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ABSTRACT: This study is investigated the optimum parameters for a tuned mass damper 
(TMD) under the seismic excitation. Shuffled complex evolution (SCE) is a meta-heuristic 
optimization method which is used to find the optimum damping and tuning frequency ratio 
for a TMD. The efficiency of the TMD is evaluated by decreasing the structural displacement 
dynamic magnification factor (DDMF) and acceleration dynamic magnification factor 
(ADMF) for a specific vibration mode of the structure. The optimum TMD parameters and 
the corresponding optimized DDMF and ADMF are achieved for two control levels 
(displacement control and acceleration control), different structural damping ratio and mass 
ratio of the TMD system. The optimum TMD parameters are checked for a 10-storey building 
under earthquake excitations. The maximum storey displacement and acceleration obtained by 
SCE method are compared with the results of other existing approaches. The results show that 
the peak building response decreased with decreases of about 20% for displacement and 30% 
for acceleration of the top floor. To show the efficiency of the adopted algorithm (SCE), a 
comparison is also made between SCE and other meta-heuristic optimization methods such as 
genetic algorithm (GA), particle swarm optimization (PSO) method and harmony search (HS) 
algorithm in terms of success rate and computational processing time. The results show that 
the proposed algorithm outperforms other meta-heuristic optimization methods.  

Keywords: Dynamic Magnification Factors, Earthquake Excitation, Response Reduction, 
Shuffled Complex Evolution (SCE), Tuned Mass Damper (TMD) 

 
INTRODUCTION

1
 

Tuned mass damper (TMD) has attracted 

the attention of many researchers in the 

field of passive control devices in recent 

years. A TMD consists of a lumped mass 

with a spring and viscous damper that is 

usually attached to the top of a building to 

attenuate undesirable vibration in the 

structure. The TMD concept was firstly 

suggested by Frahm (1909), who invented 

an undamped dynamic vibration absorber 

to decrease the rolling motion of a ship and 
                                                           
 Corresponding author Email: shariatmadar@um.ac.ir  

ship hull vibration. Ormondoyd and Den 

Hartog (1928) used a damped TMD to 

mitigate the vibration of an undamped 

single degree of freedom (SDOF) structure 

subjected to sinusoidal force excitation. 

After that, Den Hartog (1956) investigated 

the optimum TMD parameters in an 

undamped SDOF structure for external and 

support harmonic excitation. He also 

developed closed-form expressions for 

optimum tuning frequency and damping 

ratio of TMD in the term of TMD mass. 

Later on, many researchers such as 

(Snowdon 1959; Falcon et al. 1967; Gupta 
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and Chandrasekaran 1969; Wirsching and 

Yao 1973; Wirsching and Campbell 1973; 

Dong 1976; McNamara, 1977; Jagadish et 

al., 1979; Luft, 1979; Warburton and 

Ayorinde, 1980; Kaynia et al., 1981 and 

Thompson, 1981) investigated optimum 

TMD parameters where the damping was 

included in the main structure. They found 

optimum parameters for different types of 

excitations including: stationary and non-

stationary base acceleration modeled as 

Gaussian white-noise random processes.  

Sladek and Klingner (1983) used the Den 

Hartog formula to find the optimum 

frequency and damping ratio for a TMD. 

The results of analysis of a 25-storey 

building using 2 time history records 

revealed that the TMD was not effective in 

decreasing the structural response. 

Villaverde (1985), Villaverde and Koyama 

(1993), Villaverde (1994), Villaverde and 

Martin (1995) analytically determined that 

a TMD performed best in seismic 

applications when the first 2 complex 

modes of vibration of the combined 

structure and the TMD have the same 

modal damping ratio as the average 

damping ratio of the structure and TMD. 

Tsai and Lin (1993) proposed a numerical 

searching procedure to find the optimum 

tuning frequency and damping ratio for a 

TMD by minimizing the steady-state 

response of a structure for two different 

harmonic excitations including: 

displacement and acceleration base 

excitation. They also derived explicit 

formulae using a curve-fitting sequence. 

There was no general agreement on the 

efficiency of TMD in decreasing the 

structural response for seismic applications 

until Sadek et al. (1997). They showed that 

the Villavede’s formulation does not result 

in an equal modal damping ratio in the first 

2 modes of vibration for mass ratios larger 

than 0.005. They investigated the optimum 

parameters for TMD and found that TMD 

effectively decreased the peak response of 

a multi-DOF structure for earthquake 

excitations. After that, numerical searching 

method is widely used for optimization of 

TMD and multi-TMDs parameters (Rana 

and Soong, 1998; Li, 2002; Lee et al., 

2006; Bakre and Jangid, 2007). 

Rana and Soong (1998) used the 

numerical approach and determined 

optimum tuning frequency and damping 

ratio for a TMD. They also studied the 

effect of detuning on TMD performance 

and suggested that the optimum TMD 

parameters differ depending on whether a 

TMD is designed for the fundamental 

frequency of base excitation or the 

dominant frequency of main mass 

vibration. Bakre and Jangid (2007) 

employed a numerical searching method by 

minimizing the mean square responses of 

displacement and velocity of the main 

system and forces transmitted to the support 

under external force and base acceleration 

modeled as a Gaussian white-noise random 

process. They found that the optimum 

tuning frequency of TMD was strongly 

affected by the damping level of the system, 

but the optimum damping ratio was not 

sensitive to the structural damping ratio.  

