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The aim of the current work is to suggest a combination of the simplified Bernoulli-trials (SBT) collision
algorithm with the transient adaptive subcell (TAS) technique implemented in the direct simulation
Monte Carlo (DSMC) for calculation of non-equilibrium gas flows with reduced computational resources.
In this work, we demonstrate that the use of the SBT collision scheme together with the TAS technique
reduces the total number of particles (simulators), the number of grid cells and respectively, the compu-
tational memory, required for simulation of low Knudsen number micro/nano flows, while the accuracy
is preserved. The efficiency of the SBT–TAS is investigated in details for two typical benchmark cases,
namely, low Knudsen/low speed flow in a rectangular micro-cavity and high speed/high gradient flow
over a nano-scale flat plate.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The design and fabrication of micro/nano fluidic devices require
enhanced understanding of flow dynamics and thermal phenom-
ena in the non-equilibrium gas flows taking place in these devices,
which have usually a complex geometry and often more than one
characteristic length at micro/nanoscale. Based on the flow pres-
sure and temperature, gaseous flow through micro/nano geome-
tries could be considered as a non-equilibrium flow with
different degrees of rarefaction; therefore, its numerical simulation
cannot be performed by using conventional Navier–Stokes–Fourier
(NSF) equations and a kinetic or direct molecular simulation must
be applied. The Direct Simulation Monte Carlo (DSMC) method is
such a particle-based algorithm for simulating rarefied gas flows
[1]. The method is an accurate computational tool for the investi-
gation of gas flows in regimes ranging from continuum to free-
molecular conditions. The degree of gas rarefaction is determined
by the Knudsen number, which is defined as the ratio of mean free
path of gas molecules, k, to a characteristic length, L, that is,
Kn ¼ k=L. The rarefaction regimes can be generally categorized as
slip (0.001 < Kn < 0.1), transition (0.1 < Kn < 10), and free molecular
(Kn > 10) ones.

The DSMC method provides a reliable and accurate enough
numerical simulation of the gas flow, but a disadvantage is that
the method becomes time consuming at low speed or low Knudsen
number flow regimes. The requirements for cell size, time step, and
number of particles per cell lead to the significant restrictions on
the traditional [1] and the modern DSMC methods. The standard
DSMC algorithms require the cell size to be suitably smaller than
one third of the gas mean free path and the time step should be
small in comparison with the local mean collision time. Addition-
ally, if the standard No Time Counter (NTC) collision scheme is
applied, it should be at least 20 particles per cell to avoid repeated
collisions and decrease the statistical fluctuations [2]. On the other
hand, the recent DSMC algorithm requires dividing the numerical
domain into collision and sampling cells [3] and recommends at
least 7–8 particles to be used per collision cell for accurate collision
modeling [2,4].

An alternative approach was proposed by Stefanov [5,6], who
proposed a new ‘‘simplified Bernoulli trials (SBT)’’ collision scheme
and showed that the SBT collision algorithm can provide accurate
solutions even using 2 and often less than 2 particles per cell.
The accuracy of the SBT scheme with few particles per cell was
proved for a wide set of numerical problems in regimes from low
speed/low Kn number to high speed/high gradient flows [7]. Our
Previous investigation [7] has shown that the SBT scheme works
more accurately compared with the majorant frequency (MFS)
scheme [8] if a small number of particles, i.e., around 2 particles
per cell, was employed in the simulation.

Although the SBT scheme works accurately with a small num-
ber of particles per cell, the same restriction as the mentioned pre-
viously on the grid size to be smaller than the mean free path
makes DSMC codes based on the SBT scheme also time consuming,
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especially when concerning simulations at low Knudsen number
micro/nano flows. In this regard, the current work presents the
results of a combined SBT–TAS (transient adaptive subcells) DSMC
solver that improves the efficiency of the simulation. The idea of
transient adaptive subcell assumes a dynamic division of the sam-
pling cells into subcells without keeping the information about the
subcells all the time in computer memory. The idea of dynamic
subdivision of collision cells was first suggested by Stefanov et al.
[3]. They adjusted the subcell in such a way that subcell size
remains smaller than mean free path at every time step. A division
of the collision cell into adaptive subcells in such a way that a con-
stant number of particles remains in the subcells was first sug-
gested by Bird and implemented in the DS2V program [9]. This
strategy was called transient adaptive subcell. Su et al. [10]
extended the TAS technique for unstructured grids. They showed
the advantage of TAS scheme application on a coarser unstructured
grid and demonstrated a significant reduction of the required com-
putational grid and time of the standard DSMC solver with ‘‘No
Time Counter’’ (NTC) collision algorithm. In fact, TAS technique
permits the grid resolution to adapt to the local flow gradient auto-
matically. Additionally, it was shown that the computations by
using TAS required low computer memory and low computational
overhead [10]. Moreover, the TAS technique substantially
improves the collision quality, which is defined as the ratio of
mean collision separation (MCS) of the particles to mean free path
(k) [11,12].

