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BORIS/CTCFL is an 11 zinc finger protein, which is the
paralog of CTCF, a ubiquitously expressed protein with
diverse roles in gene expression and chromatin organization.
Several studies have shown that the expression of BORIS is
restricted to normal adult testis, pluripotent cells, and
diverse cancer cell lines. Thus, it is known as a cancer-testis
(CT) gene that has been hypothesized to exhibit oncogenic
properties and to be involved in cancer cell proliferation. On
the contrary, other reports have shown that its expression is
more widespread and can be detected in differentiated and
normal somatic cells; hence, it might have roles in general
cellular functions. The present study was aimed to analyze
the expression of BORIS in different cell states of pluripo-
tent, differentiated, cancerous and non-cancerous. We found
that the two cell states of pluripotency and differentiation
are not accompanied with significant variations of BORIS
expression. Furthermore, Boris transcripts were detected at
approximately the same level in cancer and non-cancer cell
lines. These findings suggest that, in contrast to some previ-
ous reports, the expression of mouse BORIS is not limited to
only cancerous cells or pluripotent cell states.
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Introduction

Brother of the regulator of the imprinted site (BORIS) or
CCCTC-binding factor-like protein (CTCFL) is an 11 zinc
finger (ZF) protein, described as a transcriptional regulator.
BORIS is a paralog of CCCTC-binding factor (CTCF), a
protein that has been called the ‘master weaver of the
genome’ [1–3]. BORIS exhibits high homology with CTCF
in the central 11 ZF DNA binding domains, so it is thought to

act as an antagonist to CTCF in normal and cancer cells by
binding to the same target sequences [1]. Despite the high
homology of central domains in CTCF and BORIS, the flank-
ing N- and C-terminal domains show very little sequence
homology, implying that BORIS and CTCF may recruit dif-
ferent cofactors and lead to various cellular outcomes [3–5].

BORIS was originally found in male germ cells, particularly
in primary spermatocytes and round spermatids within the
normal testis [4]. In addition, significant expression of BORIS
was also detected in tumors and cancer cell lines [6–19]. The
majority of these reports did not find the expression of BORIS
in other normal somatic tissues and cells [4,6,8–10,18,20].
Thus, the expression of BORIS was viewed as an aberrant phe-
nomenon in cancer, and its expression in testis and many
cancers led to its classification as a cancer-testis (CT) gene
[1,8,16,17]. In a few studies, BORIS expression was also
detected in some pluripotent cells including human embryonic
stem (hES) [18,21] and embryonal carcinoma (EC) cells
(TERA-1, TERA-2, NTERA2, and NCCIT) [15]. These
reports suggested a possible link between the state of pluripo-
tency (undifferentiated) and BORIS expression. A pluripotent
and an undifferentiated state in tumor cells may lead to self-
renewal, high proliferative capacity, immortality, and pheno-
typic plasticity [22–25]. In fact, the stem cell-like phenotypes
including the expression of pluripotent marker genes especially
those associated with reprogramming, the undifferentiated and
proliferative stem cell state, and also the maintenance of that
state (accompanied by the expression of OCT4, SOX2, KIF4,
and c-MYC) have been detected in cancer cells, especially in
poorly differentiated aggressive tumors [26–39]. These evi-
dence suggest that the acquisition of a stemness state, an im-
portant phase towards cancer [40], and the expression of
BORIS might be interrelated. According to these reports,
BORIS in cancer-pluripotent cells might replace CTCF on the
regulatory regions of CT genes (e.g. Oct4 and some members
of MAGE-A family genes), oncogenes (e.g. c-Myc), and
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hTERT promoter to disturb a silenced gene state and to lead to
the proliferation of cancer cells [1,4,6,10,11,14,41–44].

On the contrary, the expression of BORIS cannot be detected
in some cancer cell lines or tumors [10,12,15–17,45,46], and
has also been detected in several mouse and human somatic
tissues and non-cancerous cell lines [17,46,47]. This may point
to the widespread expression of BORIS which is not restricted
to cancerous cell lines. In addition, it has been found that the
expression of some CT genes does not rely on the presence of
BORIS [12,17,48,49], and thus, it is unlikely that BORIS
would be a major CT gene inducing factor [50]. Furthermore,
some more general biological functions including a regulatory
role in normal cell division have been proposed for BORIS
[47], which leads to a significant decrease in cell proliferation
and clonogenic capacity. These growth inhibitory functions cat-
egorize BORIS as a candidate tumor suppressor gene, rather
than an oncogene [20].