Optimizations of TMD problems have 

been carried out using either conventional 

mathematical methods (Villaverde, 1985; 

Villaverde and Koyama, 1993) or 

numerical searching techniques (Tsai and 

Lin, 1993; Sadek et al., 1997; Rana and 

Soong, 1998; Li, 2002; Bakre and Jangid, 

2007). The numerical searching 

approaches are usually time-consuming 

and conventional methods require exact 

mathematical calculations. 

The difficulties associated with 

mathematical optimization methods and 

numerical searching procedures have 

contributed to the development of 

evolutionary algorithms. These types of 

algorithms are stochastic numerical search 

methods derived from biological evolution 

or the social behavior of a species. All the 

meta-heuristic methods have a common 

approach. They find the optimum solution 

of a problem like the numerical searching 

techniques, but with the better 
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convergence rate and lower computational 

processing times. The oldest evolutionary-

based method is the genetic algorithm 

(GA) developed by Holland (1992). GA is 

based on the Darwinian principle of the 

survival of the fittest and evolution 

through reproduction. In GA algorithm, the 

solution is saved in the form of a 

chromosome consisting of a set of genes. 

The GA process continues by producing 

the offspring chromosomes. If they 

provide a better solution, they will be used 

to evolve the population. Finally, the 

individual with the best fitness is chosen as 

the optimum solution. Particle swarm 

optimization (PSO) method is another 

meta-heuristic algorithm developed by 

Kennedy and Eberhart (1995). It is based 

on the social behavior of a bird flock 

migrating to an unknown destination. In 

this method, each solution is a bird in the 

flock called as a particle. In PSO process, 

the birds do not spawn, but evolve a social 

behavior to reach a destination. Harmony 

search (HS) is a random search method 

developed by Geem et al. (2001) based on 

a musical performance. Music increases in 

enjoyment for the listeners when the 

musician searches for better harmony in a 

musical instrument. Like this, optimization 

is developed to find the optimum solution 

(perfect state) of a given problem with 

minimal cost.  

These meta-heuristic methods have 

been successfully applied to optimize 

TMD parameters. Hadi and Arfiadi (1998) 

used GA to find the optimum damping and 

tuning frequency ratio of a TMD for a 10-

storey shear building by minimizing the 

maximum displacement of the building 

floors. Leung et al. (2008) found the 

optimum TMD parameters for a SDOF 

structure subjected to a non-stationary base 

excitation using PSO algorithm. Leung and 

Zhang (2009) also used PSO to find the 

optimums TMD parameters by minimizing 

the mean square displacement response 

and displacement amplitude of the main 

system for base ground acceleration and 

external dynamic forces. Explicit formulae 

have also been developed using the curve-

fitting technique. Bekdaş and Nigdeli 

(2011, 2013) proposed HS for optimization 

of TMD parameters under harmonic base 

acceleration. Farshidianfar and Soheili 

(2013 a,b) used the artificial bee colony 

(ABC) and ant colony (AC) approaches to 

find the best TMD parameters for 

decreasing the seismic vibration of a 40-

storey building considering soil-structure 

interaction (SSI) effects. The effectiveness 

of TMD in wind excitation considering 

SSI effects has been also demonstrated by 

Liu et al (2008). The optimum parameters 

of TMD in inelastic structures is 

investigated by Woong (2008), Woong and 

Johnson (2009), Sgobba and Marano 

(2010), Woo et al. (2011), Mohebbi, and 

Joghataie (2012). 

Duan et al. (1994) presented an 

optimization method known as the shuffled 

complex evolution (SCE) for dealing with 

the exotic problems encountered in 

conceptual watershed model calibration. 

This method is based on a combination of 

the best features from several existing 

methods. SCE has been used to optimize 

many types of engineering problems such 

as for water distribution networks (Eusuff 

and Lansey 2003, Liong and Atiquzzaman 

2004). SCE is a meta-heuristic algorithm 

designed to explore space for obtaining 

global optima using a population of 

potential solutions. This algorithm solves 

the optimization problems through the 

following steps: 1) combination of 

deterministic and probabilistic approaches, 

2) systematic evolution of a complex of 

points, 3) competitive evolution and 4) 

complex shuffling. Compared with other 

meta-heuristic methods like GA, PSO and 

HS algorithms, SCE has attractive features 

that include ease of application, a fast 

convergence rate and low computational 

time. 

To the best of our knowledge, there is 

no published paper on the optimization of 

TMD parameters using SCE algorithm. In 
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this paper, SCE is utilized to get the 

optimum tuning frequency and damping 

ratio of a TMD system to control the first 

vibration mode of a real structure. For a 

fast and general optimization, a harmonic 

base acceleration is used. The 

minimization of displacement and 

acceleration dynamic magnification factors 

(DDMF and ADMF) is chosen as the 

optimization criteria. The final optimum 

TMD parameters are examined for a 10-

storey building under earthquake 

excitation and the results are compared 

with the results of other approaches (Den 

Hartog 1956, Sadek et al. 1997, Hadi and 

Arfiadi 1998). To show the efficiency of 

the adopted algorithm (SCE), a 

comparison is also made between SCE and 

other meta-heuristic optimization methods 

(GA, PSO and HS) in terms of success rate 

and computational processing time. 