In this work, a detailed analysis of the accuracy and computa-
tional time of the SBT–TAS algorithm is performed. To evaluate
the suitability of the SBT–TAS algorithm in efficient prediction of
low Knudsen micro/nano flows, rarefied flows in micro-cavity
and over nanoscale flat plate geometry are considered in details.
Effects of different parameters such as cell size, number of particles
per cells/subcells and subcell grid movement are investigated.

2. Collision procedure

2.1. SBT algorithm

Recently, Stefanov [5] proposed the simplified Bernoulli trials
(SBT) collision scheme as an alternative to NTC scheme that avoids
the repeated collision in cells and permits simulations by using a
small mean number of particles per cell, for example <PPC> � 2.
In the SBT algorithm, the particles in the lth cell are locally indexed
in order to form a particle list numbered as 1. . .Nl. The first particle
of the collision pair (i, j), say i, is selected in strict order from the
particle list, i.e., i = 1. . .Nl � 1. The second particle, say j, is then
selected randomly among k = Nl � i particles taking place in the list
after particle i, i.e.

j ¼ ðiþ 1Þ þ intðk� rndÞ ð1Þ

where rnd stands for a random number between 0 and 1. Then each
pair is checked for possible collision with the probability

pij ¼
kfnumDtrijgij

8l
ð2Þ

where fnum is the ratio of real to the simulated number of particles,
rij and gij are respectively the collision cross-section and relative
velocity of collision pairs i and j, and 8l is the volume of the lth cell.
It should be noted that the time step Dt should be chosen in such a
way so that pij rarely exceeds unity, say

probfpij P 1g ! 0 ð3Þ

This procedure avoids the production of at least part of eventu-
ally repeated collisions [5]. For allowed repeated collisions in suc-
cessive time steps that can be realized in SBT there are two
possible answers-one mathematical and other physical: The first
answer is based on the idea that the SBT algorithm was derived
from the Kac collision model assuming a strict Markov collision
process within a time step [6]. The stochastic collision process is
built on the initial state, i.e., set of particle velocities in a cell at
the beginning of each time step and the transition collision proba-
bilities determined for each particle pair in a cell. After completing
the collisions within a time step, a new state (velocity distribution)
is formed that serves in the initial state for the collisions within the
next step. At this moment, the step of particle free motion that
changes the set of particles in the considered cell is neglected. It
is obvious that it is not necessary to remember the past of the col-
lision history. That is, the error realized by repeated collisions is
included in the error of the Markov approximation of the collision
process. In more detail, practically, the second answer is that at
first exchange of particles between cells during the particle free
motion occurs and second the probability of a collision of a given
pair depends on the time step – the smaller time step leads to
smaller probability for collision. The probability for a repeated col-
lision is proportional to the product of probabilities pij � pij. It can
be shown that the order of the events is O[(Dt)2]. Since the accu-
racy of the splitting scheme is O(Dt) for small time steps Dt we
can neglect the repeated collisions as introducing an error of higher
order. Altogether with the particle free motion step this allows to
neglect the effect of the repeated collisions realized in successive
time steps.

In the NTC scheme, the situation is different, i.e., the decrease of
time step leads to decrease of the maximum collision number in a
collision cell within a time step. However, for a given particle pair
the collision probability is determined by the acceptance–rejection
rule with the probability p = (rg)/(rg)max that does not depend on
time step. Thus the probability for a repeated collision of a twice
chosen pair in the NTC algorithm does not decrease with the
decrease of time step. That is why, NTC codes must introduce a
repeated collision preventing rule within more time steps.