Reports indicating the expression of BORIS in cancer-
pluripotent cells on one hand, and studies showing the wide-
spread expression and function of BORIS in normal cells and
tissues on the other hand, prompted us to identify whether
the expression of this gene is restricted to a specific cell
state, pluripotency vs. differentiated, and cancerous vs. non-
cancerous. To this point in P19 cells, we quantified the level
of BORIS during an undifferentiated pluripotent state (EC
cells), in early differentiated retinoic acid (RA)-induced 4-day
old embryoid bodies (EBs) (EB4), and in fully differentiated
EBs (4 days after transfer to tissue culture plates in RA-free
medium; EB-D4). In addition, we also quantified Boris in
mouse cancer (CT26, N2A) and non-cancer (3T3, STO) cell
lines. Along with the expression of BORIS, we also identified
some pluripotency-associated factors [OCT4, NANOG,
SSEA1, and alkaline phosphatase (AP)], and several differ-
entiation markers (GATA-4, Tubulin bIII, NeuN, and
Neurofilament 200). We found that the expression of BORIS
does not show a significant change during the differentiation
of P19 cells. In addition, Boris transcript was detected in both
cancer (N2A and CT26) and non-cancer (STO) cell lines at
approximately the same level. These findings indicate that a
pluripotency state in either cancer or pluripotent cells may not
be related to the level of BORIS expression and that the
expression of BORIS is not altered due to the cancerous or
non-cancerous state of the cells.

Materials and Methods

Culture and induction of differentiation of P19 cells
P19, STO, 3T3, N2A, and CT26 cells were obtained from
Pasteur Institute (Tehran, Iran). P19 cells are EC pluripotent
cells with the ability to differentiate to derivatives of three
germ layers in response to different chemical inducers and
culture conditions [51,52]. In response to RA treatment and
EB formation, P19 cells lose their pluripotency rapidly, as

evidenced by the decreased expression of pluripotent stem
cell markers [53–55] and differentiate into neurons, glial,
and fibroblast-like cells [56,57]. P19 cells were cultured in
minimum essential medium eagle, alpha modification
(a-MEM; Sigma-Aldrich, Munich, Germany) and STO, 3T3,
N2A, and CT26 cells were cultured in Dulbecco’s modified
Eagle’s medium (Gibco, Grand Island, USA). Both media
were supplemented with 10% fetal bovine serum (FBS) and
1% penicillin-streptomycin (Gibco). All the cell lines were
incubated at 378C in a 5% CO2 atmosphere.

For RA-induced differentiation of P19 cells, aggregates
were formed by placing 0.2 � 106 cells into 8 cm diameter
bacteriological grade petri dishes containing 8 ml of com-
plete a-MEM medium supplemented with 0.5 mM RA
(Sigma, Munich, Germany). After 2 days incubation, the
medium was replenished with fresh RA-containing medium
[57] and cells were cultured for two more days. EB4 were
dissociated by trypsinization and their viability was assayed
by trypan blue exclusion assay. For neurodifferentiation,
EB4 aggregates were plated onto tissue culture grade sur-
faces in medium lacking RA and were cultured for additional
4 days (EB-D4). Media were replaced every 48 h [56]. RA
was prepared as 1022 M stock solutions in ethanol and was
diluted directly into the culture medium to obtain the desired
concentration. In this work, undifferentiated P19 cells, EB4,
and the EB-D4 cells were studied.