STRUCTURAL MODEL 

A TMD is assumed to be a point mass 

connected to a structure through a spring 

and viscous damper. Most studies show 

that only the first mode of a structure gives 

a good approximation of structural 

responses. As a result, the structure is 

modeled as a SDOF system. In this study, 

TMD is taken into account for the control 

of the first vibration mode of a structure 

and the analytical model shown in Figure 

1. Since TMD is also modeled as a SDOF 

system, the total DOF of the combined 

structure and TMD is considered to be 2. 

The equations of motion for the 

structure and TMD under base excitation 

are expressed with Eqs. (1) and (2), 

respectively.  

 

( )

( ) ( )

s s g s s s s

d d s d d s

m x x c x k x

c x x k x x
 (1) 

( ) ( )

( ) 0

d d g d d s

d d s

m x x c x x

k x x
 (2) 

 

The parameters of the system are 

described by first-mode modal 

characteristics; ms: is the first-mode modal 

mass, cs: is the first-mode modal damping 

and ks: is the first-mode modal stiffness of a 

multi-DOF structure. Similar to the main 

system, md, cd and kd: are the mass, 

damping and stiffness of the TMD system, 

respectively. sx : is the displacement of the 

main mass system and dx : is the 

displacement of the TMD system -both 

modeled as a SDOF system- with respect to 

the ground. gx : is the ground acceleration. 
 

 

 
 

Fig. 1. SDOF structure with a TMD. 
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The natural frequency and viscous 

damping ratio of the main system are 

defined as the first mode frequency and the 

first modal damping ratio of a multi-DOF 

structure, respectively, shown by Eq. (3). 

 

,
2

s s
s s

s s s

k c
w

m m w
 (3) 

 

Similary, d
d

d

k
w

m
and 

2

d
d

d d

c

m w
 

denote the natural frequency and damping 

ratio of the TMD, respectively.  

For a fast and general analysis, the 

external force is considered to be harmonic 

base acceleration, ext gF mx  where 

iwt

gx e Cos wt i Sin wt  and w  is the 

natural frequency of harmonic loading. 

The steady-state response of the main and 

TMD systems can be estimated as 
iwt

s sx H e  and 
iwt

d dx H e , respectively. 

By substituting the response equations ( sx

and dx ) into Eqs. (1) and (2), the transfer 

function of the combined structure with 

TMD can be expressed as in Eq. (4).  

 

2
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After some manipulation and 

simplification, the DDMF is derived as given 

in Eq. (5), where  is the ratio of the 

excitation frequency to the first mode 

frequency of the structure (
s

w

w
). The 

mass ratio ( ) is the mass TMD to the main 

mass system ( d

s

m

m
) and tuning frequency 

ratio ( f ) is the TMD frequency to the first 

mode frequency of the structure ( d

s

w
f

w
). 
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 (5) 

 

The ADMF is calculated as following: 

2

, ( ) ,

( )

iwt iwt

s s s s s

iwt

s

x H e x iw H e x

w H e
  

The absolute acceleration of the main 

system is obtained by adding ground 

acceleration gx  to relative acceleration sx , 

2

2(1 )

iwt iwt

s g s

iwt iwt

s a

x x w H e e

w H e H e
  

The absolute value of aH  is the ADMF 

and is expressed as in Eq. (6). 
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Now, the cost function is defined by Eq. 

(7): 

 

( ) . .deCF x DDMF ADMF (7) 

 

where dex :  is the decision variable -

,de dx f -   and  : are the constant 

coefficients changes between 0 and 1. 

The SCE algorithm is implemented to 

find the optimum damping ( d ) and tuning 

frequency ratio of the TMD ( f ) to 

minimize the cost function for different 

values of  and , . In most studies, the 

mass ratio ( ) is not regarded as an 

important factor in optimization process 

(Hadi and Arfiadi, 1998; Bakre and Jangid, 

2007; Leung and Zhang, 2009); however, 

considering mass ratio as an optimization 

parameter results in selection of a large 

and impractical mass. In this study, the 

optimization is performed for different 

mass ratios where a fixed mass ratio is 

assigned for each step of optimization. 

When the optimum parameters of TMD 

are obtained, they will be examined for a 

10-storey building (Sadek et al., 1997) 

under the Imperial Valley Irrigation 

District (El-Centro) 1940 NS ground 

acceleration record. For the purpose of 

time history analysis, the equation of 

motion of the structure with TMD is given 

by Eq. (8): 

 

1 gMx Cx Kx M x (8) 

 

where M, C and K: are the mass, damping, 

and stiffness matrices of the combined 

structure, respectively.  

For an easy and fast analysis, the 

equation of motion is converted into a state 

space equation (Eq. 9). 

 

X AX BU (9) 

 

Where 

 

1 1

0 0
, ,

1

, , g

I
A B

M K M C

x x
X X U x

x x

 

(10) 

 

SHUFFLED COMPLEX EVOLUTION 

(SCE)  

 

The SCE algorithm is designed to find the 

global minimum of a function and was 

introduced by Duan et al. (1994). The SCE 

algorithm is not based on mathematical 

calculations, as are traditional optimization 

methods. In this algorithm, s solution 

vectors are randomly generated to form a 

population. Each solution vector consists 

of a set of values ( fd , ). The SCE 

algorithm operates according to the 

following steps: 

 

Step 1: Initialize parameters 

 

( ) . .deCF x DDMF ADMF (11) 

 

where CF: is objective function, dex : is 

decision variables, ,de dx f , :,  are 

coefficients of the objective function, n: is 

number of decision variables, s: is number 

of solution vectors, p: is number of 

complexes, m: is number of points in each 

complexes, q: is number of sub-complexes, 

B: is number of iterations in CCE and NI: 

is number of iterations in SCE. 