Stefanov suggested another strategy that improves the SBT col-
lision procedure: the usage of staggered (dual) grid [5]. Consider-
ing this approach, the SBT collision procedure is applied twice in
two successive half-time steps on a dual grid. In the first half-time
step, the collision algorithm is applied to the standard grid cover-
ing the computational domain while in the second half-time step,
the collision algorithm is applied to a staggered grid, which is cre-
ated by shifting all cells of the primary mesh in each coordinate
direction by half-cell size, i.e., Dx/2, Dy/2. The use of dual grid
makes possible in the second half-time step collisions of particles
located at a separation distance smaller than a cell size, which
belonged to different neighboring cells in the first half-time step.
By translating the cells, they become particles of one cell and could
be checked for a possible collision.

2.2. Transient adaptive subcell (TAS)

During the numerical simulation, particle density in different
parts of the domain becomes non-uniform. For improving the qual-
ity of collisions, it is required that a finer grid is used in zones with
higher particle density so that collision pairs could be selected
more accurately. In this regards, it is suggested that subcell size
dynamically adapts based on the number particle per cell, see
Fig. 1.

Before reaching the steady state, the number of particles per cell
varies during the computational process; consequently, the num-
ber of transient subcells also changes according to local density
gradients. This dynamic subdivision was first employed in Ref.
[3] and further modified and called transient adaptive subcell
(TAS) by Bird [9]. To determine the number of subcells in each
direction in a 2-D geometry, number of desired particles per



Fig. 1. TAS in cells with different PPC: Number of subcells in each cell is computed
according to Eq. (4).

Fig. 2. Schematic of the displaced grid (dashed line), solid lines are the main grid,
grey cell is a sample cell formed after grid movement.
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subcell, PPSC, should be set as one of the inputs. Since SBT algo-
rithm performs the binary collision process accurately with 2 par-
ticles in mean, we considered PPSC = 2. To obtain a squared shape
subcell grid, the number of subcells in x direction is calculated
according to the following relation:

NSCX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nc

PPSC � AR

r
ð4Þ

where Nc is the number of particles in the cell and AR ¼ Dycell
Dxcell

. The
number of subcell in y direction is NSCY = NSCX � AR + 1 unless NSCY -
� NSCX > Nc/PPSC, in this case NSCY = NSCX � AR is selected. The parti-
cles in the subcells are indexed in such order so that a sequential
counting for using in the SBT scheme is attributed to the particles
in each subcell that contains particles. This is the most complex part
of applying the TAS technique for the SBT collision. After this index-
ing, the SBT collision algorithm given by Eqs. (1)–(3) is followed.
Subcells volume, which now replaces the basic cell volume in colli-
sion probability given by Eq. (3), is calculated based on the volume
of the basic cell and number of subcells.

Since the selection of collision pairs in the TAS technique is per-
formed in subcells, the effect of cell-size on the accuracy of the
solution is reduced and much coarser cells could be employed.
The cell size is restricted by a condition that prevents of smearing
of macroscopic gradients during the sampling stage. The accuracy
of results can be improved if we displace the subcell grid. Subcell
in each cell can be displaced in the same way as original cells,
see Section 2.1.

2.3. SBT–TAS technique in DSMC algorithm

Once TAS technique is employed, sampling cell and collision cell
become detached. Thus, the basic cell grid acts as a sampling grid
that can be set as coarse as permitted while the quality of the bin-
ary collision process is controlled dynamically by settling of subcell
grid. On the other hand, previous works [5,7] showed that compu-
tational efficiency of the SBT method decreases with increasing the
number of particles in a collision cell. Using TAS technique, this
issue is completely avoided because the transient adaptive subcells
are set dynamically in such a way that the number of particles
always remains limited.

During the simulation, the particle distribution in cells is not
uniform; therefore, there may be subcells which are empty or con-
tain only one particle. In this case, no collisions are possible in such
cells. In the NTC–TAS approach suggested by Su et al. [10], if such a
case occurs, usually a search through the neighboring subcells is
performed to find a partner for collision pair. In the next sections,
we will show that there is not a need to follow this procedure in
SBT–TAS algorithm. Instead, we use two-half-time-step collision
algorithm and shift the transient adaptive subcell grid in the sec-
ond half-time step in order to prevent the reduction of collision
frequency in the cell. By using a dual subcell grid, the single parti-
cles in cells within the first half-time step will have the chance to
find a collision partner within the second half-time step. This is
shown in the next subsection.