AP staining
To detect AP activity in P19 cells and its alteration after RA
treatment, P19 cells were grown on coverslips and were fixed
with 4% paraformaldehyde (PFA; Sigma) in phosphate-
buffered saline (PBS) for 10 min. For AP staining of aggregates
(EB4), by using a plugged Pasteur pipette, an individual aggre-
gate was transferred on the center of gelatin-coated glass cover-
slip placed in each well of a six-well tissue culture plate. To
avoid dislodging the cells from the surface, 2 ml medium was
added to each well. Incubation for a few hours allowed aggre-
gates to attach to the gelatin surface. To investigate AP activity
on mature differentiated cells (EB-D4), after 4 days in suspen-
sion, aggregates were transferred and cultured on the center of
coverslips for 4 days in RA-free medium. Cells cultured on
coverslips were fixed with 4% PFA. After fixation, each cover-
slip was washed three times with AP buffer (100 mM
Tris-HCl, 100 mM NaCl, 5 mM MgCl2, 0.05% Tween-20, pH
9.5, all from Merck, Ballerup, Denmark), and then was covered
with 1 ml of AP solution prepared by mixing 120 ml of 1%
5-bromo-4-chloro-3-indolyl phosphate (Fermentas, Schwerte,
Germany) in 100% dimethylformamide (DMF; Merck),
120 ml of 1.5% nitroblue tetrazolium (Fermentas) in 70%
DMF, and 5 ml of AP buffer. After 15 min, coverslips were
washed with AP buffer, then mounted on the slide with the ap-
plication of 40 ml antifade, and observed under an Olympus
BX-UCB microscope (Olympus, Tokyo, Japan).
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Immunocytochemistry
Immunocytochemistry (ICC) was used to detect the presence
of pluripotency and neural cell-specific proteins. Cells were
fixed as described for AP staining. After fixation and washing
with PBS (three times, 5 min each), cells were permeabilized
with Tris-buffered saline containing 0.5% Triton X-100
(Merck) for 10 min at room temperature (RT). Cells were then
washed with PBS (three times, 5 min each) and endogenous
peroxidase was blocked by incubating in 3% H2O2 (Sigma) in
PBS for 30 min. After washing with PBS, blocking of non-
specific binding was performed by incubation in 4% (v/v)
bovine serum albumin (BSA; Invitrogen, Grand Island, USA)
for 45 min. Cells were then incubated with the specific primary
antibodies: mouse anti-BORIS (Cat. No. 061502E05, 1 : 50;
Absea Biotechnology Ltd, Beijing, China), mouse anti-OCT4
(Cat. No. sc-5279, 1 : 100; Santa Cruz Biotechnology, Inc., Hei-
delberg, Germany), mouse anti-NANOG (Cat. No. sc-293121,
1 : 500; Santa Cruz Biotechnology, Inc.), mouse anti-SSEA1
(Cat. No. sc-101462, 1 : 100; Santa Cruz Biotechnology, Inc.),
and rabbit anti-Neurofilament 200 (Cat. No. N4142, 1 : 100;
Sigma-Aldrich) in blocking buffer (1% BSA) overnight at 48C.
Then, cells were washed with PBS (three times, 10 min each)
and were incubated for 1 h at RT with secondary antibodies spe-
cific for each primary antibody: goat anti-rat IgG-HRP (Cat. No.
sc-2065, 1 : 500; Santa Cruz Biotechnology, Inc.), goat anti-
mouse IgG2b-HRP (Cat. No. ab97250, 1 : 500; Abcam, Cam-
bridge, UK), goat anti-mouse IgG1-HRP (Cat. No. ab97240, 1 :
1000; Abcam), rat anti-mouse IgM-HRP (Cat. No. 04-6820, 1 :
1500; Invirogen), and donkey anti-rabbit IgG-HRP (Cat. No.
sc-2317, 1 : 500; Santa Cruz Biotechnology, Inc.). Finally, cells
were washed for several times with PBS and stained with
3,30-diaminobenzidine (Cat. No. D8001; Sigma-Aldrich) at RT
for 2 min. After washing with PBS, coverslips were mounted
on the slide with the application of 40 ml antifade and were ana-
lyzed under the Olympus BX-UCB microscope. Negative con-
trols were stained with only the secondary antibodies.

RNA extraction and cDNA synthesis
Total RNA was isolated using Total RNA isolation kit
(DENAzist Asia, Mashhad, Iran) according to the manufac-
turer’s guidelines. The quantity and quality of RNA were
assessed using a Nanodrop 2000 spectrophotometer (Thermo
Scientific, Wilmington, USA) and agarose gel electrophoresis
(Supplementary Fig. S1).

Possible contaminating genomic DNA was removed by
DNase I treatment. For DNase I treatment, 10–50 mg of total
RNA was digested for 15 min at RT with 1 ml (10 U/ml) of
DNase I (Roche, Penzberg, Germany) and 1� DNase I reac-
tion buffer in a 50 ml reaction volume. First-strand cDNA was
prepared in a total volume of 20 ml containing 1 mg total
RNA, 0.5 mg Oligo(dT)18 primer (Thermo Scientific), 1� RT
buffer (Thermo Scientific), 1 mM dNTPs (Genet Bio, Inc.,

Daejeon, Korea), and 200 U of reverse transcriptase (Thermo
Scientific). The reaction was incubated at 428C for 60 min.
Negative control reactions were carried out without the use of
reverse transcriptase.

