the  

 

Figure 9. Simulation results with and without pressure- 
driven demand. 
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Figure 10. Convergence history of numerical example 3. 
 
parameter δ towards the number of iterations. 

7. Conclusions 

The purpose of this paper has been to introduce a novel 
methodology for hydraulic analysis of water distribution 
systems under deficient pressure conditions considering 
the pressure-driven demand and leakage. The methodol-
ogy is illustrated using three networks with different 
layouts.  

The overall results indicate that the proposed method 
has the capability to handle various pipe networks prob-
lems without changing in model and mathematical for-
mulation. Application of DE to co-content model can 
solve pressure-driven demand and leakage simulation 
with applying if-then rules in co-content model. The ad-
vantage of the proposed methodology is its flexibility in 
employing different formulation and specifying parame-
ters related to pressure-driven demand. Another advan-
tage of this method is that it can be easily developed for 
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common users to undertake deficient pressure conditions. 
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