2.4. Displaced grid

One source of error in the DSMC method arises from the parti-
cles that are at a collision separation distance and have the poten-
tial to be selected as a collision pair, but they are not checked for
collision as they are located in two neighboring cells. This difficulty
may be overcome by using a dual grid that is created by translation
of cells (or subcells). For an orthogonal grid, displaced grid can be
created by translating cells in each axis direction by a distance
equal to a half-cell size. Fig. 2 shows schematically the formation
of the displaced grid. In this figure, solid lines show the main grid
and dashed lines show the displaced grid that is obtained by dis-
placing the main gird by a magnitude of Dx/2 in x direction and
Dy/2 in y direction. It should be noted that the number of cells in
the displaced grid is (NCX + 1)(NCY + 1), where NCX and NCY are
the number of cells in the original gird in x and y directions, respec-
tively. Therefore, the volume of internal cells in the displaced grid
is equal to the volume of internal cells in the main grid. However,
the volume of boundary cells should be corrected. Fig. 2 also
depicts two particles that despite being so close, they are not
checked for collision since they are in two different cells in the
main grid. After displacing the grid, these particles belong to one
cell and collision possibility will be checked.

3. Results and discussions

To evaluate the ability of the SBT–TAS scheme to simulate effi-
ciently near continuum rarefied flows, we considered low Reynolds
flow in a micro cavity and high speed flow over a nano scale flat
plate. We implemented the SBT–TAS collision scheme in an
improved version of Bird’s DSMC-2D code. The authors had already
employed the above mentioned DSMC solver in different micro/
nano flow applications, see Refs. [13–18]. In this work, molecu-
lar interactions are modeled using variable hard sphere (VHS)
model and monatomic argon, m = 6.63 � 10–26 kg and
d = 4.17 � 10–10 m, is considered as the gaseous medium.
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Fig. 4. Equilibrium collision frequency ratio in the cavity for a 25 � 25 grid with
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3.1. Low speed flow in the cavity

3.1.1. Equilibrium collision frequency
In order to be sure that applying TAS technique does not reduce

the collision frequency, first we study a flow in the equilibrium
state. Equilibrium state in a cavity geometry is obtained if velocity
of all walls is set equal to zero. In this state, the equilibrium colli-
sion rate per molecule (collision frequency) is given theoretically
(CFth) by [1]:

CFth ¼ 4nd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkBTref

m

r
T

Tref

� �1�x

ð5Þ

where n, d, KB, Tref, m, and x are number density, gas molecular
diameter, Boltzmann constant, reference temperature, mass and
viscosity–temperature exponent, respectively. To calculate this rate
numerically, number of collisions in each cell are counted and
divided by execution time and mean particle numbers per cell as
follows:

CFnum ¼
Ncoll

0:5hNpiTime
ð6Þ

Since two particles are engaged in a collision, coefficient 0.5 appears
in the denominator. If SBT–TAS scheme is applied correctly, the
ratio of the numeral value of CF to its theoretical value, CFRatio,
should be equal to one.

The equilibrium collision frequency ratio of a cavity flow at
Kn = 0.005, Tw = 300 K, simulated on a 25 � 25 grid using SBT–
TAS technique, is shown in Fig. 3. If a fixed subcell grid is employed
for this test, each cell side should be divided into 16 divisions so
that the condition of Dxcoll 6 k=3 becomes satisfied. Using TAS
and assuming 2 particles per subcell, i.e., PPSC = 2, we set 512 par-
ticles per each cell; therefore, 16 � 16 subcells were obtained in
each cell in average. As Fig. 3 shows, mean deviation of the equilib-
rium collision frequency ratio of one is in order of 10�4 and its
maximum is about 0.2%. This proves that TAS technique is applied
correctly and number of collisions in SBT–TAS scheme is accurate
and coincides with the theory.