Polymerase chain reaction
The polymerase chain reaction (PCR) mixture (25 ml) con-
tained 1 ml of template cDNA, 0.04 U of Taq DNA poly-
merase (Genet Bio, Inc.), 1� PCR buffer, 1.5 mM MgCl2,
0.2 mM dNTPs, and 200 nM of each primer. The number of
PCR cycles in semi-quantitative reverse transcription-PCR
(RT-PCR) has been adjusted for each gene to prevent reach-
ing a saturation level and normalization with respect to L37
cDNA allows to estimate the relative abundance of each
target mRNA. Primers for L37, Oct4, Nanog, Gata-4, NeuN,
and Boris were chosen from different intron-spanning exons.
All primers were the same for both conventional and real-
time quantitative PCR (qPCR). All specific primers are
described in Table 1 and Supplementary Fig. S2.

Quantitative real-time RT-PCR
To quantify the level of transcripts for Oct4, Nanog, and
Boris, quantitative RT-PCR was performed. The reactions
contained 1� SYBR Green Real-time PCR Master Mix (Pars
Tous, Mashhad, Iran), 2 ml diluted cDNA template and each
primer at 250 nM in a 20 ml reaction volume, which was
carried out on a CFX-96 Thermo cycler (Bio-Rad, Hercules,
USA). Gene-specific primers were designed using Oligo7
Primer Analysis Software. Amplification conditions for Oct4,
Nanog, and L37 were: 958C for 10 min, followed by 40
cycles of 958C for 30 s, 608C for 30 s, and 728C for 30 s.
Plate read step to collect fluorescence for mentioned genes
was at 728C. The same program was used for Boris except
that annealing temperature was 628C and there was an extra
step of 788C for 10 s to collect fluorescence at a temperature
above the melting point of any possible primer dimers. At the
end of the PCR runs to derive melting curves, temperature
was increased in steps of 18C for 10 s from 608C to 958C.

Analysis of melting curves clearly indicated that each of
the primer pairs described in Table 1 amplified a single
expected product with a distinct Tm (Supplementary Fig. S3).
The accuracy of the amplification reaction was validated by
gel electrophoresis and restriction digestion of PCR products
(Supplementary Fig. S4) and sequencing.

For undifferentiated P19 cells and each stage of differen-
tiated cells (EB4 and EB-D4), three biological replicates were
considered. Three series of isolated RNAs were subjected to
cDNA synthesis and qPCR. For each sample, qPCR readings
were performed in triplicate and the mean value of each tripli-
cate was used for the calculation of the mRNA expression
levels. To acquire the highest level of accuracy, the real-time
PCR analyses were performed in two series of experiments.
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PCR efficiencies (E) were calculated for all used primers
from the given slopes of standard curves, generated using 5 fold
serially diluted solutions of positive control cDNA samples,
according to the following equation: E¼ (1021/slope 2 1)�
100%. Positive control for Boris expression was mouse testis,
and P19 cells were used as a positive control for L37, Oct4, and
Nanog. All standard curves were linear in the analyzed range
with an acceptable correlation coefficient (R2). For standard
curves and parameters of a standard curve for each gene see
Table 2 and Supplementary Fig. S5.

In this study, the variability of L37 transcript levels was
evaluated before and after RA treatment by real-time PCR.
The mean threshold cycle (CT) of L37 was similar in undif-
ferentiated P19 cells, EB4, and EB-D4 (Supplementary
Fig. S6). Therefore, we found L37 as a suitable internal
control in these experiments.

Standard curve method for relative quantification
This method is often applied when the amplification efficien-
cies of the reference and target genes are unequal [58,59]. L37
was selected as a reference gene so that the expression of the
gene of interest was quantified relative to L37 expression.
Required calculations in this method included the followings:
(i) calculation of averages for triple readings; (ii) normaliza-
tion of the quantity of the target gene by dividing it to the
quantity of the reference gene (L37) in the test (treated P19
cells) and calibrator groups (untreated P19 cells); and (iii) div-
iding the normalized quantities of the test over those in the
calibrator group to determine n-fold difference.

Comparative CT method for relative quantification
This method is applied when amplification efficiencies of
the target and reference genes are similar and close to 100%.
Since our results met these criteria, we analyzed our qPCR
data using this method, too. This analysis method involves a
calculation known as the Delta Delta CT (DDCT), which is
based on a CT number comparison between the target gene
and the reference gene relative to a calibrator. The data were
analyzed using the following equation [60]:

Relative quantity = 2�DDCT

DDCT ¼ ðCT;Target gene � CT;Reference geneÞTest sample

� ðCT;Target gene � CT;Reference geneÞCalibrator sample

The fold change in the target gene relative to the calibrator
sample was calculated for each sample using the above-
mentioned equation.