Step 2: Generate sample     
Randomly generate s solution vectors in 

the probable parameters space and evaluate 

the objective function. 

Step 3: Rank solution vectors  
Sort the solution vectors in order of 

increasing objective function.  
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Step 4: Partition into complexes 
Partition s into p complexes, each 

containing m points. Duan et al. (1994) 

suggested that the best value for m is 2n+1. 

The complexes are partitioned so that the 

first complex contains every ( 1) 1p k  

ranked point; the second complex contains 

every ( 1) 2p k  ranked point and so on, 

1,2,...., .k m  

Step 5: Evolve each complex 
Each complex is then divided into q 

sub-complexes and propagates each sub-

complex to find a new point with a smaller 

cost according to the Competitive 

Complex Evolution (CCE) algorithm. The 

CCE algorithm uses simplex downhill 

search schemes to effectively explore 

optimum solution vectors and is repeated 

for B times (B usually equals m). Parallel 

searching on several populations and 

application of the gradient simplex method 

to find the optimum solution indicates the 

superiority of the SCE over other meta-

heuristic algorithms.   

Step 6: Shuffle complexes 
Combine the m points in the evolved 

complexes into a single sample population 

and sort the sample population in order of 

increasing objective function. Repartition the 

sample population into p complexes 

according to the procedure defined in step 4. 

Step 7: Check the termination criterion 
Steps 4, 5 and 6 are repeated until the 

termination criterion is satisfied. Figure 2 

shows the schematic diagram of SCE 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Flowchart of SCE algorithm.  Step 1: Initialize Parameters 

 

Step 2: Generate sample, i=1:s 

 

( ) . .deCF x DDMF ADMF  

CF: objective function 

dex : decision variables, 

, :coefficients of the objective 

Step 3: CCE algorithm, i=1:B 

 

 

 Step 1: Initialize Parameters 

 

( ) . .deCF x DDMF ADMF  

CF: objective function 

dex : decision variables, 

, : coefficients of the objective 

function 

n: number of decision variables 

s: number of solution vectors 

p: number of complexes 

m: number of points in each complexes 

q: number of subcomplexes 

B: number of iterations in CCE 

NI: number of iterations in SCE 

 

 Step 2: Generate sample, i=1:s 

 
Randomly generate the solution vectors 

 Calculate cost function  

Sort the solution vectors 

 

 

 
Step 3: CCE algorithm, i=1:B 

 

Select the subcomplexes from the complexes  

and compute the centroid of the worst point 

 

Include new solution and exclude 

worst solution 

 

Randomly generate a point 

 

Reflecting the worst 

point through the 

centroid 

 

Contraction 

 

 
Step 4: Shuffle complexes 

 
Combine the points in 

the evolved complexes 

into a single sample 

Sort the solution 

vectors 

 

 
Step 5: Check stopping criterion 

 

Repeat steps 

3 and 4 

 

 

Terminate 

computation 

 

NI 
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OPTIMUM TMD PARAMETERS  

The SCE method is employed to find the 

optimum TMD parameters (i.e. the damping 

ratio and the tuning frequency ratio of the 

TMD). The upper bound and the lower bound 

of the tuning frequency ratio are assumed to 

be 0.8 and 1.2, while the upper and lower 

bounds for damping ratio are considered to be 

0 and 0.5, respectively. The mass ratio is 

given as a fixed value for each step. The 

parameters of the SCE algorithm are chosen 

as: n=2, s=20, p=4, m=5, q=2, B=5 and 

NI=100. Optimum TMD parameters ( fd , ) 

and the corresponding response quantities of 

the main system (DDMF and ADMF) are 

obtained for different structural damping 

ratios ( s ), different mass ratios of the TMD 

system ( ) and two control levels.  

Figures 3 and 4 show the variation of 

DDMF and ADMF versus the mass TMD 

ratio for different damping values of the main 

system and two cost functions ( 1, 0  and 

0, 1). Two bounds for each structural 

damping ratio demonstrate two distinct control 

levels (i.e. displacement control and 

acceleration control). In Figure 3, the lower 

bound indicates DDMF values when TMD is 

tuned for displacement control ( 1, 0)  

and the upper bounds indicates DDMF values 

when TMD is tuned for acceleration control 

( 0, 1) . In Figure 4, the lower bound 

indicates ADMF values when TMD is tuned 

for acceleration control ( 0, 1)  while the 

upper bounds indicates ADMF values when 

TMD is tuned for displacement control 

( 1, 0)  

Figures 3 and 4 show that the response of 

the main system (maximum displacement 

and acceleration) decreases as mass TMD 

ratio and structural damping ratio increase. It 

can also be understood that the maximum 

response of the main system differs 

according to the cost function. The 

differences in responses become clearer for 

low-level damping of the structure and the 

large mass ratio of the TMD system. The 

DDMF and ADMF can be obtained for any 

ideal cost function by interpolation method 

using Figures 3 and 4. All the results are 

presented in Table 1. 

 

Table 1. Optimum TMD parameters for a single degree of freedom main system under harmonic base 

acceleration for different mass ratio and different cost function (ξs = 0.02, 0.05 and 0.1). 

