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Abstract. In this paper, we consider a reaction-diffusion system

which is a cellular nonlinear model. Our aim is to study the system

near the origin as the parameters are varying. For this purpose, we

use neural network method for transforming the reaction-diffusion

PDE to an ODE.
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1. Introduction

Reaction-diffusion systems are mathematical models which explain how the concen-

tration of one or more substances distributed in space changes under the influence of

two processes. These systems are naturally applied in chemistry. However, the system

can also describe dynamical processes in biology, geology, physics and ecology.
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In [1], the edge of chaos phenomena for the following partial differential equation

(PDE), generally referred in the literature as a reaction-diffusion equation, was stud-

ied:

(1.1)

{
∂u
∂t

= ∂2u
∂x2 + f(u, v)

∂v
∂t

= g(u, v)

where

(1.2)

{
f(u, v) = −c1

u
1+u2 + b1

u
(1+u2−u)(1+v)

g(u, v) = −c2
v

1+v2
+ b2

v
(1+v2−v)(1+u)

.
,

where c1 and c2 are parameters, while bi > 0 for i = 1, 2, are constants. However, in

this paper, we devote our attention to bifurcation analysis of system (1.1). In fact,

we discuss the behavior of system (1.1) near their equilibria by using the bifurcation

theory.

Since existence and behavior of the solutions of (1.1) are very difficult to establish,

many aspects of qualitative behavior have to be investigated numerically. For this

purpose, we use the numerical method proposed in [2] to result an ordinary differential

equation (ODE) system that its dynamics are equivalent to the dynamics of (1.1).

After that, the bifurcation analysis will be presented.

2. Main results

The reaction-diffusion system (1.1) has some difficulties in considering the equilib-

rium points, because of the zeros in the denominators. So to simplify (1.1), first, we

introduce the variables τ =
∫ t

0
1

1+v
dt and θ =

∫ τ

0
1

1+u
dτ , applying them to (1.1) and

replacing θ by t, we have

(2.1)

{
∂u
∂t

= (1 + u)(1 + v)∂
2u

∂x2 − c1
u(1+u)(1+v)

1+u2 + b1
u(1+u)
1+u2−u

∂v
∂t

= −c2
v(1+v)(1+u)

1+v2
+ b2

v(1+v)
1+v2−v

.

In order to transform the system (2.1) to an ODE system, we apply a neural

network (NN) approach. Let

(2.2) u(x, t) = w1(t)σ1(x), v(x, t) = w2(t)σ2(x)

where wj(t) (j = 1, 2) are NN weights and σj(x) (j = 1, 2) are NN activation functions.

The σj(x) (j = 1, 2) can be assumed to be orthogonal basis functions. In this paper,

we choose chebyshev polynomials as activation functions. Applying (2.2) and their

derivatives to (2.1), we can state the following lemma:

Lemma 2.1. Suppose σ1(x) = σ2(x) = 2x2 − 1, then the dynamics of (2.1) are

equivalent to the dynamics of the following system:

(2.3)

{
ẇ1(t) = P (w1(t), w2(t))− c1R(w1(t), w2(t)) + b1Q(w1(t))

ẇ2(t) = −c2S(w1(t), w2(t)) + b2G(w2(t))

where

P (w1(t), w2(t)) = 4w2
1(t) + 4w1(t)w2(t)− 2w2

1(t)w2(t),
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R(w1(t), w2(t)) =
2

3
(
2w1(t) + w2

1(t) + w1(t)w2(t) +
w2

1(t)w2(t)

2

4 + w2
1(t)

+
w1(t)− w2

1(t)− w1(t)w2(t) + w2
1(t)w2(t)

1 + w2
1(t)

),

Q(w1(t)) =
2

3
(

2w1(t) + w2
1(t)

4 + w2
1(t)− 2w1(t)

+
w1(t)− w2

1(t)

1 + w2
1(t) + w1(t)

),

S(w1(t), w2(t)) =
2

3
(
2w2(t) + w2

2(t) + w1(t)w2(t) +
w1(t)w2

2(t)

2

4 + w2
2(t)

+
w2(t)− w2

2(t)− w1(t)w2(t) + w1(t)w
2
2(t)

1 + w2
2(t)

),

G(w2(t)) =
2

3
(

2w2(t) + w2
2(t)

4 + w2
2(t)− 2w2(t)

+
w2(t)− w2

2(t)

1 + w2
2(t) + w2(t)

).

Proof. For the proof, it should be noted that the neural network weights wj(t) (j =

1, 2) will be estimated in a way to minimize the residual error in a least-squares sense

over a set of points within the region Ω. By applying the inner product ⟨., σj(x)⟩ (j =
1, 2) and approximating them in such a way stated in Theorem 2.4 in [4], we can get

system (2.3) which is an ODE. □
Now, we discuss the dynamics of the ODE system (2.3) by using the bifurcation

theory [3]. The origin (0, 0) is a trivial equilibrium for (2.3).

Theorem 2.2. c1 = b1 and c2 = b2 are the bifurcation lines of (2.1), and we have

the following results:

(i) If b1 < c1 and b2 < c2, then (0, 0) is a sink.

(ii) If b1 > c1 and b2 < c2, or if b1 < c1 and b2 > c2 then (0, 0) is a saddle point.

(iii) If b1 > c1 and b2 > c2 then (0, 0) is a source for system (2.1).

Proof. Using Lemma 2.1, we can see that system (2.1) is equivalent to system (2.3),

and so we prove the results for system (2.3). Considering the right hand function as

f(w1, w2), it is easy to see that λ1 = −c1+ b1 and λ2 = −c2+ b2 are the eigenvalues of

Df(0, 0). Now, for the case (i), we have λ1, λ2 < 0, while in the case (ii) λ1 > 0, λ2 < 0

or λ1 < 0, λ2 > 0. However, for the case (iii), we have λ1, λ2 > 0. Then, using the

bifurcation theory establishes the claim. □
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