Table 2. Evaluation of parameters of a standard curve for each gene

Target Slop R2 Efficiency (%)

L37 23.315 0.996 100.2

OCT4 23.308 0.993 100.5

NANOG 23.320 0.990 100.0

BORIS 23.330 0.991 101.0

Efficiency ¼ (1021/slope 2 1) � 100%.

Table 1. Primers used in RT-PCR and real-time qPCR

Gene Primer sequence (50!30) Annealing

temperature (8C)

Product

length (bp)

POU domain, class 5, transcription factor 1 (Oct4) F: CTCTGAGCCCTGTGCCGACC 60 202

Accession number: NM_013633.3 R: CTGAACACCTTTCCAAAGAGAACGC

Nanog homeobox (Nanog) F: GAACTCTCCTCCATTCTGAACCTG 60 137

Accession number: NM_028016.2 R: GGTGCTGAGCCCTTCTGAATC

CCCTC-binding factor (ZF protein)-like (Ctcfl) (Boris)

Accession number: NM_001081387.2

F: ACCTGAGGAAGTACCATGACCCGAA

R: TTGTGTCCTGCTTCTCCCTCCGA

62 196

Ribosomal protein L37 (Rpl37) F: GGTGCTTTCTCTTCCGGTCT 60 250

Accession number: NM_026069.3 R: TCTTTAGGTGCCTCATCCGACCAG

GATA binding protein 4 (Gata-4) F: GAAAACGGAAGCCCAAGAACC 58 186

Accession number: NM_008092.3 R: TGCTGTGCCCATAGTGAGATGAC

Tubulin, beta 3 class III (Tubb3) F: CTGTCCGCCTGCCTTTTCG 67 589

Accession number: NM_023279.2 R: TAGGGCTCCACCACAGTGTCC

Fox-1 homolog (Caenorhabditis elegans) 3

(Rbfox3) (NeuN)

F: CAACATCCCCTTCCGGTTC

R: TGACCTCAATTTTCCGTCCC

59 200

Accession number: NM_001039167.1(Variant 1)

Accession number: NM_001039168.1(Variant 2)

Accession number: NM_001024931.2 (Variant 3)
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Western blot analysis
Western immunoblotting was used to verify specificity of
anti-mouse BORIS antibody. For this test, mouse testis tissue
was used as a positive control for BORIS expression. Testis
tissue was immediately frozen in liquid nitrogen, homoge-
nized with a mortar and pestle, and then suspended in lysis
buffer [50 mM Tris-HCl, 5 mM ethylenediaminetetraacetic
acid, 2% sodium dodecyl sulfate (SDS)]. After incubation on
ice, lysate was centrifuged (13,000 g, 15 min) and superna-
tants were collected. Tissue lysates were heated at 958C for
5 min, resolved by SDS–polyacrylamide electrophoresis and
then transferred to polyvinylidene difluoride membranes.
Membranes were incubated in a blocking solution containing
5% dry milk and 0.1% Tween-20 in PBS (overnight at 48C)
and then with primary mouse anti-BORIS antibody (Cat. No.
061502E05, 1 : 1000) for 1 h at RT. Antibody binding was
revealed by incubation with goat anti-rat IgG-HRP (Cat. No.
sc-2065, 1 : 10,000) for 1 h at RT. The ECL Plus immunoblot-
ting detection system (GE Healthcare Biosciences,
Buckinghamshire, UK) was used to detect HRP activity on a
chemiluminescence detector system (G Box; Syngene,
Cambridge, England).

Flow cytometry
To examine the expression of BORIS as intracellular antigen
by flow cytometry (FCM), the following protocol was
employed. Cells were dissociated with trypsin and then
washed by centrifugation with washing buffer (PBS and 5%
FBS). Cells were then fixed with 4% PFA and permeabilized
with 0.5% Triton-X-100. After two washing, cells were incu-
bated with diluted primary mouse anti-BORIS antibody (Cat.
No. 061502E05, 1 : 50) for 45 min on ice and washed twice
with washing buffer. Cells were then incubated with goat
anti-rat IgG secondary antibody conjugated to Alexa Fluorw

546 (Cat. No. A-11081, 1 : 150; Life Technologies, Grand
Island, USA) for 45 min on ice. At the end of the procedure,
unbounded antibodies were removed by two times washing.
Finally, cells were suspended in 0.5 ml of washing buffer and
then analyzed by FACS callibur (BD Biosciences, San Jose,
CA, USA). Negative control was incubated with the second-
ary antibody only.