In our SBT–TAS scheme, adjacent subcells are not searched to
find the collision pair, and collision is not applied in the cells that
contain one particle or less. Therefore, there is a question that once
the number of ‘subcells containing one particle or no particle’
increases, is SBT–TAS scheme able to provide correct collision
RATIO
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Fig. 3. Equilibrium collision frequency ratio in the cavity using a 25 � 25 grid with
PPC = 512 and PPSC = 2.
frequency? To answer this question, the equilibrium collision
frequency ratio in the cavity with 25 � 25 grid and 512 particles
per cell (PPC), but with an average of 0.5 particles per subcell
(PPSC), is considered. In this case, 32 subcells are made in each
direction in average. Fig. 4 shows collision frequency ratio in this
case. Similar to Fig. 3, mean deviation of the equilibrium collision
frequency ratio of 1 is in order of 10�4 and its maximum is about
0.2%. Therefore, it is observed that SBT–TAS scheme is able to
obtain the expected collision rate even without moving subcell
grid.

3.1.2. Lid-driven cavity: 50 � 50 grid
At this stage, we consider SBT–TAS solution for lid-driven cavity

flow at Kn = 0.005, Tw = 300 K and Ulid = 100 m/s. Without using
TAS, a grid with 400 � 400 collision cells is required to satisfy cell
size <k/3 condition. Fig. 5 shows the temperature distribution
along the vertical axis of the cavity. In this figure, SBT results in a
50 � 50 dual grid without TAS (SBT-Dual), with TAS but without
dual grid (SBT–TAS), and with dual grid TAS (SBT–TAS-Dual) are
shown. To validate the results, solution of the NTC model (without
using TAS) obtained from a 200 � 200 grid with 2 fixed subcells in
PPC = 512 and PPSC = 0.5.
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Fig. 5. Evaluation of SBT-Dual, SBT–TAS, SBT–TAS-Dual in prediction of the
temperature profile in the cavity using a 50 � 50 grid.
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each direction and 20 particles per cell was used (here called Cor-
rect solution).

To satisfy condition of: cell size <k/3 in the 50 � 50 grid, it is
necessary to divide each cell into 8 subcells in each direction in
average. The TAS grid was obtained assuming two particles per
each subcell. Therefore, according to the equation of subcell num-
ber, Eq. (4), it is necessary to put 128 particles per each cell. Fig. 5
shows that the solution of SBT-Dual, that is obtained using a
50 � 50 grid without TAS, deviates considerably from the Correct
solution. This is expected as collision pairs are selected from a large
cell. Using TAS, solutions approach to the correct one, with an error
of 1% at the maximum temperature point. In this case, the implica-
tion of the dual grid slightly adds to the accuracy of the solution.

Fig. 6 shows the v-component of the velocity on the vertical axis
of the cavity (Frame 6-a), u and v velocity components (Frames 6-b
and 6-c) and temperature (Frame 6-d) on the horizontal axis of the
cavity. The frames emphasize on the advantage of using SBT–TAS
to obtain accurate solution using a coarse grid. They also show that
dual grid technique slightly affects the accuracy of results. It
should be considered that minor differences between SBT–TAS
solution and the Correct solution may be due to smearing of local
gradients during the sampling stage of the DSMC in a coarse
50 � 50 grid.

3.1.3. Lid-driven cavity: 25 � 25 grid
The SBT–TAS results obtained on a 25 � 25 grid in the cavity

geometry (with the same initial/boundary condition as Sec-
tion 3.1.2) are shown in Figs. 7 and 8. In Fig. 7, horizontal and ver-
tical velocity components and temperature on the vertical axis of
the cavity are shown. In Fig. 8, the same parameters are plotted
on the horizontal axis. Compared to 50 � 50-grid, deviation of
the results from the correct solution is slightly higher, however, the
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Fig. 6. Evaluation of SBT-Dual, SBT–TAS, SBT–TAS-Dual on im
accuracy of SBT–TAS solution on 25 � 25 grid is almost acceptable.
Considering temperature distribution graph, it is observed that
moving subcell grid (SBT–TAS-Dual) enhances the accuracy of
computations. Therefore, it is concluded that using TAS, main grid
can be assumed quite coarse while the accuracy is nearly
preserved.

Fig. 9 shows contours of the mean collision separation (MCS)
normalized to the mean free path inside the cavity. This figure
belongs to the solution over a 25 � 25 grid with PPC = 512. For
pure SBT scheme in this coarse grid, the mean distance of selected
pairs in all cells is more than twice of the mean free path of gas
molecules. According to Fig. 9(b and c), using TAS technique makes
MCS/k less than 0.3 and 0.15 for SBT–TAS and SBT–TAS-Dual tech-
niques, respectively.