ξs= 0.02 α=1, β=0 (Displacement Control) α=0, β=1 (Acceleration Control) 

μ ξd f DDMF ADMF ξd f DDMF ADMF 

0.005 0.0467 0.9901 11.7409 12.005 0.0467 0.9926 12.039 11.713 

0.010 0.0656 0.9827 9.5283 9.8078 0.0646 0.9869 9.8819 9.4723 

0.015 0.0797 0.9756 8.3392 8.6261 0.0794 0.9814 8.7154 8.2612 

0.020 0.0923 0.9688 7.5567 7.8412 0.0913 0.9761 7.9541 7.4597 

0.025 0.1036 0.9621 6.9885 7.2672 0.1019 0.9709 7.4034 6.8743 

0.030 0.1138 0.9556 6.5504 6.8246 0.1112 0.9658 6.9817 6.4207 

0.035 0.1230 0.9491 6.1989 6.4702 0.1205 0.9608 6.6396 6.0549 

0.040 0.1318 0.9428 5.9086 6.1752 0.1293 0.9558 6.3574 5.7512 

0.045 0.1406 0.9366 5.6636 5.9224 0.1374 0.9509 6.1210 5.4935 

0.050 0.1489 0.9304 5.4531 5.7053 0.1444 0.9461 5.9229 5.2711 

0.055 0.1566 0.9244 5.2700 5.5173 0.1522 0.9414 5.7450 5.0765 

0.060 0.1647 0.9184 5.1087 5.3475 0.1592 0.9367 5.5913 4.9042 

0.065 0.1719 0.9125 4.9653 5.1998 0.1662 0.9320 5.4541 4.7502 

0.070 0.1795 0.9067 4.8367 5.0633 0.1725 0.9274 5.3339 4.6115 

0.075 0.1868 0.9009 4.7207 4.9406 0.1793 0.9229 5.2228 4.4856 

0.080 0.1937 0.8952 4.6154 4.8295 0.1857 0.9184 5.1229 4.3707 

0.085 0.2007 0.8895 4.5192 4.7273 0.1917 0.9140 5.0332 4.2653 

0.090 0.2071 0.8839 4.4310 4.6347 0.1974 0.9096 4.9523 4.1681 

0.095 0.2142 0.8785 4.3498 4.5456 0.2033 0.9053 4.8761 4.0780 

0.100 0.2209 0.8730 4.2746 4.4647 0.2091 0.9010 4.8063 3.9943 

ξs= 0.05 α=1, β=0 (Displacement Control) α=0, β=1 (Acceleration Control) 
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μ ξd f DDMF ADMF ξd f DDMF ADMF 

0.005 0.0511 0.9826 7.1242 7.3085 0.0502 0.9877 7.3075 7.1413 

0.010 0.0699 0.9732 6.2862 6.4983 0.0693 0.9808 6.5194 6.2813 

0.015 0.0856 0.9648 5.7702 5.9896 0.0834 0.9744 6.0382 5.7468 

0.020 0.0982 0.9567 5.4018 5.6279 0.0958 0.9684 5.6938 5.3621 

0.025 0.1096 0.949 5.1188 5.3471 0.1073 0.9626 5.428 5.0641 

0.030 0.1205 0.9416 4.8911 5.1184 0.1167 0.9569 5.2195 4.8226 

0.035 0.13 0.9343 4.7022 4.9299 0.1263 0.9514 5.0435 4.6206 

0.040 0.1398 0.9273 4.5418 4.7659 0.1352 0.946 4.8954 4.448 

0.045 0.1486 0.9204 4.4033 4.6254 0.143 0.9408 4.7704 4.2979 

0.050 0.1574 0.9136 4.282 4.5002 0.1511 0.9356 4.6588 4.1655 

0.055 0.166 0.907 4.1746 4.3886 0.1588 0.9305 4.5602 4.0475 

0.060 0.1738 0.9005 4.0786 4.2901 0.1656 0.9255 4.4757 3.9412 

0.065 0.182 0.8941 3.9922 4.1985 0.1729 0.9205 4.3967 3.8449 

0.070 0.1895 0.8877 3.9138 4.117 0.1791 0.9157 4.3292 3.7569 

0.075 0.1967 0.8814 3.8423 4.0427 0.1861 0.9109 4.2638 3.6761 

0.080 0.2044 0.8753 3.7768 3.9724 0.1925 0.9062 4.2061 3.6015 

0.085 0.2119 0.8693 3.7165 3.9071 0.1989 0.9015 4.1528 3.5324 

0.090 0.2191 0.8633 3.6607 3.847 0.205 0.8969 4.1043 3.4681 

0.095 0.2261 0.8574 3.609 3.7914 0.2109 0.8924 4.0598 3.4079 

0.100 0.2327 0.8515 3.5609 3.7403 0.2166 0.8879 4.019 3.3516 

ξs= 0.1 α=1, β=0 (Displacement Control) α=0, β=1 Acceleration Control) 