Statistical analysis
Statistical analyses were carried out by one-way analysis of
variance and paired t-test using SPSS version 11 software.
Results were reported as mean+SD and P , 0.05 was con-
sidered to be statistically significant.

Results

BORIS expression remains unchanged during
RA-induced differentiation of P19 cells
Culture of EC P19 cells in non-tissue culture plates (bacterial
petri dishes) in the presence of RA for 4 days resulted in the

formation of tight rounded aggregates (EB4) (Fig. 1A,B)
[56,61,62]. By plating EB4 aggregates on tissue culture
dishes in a medium lacking RA, within 24 h fibroblast-like
cells migrated out of the periphery of EB4 and attached to
the dish. After 4 days of plating, neuron-like cells (EB-D4)
appeared and grew rapidly over fibroblast-like cells
(Fig. 1C,D) [52,56,57,63,64]. Oct4 transcript level in
RA-induced differentiated cells (EB4 and EB-D4) was
,5% of that in untreated P19 cells (Fig. 2A) and transcrip-
tion of Nanog showed 81% and 87% decrease in EB4 and
EB-D4, respectively (Fig. 2B). In contrast to the sharp de-
crease in the expression of pluripotency genes during
RA-induced differentiation, the transcription of Boris did
not alter significantly (Fig. 2C). Two methods of relative
quantification of transcript levels based on standard curve
and comparative CT resulted in similar results (Table 3).

Loss of pluripotency in P19 cells in response to RA treat-
ment was also evident at protein level by the decreased
expression of pluripotency markers and up-regulation of differ-
entiation markers [52,53]. OCT4 and NANOG are well-known
pluripotency genes that are required to maintain the pluripo-
tency and self-renewal of pluripotent cells [65–68]. These two
markers and SSEA1 that are highly expressed in pluripotent
mouse EC cells (including P19 cells) were rapidly down-
regulated at protein level during RA-induced differentiation
(Fig. 3 and Supplementary Fig. S7) [53,55,69–72].
Down-regulation of OCT4 was also shown by western blotting
(Supplementary Fig. S8A). In addition, the AP activity of un-
differentiated P19 cells was also decreased during differenti-
ation (Supplementary Fig. S9) [53,54,73,74]. In EBs,

Figure 1. Morphologies of P19 cells after RA treatment The

undifferentiated EC cells grow while attached to the surface of tissue culture

dish (A). EB4 were formed when P19 cells were plated as single-cell

suspension in bacterial petri dish in the presence of RA for 4 days (B). A

few fibroblast and many neuron-like cells migrated out of EB4 cells which

were plated in tissue culture dishes in a medium lacking RA for 4 days (C

and D). Scale bars, 250 mm (A–C) or 100 mm (D).
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pluripotent markers are expressed in the outer differentiated
cells and a few undifferentiated EC cells that are localized in
the inner core. Differentiation of P19 cells into endoderm
and neuron cells was further confirmed by over-expression of
differentiation markers including Gata-4 (endoderm) [75],
Tubulin bIII (ectoderm), NeuN (ectoderm), and Neurofilament
(neuron intermediate filament) (Fig. 4) [54,56,76–84].

Expression of BORIS protein was detected in undifferenti-
ated and differentiated P19 cells (EB4 and EB-D4) by ICC
(Fig. 5). For quantitative analysis, expression of BORIS was
also characterized by FCM. Almost 74% of undifferentiated
P19 cells were BORIS positive (Fig. 6A). Similar results were
obtained with EB-D4 (Fig. 6B). Therefore, differentiation did
not significantly alter the number of BORIS-positive cells.
Although the antibody used in this investigation was previ-
ously characterized for their specificity for BORIS [85], we
verified specificity of BORIS antibody by western blotting,
where a densely stained band of 70 kDa in mouse testis

corresponded to theoretical molecular weight of mouse
BORIS (Supplementary Fig. S8B).

BORIS expression in cancer and non-cancer
mouse cells
Real-time RT-PCR analysis to compare the transcript levels
of Boris in mouse cancer (CT26 and N2A) and non-cancer
(STO and 3T3) cell lines revealed that except in 3T3 cells
(with the highest level of expression), all other examined cell
lines have similar levels of Boris mRNA (Fig. 7A). Testis as
a positive control showed the highest level of Boris mRNA
as previously described [4], while primary cell culture of
mouse embryonic fibroblasts (MEFs) showed no expression
of BORIS at mRNA and protein levels (Fig. 7A,F).
Immunocytochemical staining of CT26, N2A, STO, and
3T3 cell lines revealed BORIS expression at protein level
(Fig. 7B–E).