Number of particles per subcell (PPSC) is another parameter
that could be effective in the TAS performance. This parameter
may have two opposing effects on the solution accuracy. First, if
PPSC becomes small, cell will be divided into smaller subcells,
and as a result, solution accuracy may improve due to decrease
in the mean collision separation. However, this improvement is
obtained with the cost of increasing the probability of creating sub-
cells with only one particle. As our SBT–TAS algorithm does not
search in adjacent subcells, this could reduce the accuracy of
solutions.

Effect of decreasing PPSC on the mean collision separation for
cavity flow using a 25 � 25 grid and 512 particles per cell is shown
in Fig. 10. In this figure, upper row shows the SBT–TAS solution and
the lower row depicts the results of SBT–TAS-Dual. The figure gen-
erally confirms that by decreasing the PPSC from 2 to 1, mean col-
lision separation decreases. In the case of PPSC = 2, the average
value of MCS/k in SBT–TAS-Dual solution is about half of the corre-
sponding value in the SBT–TAS solution. By further decreasing
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proving DSMC results in the cavity using a 50 � 50 grid.
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Fig. 7. Results of the TAS technique on the vertical axis of the cavity obtained using 25 � 25 grid-PPC = 512, PPSC = 0.5.
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PPSC from 1 to 0.5, the average amount of MCS/k increases for SBT–
TAS while it slightly decreases for SBT–TAS-Dual. Therefore, it
could be concluded that PPSC = 1 is an optimal choice while the
solution with PPSC = 2 remains within the limit of appropriate
MCS/k, which is smaller than 0.3 [4].

Fig. 11 shows the effects of the number of PPSC on the accuracy
of the results of SBT–TAS technique (Frames 11(a) and 11(c)), and
SBT–TAS-Dual technique (Frames 11(b) and 11(d)). The tempera-
ture profile on the vertical and the horizontal axis of the cavity
are plotted. This figure shows that reduction of PPSC in SBT–TAS
technique leads to an increase, and in SBT–TAS-Dual technique, it
leads to a decrease of the accuracy of results. Similar graphs for
the velocity components represent the same conclusion about
PPSC effects in SBT–TAS and SBT–TAS-Dual. This observation
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shows that any reduction in mean collision separation does not
eventually result in an increase in accuracy [19]. As already men-
tioned, decreasing of the PPSC may correspond to more subcells
with only 1 particle or less, where collision probability is not
considered.

3.1.4. Computational efficiency
We already showed that coarser grids can be used in SBT–TAS

without significant deviation from the benchmark (Correct) solu-
tion. This is beneficial in that it reduces a large amount of required
computer memory. Relative computation time for the SBT–TAS
technique in the cavity flow is reported in Table 1. The data are
normalized with the required computation time for the standard
(without TAS) NTC (Correct) solution. The required computation
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of the required time for the standard NTC solution (without TAS)
and less than half of the computational time for SBT without
TAS. Thus, application of TAS technique not only decreases the
memory requirement, but also reduces the execution time appro-
priately. As execution time of 50 � 50 and 25 � 25 grids with
PPSC = 2 are almost equal, using of the 50 � 50 grid is preferred
as it provides more accurate output quantities. On the meanwhile,
execution time decreases as PPSC decreases, while the accuracy of
the solution increases in the case of the SBT–TAS. Table 1 shows
that the computational time of the 25 � 25 grid with staggered
(dual) subcells and PPSC = 0.5 is competitive with the 50 � 50 grid
with PPSC = 2. Table 1 also indicates that the moving subcells grid
adds 40% to the execution time while it does not have any signifi-
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cant effect on improving the results. Therefore, it seems that using
the dual grid technique should be restricted to flows where such a
small improvement in accuracy is critical.

Fig. 12 shows the average number of subcells in the cavity test
with 25 � 25 grid and PPC = 512, PPSC = 0.5. The figure shows that
the number of subcells in each region is different depending on the
particle density in the flow. Particle density is proportional to the
inverse of the local Knudsen number. Thus, it is expected that mul-
tiplication of the average subcells number by the local Knudsen
remains nearly constant, see Fig. 13.

This constant number is approximately equal to the product of
the global Knudsen number by the local subcells number, where
the latter is given by Eq. (3).
Knloc � hNSCiloc ffi Kn� NSC ¼ Kn
PPC
PPSC

ð7Þ
Table 1
Relative computation time of different techniques in the cavity flow.