μ ξd f DDMF ADMF ξd f DDMF ADMF 

0.005 0.0573 0.9652 4.2706 4.441 0.0562 0.9758 4.3819 4.3458 

0.010 0.0784 0.9526 3.9839 4.1726 0.0759 0.9672 4.1368 4.0427 

0.015 0.0946 0.9417 3.7898 3.9882 0.0915 0.9595 3.9706 3.8342 

0.020 0.1084 0.9317 3.6423 3.8467 0.1044 0.9524 3.846 3.6736 

0.025 0.1211 0.9223 3.5238 3.731 0.1153 0.9457 3.7482 3.5428 

0.030 0.1326 0.9134 3.4249 3.6337 0.1257 0.9392 3.6658 3.4325 

0.035 0.1433 0.9048 3.3405 3.5503 0.1351 0.933 3.5969 3.3372 

0.040 0.154 0.8966 3.2672 3.4756 0.1444 0.927 3.5363 3.2534 

0.045 0.1636 0.8886 3.2025 3.4107 0.153 0.9211 3.4839 3.1787 

0.050 0.1733 0.8808 3.1449 3.3512 0.1612 0.9154 3.4379 3.1115 

0.055 0.1822 0.8731 3.0931 3.2985 0.169 0.9098 3.3968 3.0504 

0.060 0.1914 0.8658 3.0462 3.249 0.177 0.9043 3.3588 2.9944 

0.065 0.1998 0.8584 3.0035 3.2048 0.1842 0.899 3.3258 2.9429 

0.070 0.2088 0.8514 2.9643 3.1622 0.1911 0.8937 3.2964 2.8952 

0.075 0.2171 0.8444 2.9283 3.124 0.1976 0.8886 3.2701 2.8509 

0.080 0.2255 0.8376 2.895 3.0875 0.2048 0.8835 3.2439 2.8094 

0.085 0.2333 0.8308 2.8641 3.0547 0.2118 0.8785 3.2201 2.7706 

0.090 0.2414 0.8242 2.8354 3.023 0.2178 0.8736 3.2 2.734 

0.095 0.2497 0.8177 2.8085 2.9926 0.2237 0.8688 3.1819 2.6996 

0.100 0.2578 0.8114 2.7834 2.9641 0.2307 0.864 3.1621 2.667 
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Fig. 3. Optimum DDMF. 

 

 
 

Fig. 4. Optimum ADMF. 

 

 

The optimum tuning frequency and 

damping ratio of the TMD system versus 

mass ratio are plotted in Figures 5 and 6, 

respectively. The diagrams have been 

depicted for three structural damping ratios 

and two cost functions. Figure 5, shows 

that the optimum tuning frequency ratio of 

the TMD decreases as the mass TMD ratio 

increases. It can also be observed that 

high-level structural damping leads to 

lower optimum tuning frequencies. It can 

also be clearly seen that the optimum 

tuning frequency ratio of the TMD is 

dependent on the cost function. The higher 

the damping of the main system and the 

lager the TMD mass ratio, the greater 

difference in the optimum tuning 

frequency ratio for the two control levels is 

provided. This difference is clearly seen 

for large mass ratio (more than 3%) and 

high structural damping (ξs=10%). Figure 

6 shows that the optimum TMD damping 

ratio increases as the mass TMD ratio and 

structural damping increase. For small 

mass ratio values, the optimum TMD 

damping ratio is slightly affected by 

structural damping level. Significant 

differences in optimum damping are 

observed for the two cost functions 

(displacement and acceleration control 

levels), where a large TMD mass ratio is 

considered.  
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Fig. 5. Optimum tuning frequency ratio of TMD. 

 

 
 

Fig. 6. Optimum damping ratio of TMD. 

 
NUMERICAL EXAMPLE 

To examine the optimum TMD parameters 

obtained by the proposed approach, a 10-

storey shear building with a TMD on the 

top floor is considered. TMD parameters 

have been optimized for this structure 

previously by Sadek et al. (1997). The 

mass and stiffness of the building are 

provided in Table 2.  

 
Table 2. System Properties. 

Storey Stiffness (kN/m) Mass (Ton) 

1 62470 179 

2 52260 170 

3 56140 161 

4 53020 152 

5 49910 143 

6 46790 134 

7 43670 125 

8 40550 116 

9 37430 107 

10 34310 98 

 The only information available about 

the damping of the structure is the value of 

the first modal damping ratio ( 1 0.02 ). 

Hadi and Arfiadi (1998) found that the 

damping matrix should be proportional to 

the stiffness matrix (C=0.0129K), which 

makes the procedure developed in their 

paper comparable to the work of Sadek et 

al. (1997). In this study, the damping 

matrix is considered as that suggested by 

Hadi and Arfiadi (1998).  

Here, TMD is firstly designed to control 

the first modal displacement response of 

the 10-storey building ( 1, 0) . Given 

the properties of the first mode that need to 

be controlled, the TMD is designed in the 

same procedure as designing a TMD for a 

SDOF structure. The first-mode shape 

vector of the structure according to the 

procedure suggested by Rana and Soong 

(1998) is: 
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1 0.1274 0.2755 0.4053 0.5308 0.6486 0.7550 0.8467 0.9203 0.9724 1.0
T

 

 

 The first-mode modal mass is 

calculated as:  

1 1 1 6.0867 5TM M e kg   

For the sake of comparison to the 

previous studies, the TMD mass is 

assumed to be 4% of the total building 

mass as in Hadi and Arfiadi (1998). 

0.04 1385 3 55400dm e kg   

The mass ratio is defined as the damper 

mass to the first-mode modal mass. 

5

55400
0.09

6.0867 10
  

The mass ratio ( ) and first-mode 

modal damping ratio 1( 0.02)s are 

now known. Referring to the Table 1,   

and s  are used to obtain the optimum 

TMD parameters as: 

0.2071, 0.8839dopt optf   

Now, the TMD can be controlled the 

first-mode displacement response. 