Figure 2. Comparative real-time PCR results Fold changes for Oct4 (A), Nanog (B), and Boris (C) genes during RA-induced differentiation of P19

cells. Y-axis represents the fold change in transcript levels compared with RA-untreated P19 cells (designated as 1.0). Expression of Oct4 showed a 95.5%

drop in EB4 and 97.5% drop in EB-D4. Nanog expression in EB4 and EB-D4 showed 81% and 87% decrease, respectively. Boris expression remains

unchanged (statistically not significant) during RA-induced differentiation of P19 cells.

Table 3. Relative quantitative value of target gene using standard curve and comparative DDCT methods

Gene Stage EB4 Stage EB-D4

22DDCT Normalized test group/normalized

calibrator group

22DDCT Normalized test group/normalized

calibrator group

OCT4 0.055 0.044 0.026 0.025

NANOG 0.2 0.16 0.16 0.13

BORIS 2.1 3.0 1.5 2.0
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Discussion

Our findings reveal that: (i) the expression level of BORIS
does not significantly change during differentiation of pluri-
potent mouse EC P19 cells, and (ii) Boris is expressed in
cancer and non-cancer cell lines at approximately the same
level. Therefore, the expression of this gene is not limited to
cancer or pluripotent cells. Quantitative expression analysis
of BORIS during RA-induced differentiation of pluripotent
P19 cells did not show any significant variation at mRNA
and protein levels (Figs. 2C and 6) and immunostaining of
BORIS in undifferentiated P19 cells, EB4, and EB-D4
showed expression of BORIS in both pluripotent and differen-
tiated cells (Fig. 5). Therefore, down-regulation of pluripotent
markers during RA-induced differentiation of pluripotent P19
cells does not lead to down-regulation of BORIS. In another
research with similar results, it has been found that BORIS
protein is co-localized with OCT4 and NANOG proteins in
the nucleus of the majority of ES cells, and it continues to be
expressed by some of the differentiating ES cells that have
lost the expression of these two genes [21].

In our experiments, the loss of pluripotency marked by
down-regulation of pluripotency markers (i.e. OCT4,
NANOG, SSEA1, and AP) and differentiation into endo-
derm–neural lineage evidenced by elevated expression of
differentiation markers (i.e. Gata-4, NeuN, Tubulin bIII, and
Neurofilament 200). Our RT-qPCR results showed that
during RA induction, transcript level of Oct4 and Nanog
dropped to ,5% and 20% of those in untreated P19 cells, re-
spectively (Fig. 2A,B). Furthermore, the ICC expression

analysis showed down-regulation of pluripotency markers
(e.g. OCT4, NANOG, SSEA1, and AP) in RA-induced EBs
(EB4 and EB-D4) (Fig. 3, Supplementary Figs. S7 and S10)
and expression of neuron-specific marker Neurofilament 200
in EB-D4 (Fig. 4D,E). It is well documented that NANOG
and OCT4 which are required to maintain the pluripotency
and self-renewal of pluripotent cells [65,66,71,86–88],
become down-regulated during RA-induced differentiation of
pluripotent cells [53,55,71,89–91]. SSEA1 and AP are also
two cell surface markers of mouse pluripotent cells that are
down-regulated during differentiation [53,54,74].

RT-qPCR analyses in a series of cancer (CT26 colon car-
cinoma and N2A Neuroblastoma) and non-cancer (STO and
3T3 fibroblasts) cell lines showed that except in 3T3 cells that
express the highest level of Boris, all other examined cell lines
have similar levels of Boris mRNA, indicating that the state of
cancerous or non-cancerous is not a determining factor for the
level of Boris expression (Fig. 7). Several reports indicated
that the expression of BORIS is not dependent on the cancer-
ous or non-cancerous nature of cells and tissue. For example,
although BORIS has been classified as a CT antigen, but new
findings in melanoma, ovarian, prostate, breast, head and
neck squamous cell carcinomas, and bladder carcinomas
[12,15–17,46] have shown that BORIS expression may not
directly correlate with tumorigenicity. These studies reported
that Boris expression in primary melanomas (27%) is not as
frequent as originally estimated for melanoma cell lines
(90%) [17], and when measured quantitatively, levels in
tumors were not statistically different from those in normal
prostate, bladder, and ovarian tissues [15,16]. The elevated