Scheme Grid PPC PPSC Time

NTC 200 � 200 20 – 1
SBT-Dual 400 � 400 2 – 0.79
SBT–TAS 50 � 50 128 2 0.36
In this equation the Knloc stands for local Knudsen number which is
the ratio of the local mean free path to the cavity length. We
computed both sides of this equation, for different test conditions.
As Table 2 shows, equality shown in Eq. (7) is almost verified.

Therefore, number of subcells per cell can be calculated directly
from the following equation:
25 � 25 512 2 0.36
25 � 25 512 1 0.33
25 � 25 512 0.5 0.28

SBT–TAS-Dual 50 � 50 128 2 0.51
25 � 25 512 2 0.52
25 � 25 512 1 0.47
25 � 25 512 0.5 0.39
NSC ¼
Kn

Knloc

PPC
PPSC

ð8Þ

In this case, the number of subcells in each direction is the
square of NSC.
3.2. Supersonic flow over a nano-scale flat plate

Our second test case is the flat plate with the same boundary
conditions as reported in Ref. [7]. The computational domain is a
100 � 60 nm rectangle. The length of the plate is considered as
90 nm and surface temperature is Twall = 500 K. The flow passes
over the plate with a free-stream velocity of 1412.5 m/s at the
temperature of 300 K. The Knudsen number is Kn = 0.01 based on
the plate length. Inlet, outlet and upper boundaries are considered
as the free-stream boundary condition. To provide more realistic
flow simulation, a specular wall boundary condition is applied to
the first 10% of the domain at the upstream, see Fig. 14.

The computational domain is a 100 � 60 nm rectangle which
contains a short section of 10% length of 10% specular wall bound-
ary condition at the upstream of plate leading edge so that more
realistic boundary conditions at the beginning of the plate is pro-
vided, see Fig. 14.
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Table 2
Evaluation of Eq. (7).

Grid PPC PPSC KnlochNSCiloc Kn PPC
PPSC

50 � 50 128 2 0.30 0.32
25 � 25 512 2 1.24 1.28
25 � 25 512 1 2.51 2.56
25 � 25 512 0.5 5.04 5.12
25 � 25 512 0.1 25.41 25.60
25 � 25 128 0.5 1.24 1.28

Kn = 0.01
Uin = 1412.5 m/s
Tin = 300 K

Twall= 500 K

specular collision

x
y

Fig. 14. Geometry and flow configuration for the nano-scale flat plate.

X/L

V
/U

in

0 0.2 0.4 0.6 0.8 1

0

0.04

0.08

0.12

Benchmark
200×120
100×60
70×42
30×18

Y/L = 0.08
SBT-TAS
PPSC = 2

Fig. 15. Flow over the flat plate: SBT–TAS solutions compared with the benchmark
NTC solution.

274 A. Amiri-Jaghargh et al. / Computers & Fluids 102 (2014) 266–276
As we showed in Ref. [7], a mesh with 370 � 222 cell is the one
which satisfies the grid size requirement (cell size < k/3). In this
section, we will show that using TAS technique permit us to use
coarser grids without losing the accuracy. Fig. 15 shows the non-
dimensional vertical velocity component along the line Y/L = 0.08
from different grids. Standard NTC solution (without TAS) with
370 � 222 grid and PPC = 20 is chosen as the benchmark solution.
Additionally, SBT–TAS solution with PPSC = 2 is used with different
grids. PPC is chosen in a way that the whole number of particles in
the domain becomes approximately equal to 370 � 222 � 2, which
is the total number of particles used in the SBT scheme. Therefore,
particles per cell is 7, 28, 56, and 305 for 200 � 120, 42 � 60,
70 � 100, and 30 � 18 grid numbers, respectively. As Fig. 15 dem-
onstrates, SBT–TAS solution on a 200 � 120 grid coincides with the
benchmark. Additionally, SBT–TAS solution over the 70 � 42 grid,
which is about 28 times coarser than the benchmark grid, is rea-
sonably close to the benchmark solution, i.e., it has around 1% error
at X/L = 0.3.