Similarly, the optimum TMD 

parameters are obtained for controlling the 

acceleration response ( 0, 1)  as: 

0.1974, 0.9096dopt optf   

This completes the design process. The 

TMD is tuned once for displacement 

control and then again tuned for 

acceleration control. The optimum 

damping and tuning frequency ratio of 

TMD are presented in Table 3 and 

compared with those values obtained by 

other approaches. 

The results show that the present 

method provides a smaller optimum tuning 

frequency ratio for TMD. A lower 

optimum tuning frequency, a smaller 

stiffness element is required for installation 

of the TMD. In this case, the cost of TMD 

may be decreased. The optimum damping 

ratios are obtained 20% and 19% for the 

case of displacement control and 

acceleration control, respectively. This is a 

medium and practical value that results in 

smaller TMD displacement (See Table 4). 

Therefore; TMD requires little space for 

movement. 

Checking the optimum parameters of 

TMD for displacement control and 

acceleration control levels, the structure is 

then subjected to El-Centro 1940 NS 

excitation. The maximum displacement 

and acceleration of the floors obtained by 

the proposed method are compared with 

the results of Den Hartog (1956), Sadek et 

al. (1997) and Hadi and Arfiadi (1998) 

approaches.  They are provided in Table 4 

and shown in Figures 7 and 8. 

Table 4 shows that when TMD is tuned 

for displacement control, the maximum 

displacement of the top floor decreases 

about 20% with respect to the response of 

the uncontrolled structure. Table 4 also 

shows that when TMD is tuned for 

acceleration control, the maximum 

acceleration of the top floor decreases 

about 30% with respect to the response of 

the uncontrolled structure. 

 

Table 3. Optimum TMD parameters in different methods. 

doptξ fopt Method 

0.20 0.88 Present approach  

(Displacement Control) 

0.19 0.90 Present approach  

(Acceleration Control) 

0.18 0.92 Den-Hartog 

0.15 0.91 Hadi and Arfiadi 

0.32 0.93 Sadek et al. 
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Fig. 7. Peak floors displacement- TMD is tuned for displacement control. ( 1, 0) . 

 

 

Fig. 8. Peak floors absolute acceleration- TMD is tuned for acceleration control ( 0, 1) . 
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Table 4. Maximum displacement and acceleration of a 10-storey building under El-Centro earthquake. 

Den-Hartog Uncontrolled  

Acceleration (m/s
2
)

  
Displacement (m) Acceleration (m/s

2
)

  
Displacement(m) Storey 

3.0198 0.0342 3.0247 0.0411 1 

2.6378 0.0734 2.7633 0.0884 2 

2.7613 0.1062 2.9784 0.1287 3 

2.7064 0.1360 2.7366 0.1655 4 

2.6805 0.1622 2.9199 0.1969 5 

2.8642 0.1866 3.1197 0.2221 6 

2.3510 0.2125 2.9140 0.2519 7 

2.7000 0.2386 3.6667 0.2859 8 

3.2177 0.2607 4.6915 0.3124 9 

3.8547 0.2754 5.3472 0.3269 10 

4.8067 0.6035 - - TMD 

 

Hadi and Arfiadi Sadek et al.  

Acceleration (m/s
2
)

  
Displacement (m) Acceleration (m/s

2
)

  
Displacement (m) Storey 

3.0181 0.0336 3.0305 0.0360 1 

2.6335 0.0721 2.6613 0.0773 2 

2.7738 0.1044 2.7138 0.1125 3 

2.7029 0.1336 2.7179 0.1447 4 

2.6766 0.1594 2.6942 0.1722 5 

2.8409 0.1835 2.9365 0.1939 6 

2.324 0.2094 2.4358 0.2187 7 

2.6829 0.2355 2.7041 0.2439 8 

3.1954 0.2575 3.2446 0.2658 9 

3.8335 0.2721 3.8731 0.2799 10 

5.0049 0.6354 3.7376 0.4559 TMD 

 
Present Approach (Acceleration Control)  

(a=1, b=0) 

Present Approach (Displacement Control)  

(a=1, b=0)  
 

Acceleration (m/s
2
)

  
Displacement (m) Acceleration (m/s

2
)

  
Displacement (m) Storey 

3.0211 0.0343 3.0218 0.0339 1 

2.6402 0.0736 2.6415 0.0728 2 

2.7551 0.1065 2.7624 0.1052 3 

2.7071 0.1363 2.7068 0.1345 4 

2.6801 0.1624 2.6811 0.1602 5 

2.8711 0.1866 2.8683 0.1838 6 

2.3613 0.2122 2.3534 0.2087 7 

2.6913 0.2380 2.6618 0.2340 8 

3.2122 0.2599 3.1846 0.2554 9 

3.8491 0.2743 3.8217 0.2694 10 

4.5601 0.5702 4.3266 0.5424 TMD 

 

From Table 4, it is understood that when 

TMD is tuned for acceleration control, the 

peak displacement of floors reduces. In this 

case (acceleration control), the floors’ 

displacement slightly increases when 

compared to those results that TMD is tuned 

for displacement control. From Table 4, it is 

observed that the acceleration responses are 

somewhat similar in two cases of 

displacement control and acceleration 

control. Therefore, it is recommended that 

TMD parameters are adjusted for 
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displacement control rather than acceleration 

control. In this case (displacement control), 

the peak displacement of floors reduces at 

maximum value and the floors’ acceleration 

decreases as nearly those values when TMD 

is tuned for acceleration control. In 

displacement control level, stroke of TMD 

are smaller than that of the acceleration 

control level.  