Figure 3. The expressions of OCT4 and NANOG were down-regulated during RA-induced P19 cell differentiation Staining of OCT4 in

undifferentiated P19 cell (A), EB4 trypsinized into single cells (C), and EB-D4 (E). Staining of NANOG in undifferentiated P19 cell (B), EB4 trypsinized

into single cells (D), and EB-D4 (F). A few OCT4-positive undifferentiated P19 cells in the core of EB-D4 (E) are indicated by arrow. Positive cells showed

dark brown color, while after differentiation, cells do not express pluriopotency markers and thus, they are not stained and appear colorless. Scale bars,

250 mm (A and F) or 100 mm (B–E).
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expression of BORIS in several breast cancer cell lines and in
the majority of primary breast tumors identified in one study
has not been confirmed by another report [8,45]. Furthermore,
some researchers have shown the expressions of different
Boris isoforms in some normal tissues (e.g. skin, colon,
kidney, ovary, fetal tissues, etc.) and non-cancer cells from
various origins [4,17,18,46,47,92].

In agreement with the previous reports [6,8,10,20], we also
found that BORIS is not expressed in primary-derived MEFs
(Fig. 7). Primary cells such as MEFs have limited lifespan.
After a certain number of population doublings, cells undergo
the process of senescence and stop dividing. Therefore, they
would normally not proliferate indefinitely. On the contrary,
immortalized cell lines (e.g. STO, 3T3, CT26, and N2A) have
evaded normal cellular senescence and have acquired the
ability to proliferate indefinitely either through random muta-
tion or deliberate modification. It has been reported that long-

term maintenance of hES cells and indefinite division of
cancer cells in culture are associated with chromosomal ab-
normalities such as loss of the q arm of chromosome 16 (the
locus of CTCF) and gain of chromosome 20q13 (the genetic
location of BORIS) and finally increased the levels of BORIS
expression [93,94]. We propose that a similar association can
be seen in other immortalized cell lines (e.g. STO, 3T3,
CT26, and N2A) that undergo many rounds of cell division
and probably chromosomal abnormalities. Therefore, we
speculate that BORIS might be expressed in all type of cell
lines, regardless of a cancerous or non-cancerous nature.

In conclusion, in this study, we provide evidence that the
expression of BORIS does not change during differentiation
of pluripotent P19 cells. Moreover, Boris is expressed at ap-
proximately the same level in cancer and non-cancer cell
lines. Thus, the expression of BORIS may not be limited to
cancerous and pluripotent cells.

Figure 4. Expression analysis of lineage-specific genes during RA-induced differentiation of P19 cells The mRNA levels of endodermal (Gata-4) (A)

and ectodermal (Tubulin bIII and NeuN) genes (B) in undifferentiated P19 cells (line designated with 1), EB4 (line designated with 2), and EB-D4 (line

designated with 3) were determined by semi-quantitative RT-PCR. PCR amplification of the L37 gene serves as an internal control for integrity of cDNA in

each sample (C). Negative control lanes are indicated as RT minus (no reverse transcriptase for the reverse transcription reaction) and NTC (no-template

control for the PCR reaction). Immunocytochemical analysis showed that undifferentiated P19 cells do not express Neurofilament 200 (D), while expression

of this marker was detected in EB-D4 (E). Scale bars, 100 mm (D) or 1 mm (E).
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Figure 5. BORIS immunostaining of P19 cells during RA-induced differentiation Staining of BORIS protein in undifferentiated P19 cells (A), EB4

trypsinized into single cells (B), intact EB4 (C), and EB-D4 (D and E). Scale bars, 100 mm (A–C and E) or 250 mm (D).

Figure 6. Expression analysis of BORIS during RA-induced differentiation of P19 cells FCM was used to identify the percentage of BORIS-positive

cells in undifferentiated P19 (A; 73.7%) and EB-D4 (B; 74%) cells. Colored peaks show BORIS-positive cells, while white peaks represent negative controls

(fluorescent signals obtained with the secondary antibody only).

Figure 7. Expression of Boris mRNA analyzed by RT-qPCR and normalized to L37 Data are represented as fold change relative to the highest Boris/

L37 ratio (testis designated as 1.0). Two different RNA samples were used for each sample. Error bars indicate the standard deviation from two different

experiments (A). Immunocytochemical detection of BORIS in mouse cell lines of 3T3 (B), STO (C), CT26 (D), N2A (E), and MEFs (F). Scale bars,

250 mm (B–E) or 100 mm (F).
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Supplementary data are available at ABBS online.
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