Fig. 16 shows the effect of applying TAS technique on improving
the solution for temperature profile along the line Y/L = 0.08 and Y/
L = 0.2. The results correspond to a grid with 70 � 42 cells. By
applying the TAS technique, the deviation of SBT solution from
the benchmark is reduced. It should be noted that temperature
profile will coincide with the corresponding SBT–TAS profile if
we apply dual subcells grid (SBT–TAS-Dual), thus, the latter is
not shown here.

Shown in Fig. 17 is the mean collision separation in the cases
with and without using TAS. The figure illustrates that mean colli-
sion separation is reduced to lower than 0.18 once TAS technique is
applied. Changes in the flow parameters are considerable in the
shock wave and boundary layer regions; therefore, if the sampling
grid is not fine enough at these regions, the corresponding flow
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Table 3
Relative computation time for TAS technique for the flow field solution over the flat
plate.

Scheme Grid PPC PPSC Relative time

NTC 370 � 222 20 – 1
SBT-Dual 370 � 222 2 – 1.58
SBT–TAS 200 � 120 7 2 1.76

100 � 60 28 2 1.38
70 � 42 56 2 1.31
30 � 18 305 2 1.26
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parameters would not be captured properly. This is more visible in
the coarse grid with 30 � 18 cells. Fig. 15 showed that the results
corresponding to this grid extremely deviate from the benchmark
solution, while the mean collision separation in this case is around
MCS=k ¼ 0:14 in the whole domain.

Fig. 18(a) demonstrates that TAS technique makes the collision
grid quite fine in the shock wave and boundary layer regions. In
this figure, contours of average subcells per cell are plotted. The
figure shows that in the region after the shock wave, where num-
ber density increases, collision grids are about 225 times finer than
the sample grids, while this ratio is about 150 in the free stream
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Fig. 18. Suitability of the TAS technique for controlling the collision in 30 � 180 grid wit
local Knudsen number by the mean subcells number (Knlocal � hNSCi).
region. Therefore, it can be concluded that TAS technique controls
the collision grid suitably; however, if the changes in flow proper-
ties are considerable, i.e., shock wave region, coarse grids smear
sharp flow gradients. Fig. 18(b) shows the contour of the product
of the local Knudsen number by the mean subcells number. As is
observed, this quantity is almost constant and fluctuates around
its’ average that is around 1.65.
3.2.1. Computational performance
Relative computational time for flow field solution over the flat

plate is reported in Table 3. Execution time is normalized with
respect to the benchmark solution time. Moreover, solution time
is reported for the pure SBT without a TAS solution in 370 � 222
grid with PPC = 2. Sample size is the same for all cases reported
in the table. Compared to the non-TAS solution, Table 3 shows that
execution time decreases about 17% by applying the TAS technique
in 70 � 42 grid. Even though the results of 200 � 120 grid coincide
with the benchmark solution, it needs about 11% more computa-
tional time compared to the non-TAS solution, i.e., the advantage
of TAS technique is restricted to the decreasing the required com-
puters memory in this case.
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4. Conclusions

In this work, we suggested a combination of the simplified Ber-
noulli trial (SBT) collision algorithm with the transient adaptive
subcells (TAS) to simulate low Knudsen/low speed and low Knud-
sen/high gradient rarefied flows at micro/nano scales more effi-
ciently. The main advantage of the proposed strategy is that it
allows accurate DSMC calculations using a much smaller number
of particles per subcell and coarser grid with less computation time
compared to the standard NTC scheme. The TAS technique is not
applied for the NTC scheme. We tested cavity flow at Kn = 0.005
and showed that our SBT–TAS solution using a coarse grid of
25 � 25 agrees suitably with the NTC solution using a 200 � 200
cell with 2 � 2 fixed subcells and PPC = 20, while the computa-
tional cost of the SBT–TAS is quite lower. We showed that using
of TAS grid movement (SBT–TAS-Dual) decreases the mean colli-
sion separation while PPSC decreases; however, the extra compu-
tational cost of the grid movement is considerable and accuracy
gain is not always guaranteed. We showed that the product of
the local Knudsen number by the average subcells number in a cell
remains constant and suggested an alternative formulation for NSC,
that is the number of subcell in each direction. For flow over the
flat plate geometry, we showed that even though TAS scheme
could provide enough number of collision subcells in coarse grids,
the smearing of gradients due to a larger sample cell size could
deteriorate the final solution.
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