Figure 7 shows the maximum 

displacement of floors obtained by the 

proposed method and compared with the 

results of other approaches (Den Hartog, 

1956; Sadek et al., 1997 and Hadi and 

Arfiadi, 1998). Here, TMD is tuned for 

displacement control ( 1, 0) . In Den 

Hartog (1956), Sadek et al. (1997) and 

Hadi and Arfiadi (1998), the parameters of 

TMD are also optimized for displacement 

control. Figure 7 indicates that the results 

developed by SCE method agree well with 

those of Hadi and Arfiadi’s approach. 

Although, the peak displacement responses 

of the building in other methods are almost 

similar to the proposed approach, using 

SCE as an optimizer tool decreases the 

maximum displacement of the top floor 

with about 7% more than that of the Sadek 

et al. (1997). 

Figure 8 shows the maximum 

acceleration of floors obtained by the 

proposed method and compared with the 

results of other approaches (Den Hartog, 

1956; Sadek et al., 1997 and Hadi and 

Arfiadi, 1998). Here, TMD is tuned for 

acceleration control ( 0, 1) . In Den 

Hartog (1956), Sadek et al. (1997) and 

Hadi and Arfiadi (1998), the parameters of 

TMD are already optimized for 

displacement control. It can be understood 

that the results obtained by SCE method 

for acceleration control can be matched to 

the other approaches in which TMD is 

tuned for displacement control. Finally, it 

is seen that although tuning a TMD for 

acceleration control decreases the peak 

displacement of the floors; it increases the 

floor displacement slightly over tuning 

TMD for displacement control (Table 4). 

Therefore; it is concluded that the best 

performance of a TMD is achieved by 

adjusting its parameters for only 

displacement control. In this case, both 

displacement and acceleration decrease to 

an appropriate level. 

 

COMPARISON BETWEEN SCE AND 

OTHER META-HEURESTIC 

OPTIMIZATION ALGORITHMS 

 

To compare the SCE algorithm with other 

meta-heuristic algorithms (GA, PSO, HS), 

all methods are coded using Matlab 2009 

program on a 1.5 GHz dual core laptop 

machine. The performance of SCE is 

compared with the GA, PSO and HS 

algorithms for convergence speed and 

computational processing time.  

Convergence speed is the rate at which 

an algorithm finds an optimum solution. It 

also shows the number of trails required 

for an objective function to reach an 

optimum value. Figure 9 shows the results 

of objective function versus number of 

iteration. As seen, SCE is reached to the 

optimum value faster than all the other 

methods and GA has the slowest 

convergence rate among all algorithms. 

Furthermore, SCE method provides the 

lowest cost function. It is also seen from 

Figure 9, that SCE found the minimum 

value of an objective function in less than 

10 iterations which is 6 times less than 

PSO, 8 times less than HS and 14 times 

less than GA.  

The computational processing time 

required to attain the target for each 

algorithm is observed in Figure 10. It can 

be seen that the SCE algorithm required 

the lowest convergence time and HS 

required the most convergence time. The 

results show that SCE algorithm 

outperformed GA, PSO and HS algorithms 

in finding an optimum solution of a 

problem in terms of convergence rate and 

computational processing time. 
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Fig. 9. Convergence rate for different optimization methods. 

 

 
 

Fig. 10.  Processing time to reach the target. 

 

CONCLUSIONS 

 

This is the first study on the application of 

shuffled complex evolution (SCE) 

algorithm to find optimum parameters for a 

TMD. SCE is used to find the optimum 

TMD parameters by minimizing the DDMF 

and ADMF parameters for a single-mode 

model subjected to base excitation. The 

final optimum TMD parameters are 

checked for a 10-storey shear building 

subjected to El-Centro earthquake 

excitation. The numerical results revealed 

that the TMD system is very effective in 

decreasing the displacement and 

acceleration of building’s floors. Also, it is 

found that the optimum tuning frequency 

ratio of TMD obtained by the proposed 

procedure is smaller than that of the Den 

Hartog (1956), Sadek et al. (1997) and Hadi 

and Arfiadi (1998) approaches. A 

comparison of optimization procedures 

indicated that SCE is utterly effective in 

terms of convergence rate and 

computational processing time. Based on 

this study some conclusions can be drawn 

as follows: 
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 The optimum TMD parameters, i.e. 

tuning frequency ratio and damping ratio, 

differ depending on displacement control or 

acceleration control. This difference in 

optimum parameters becomes clearer for 

large mass ratio (more than 3%) and high 

structural damping ratio ( 10%s ). 

 The maximum storey displacements of 

building obtained by SCE method are 

smaller than those obtained by the other 

optimization methods. This reduction is 

about 7% more than that of the Sadek et al. 

(1997) approach for the top floor 

displacement. 

 SCE successfully solved this specific 

problem. This situation has very beneficial 

effect in which the computational time 

significantly decreased and cost of TMD 

reduced due to required elements with 

smaller stiffness. 

 Since the maximum floors’ acceleration 

in acceleration control level is 

approximately same with that of the 

displacement control level, it is suggested 

that TMD parameters are set for 

displacement control rather than the 

acceleration control. 
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