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The objective of this work is to analytically study the nonlinear
dynamics of beam flexures with a tip mass undergoing large
deflections. Hamilton’s principle is utilized to derive the equa-
tions governing the nonlinear vibrations of the cantilever beam
and the associated boundary conditions. Then, using a single
mode approximation, these nonlinear partial differential equa-
tions are reduced to two coupled nonlinear ordinary differential
equations. These equations are solved analytically using the mul-
tiple time scales perturbation technique. Parametric analytical
expressions are presented for the time domain response of the
beam around and far from its internal resonance state. These an-
alytical results are compared with numerical ones to validate the
accuracy of the proposed analytical model. Compared with nu-
merical solution methods, the proposed analytical technique
shortens the computational time, offers design insights, and pro-
vides a broader framework for modeling more complex flexure
mechanisms. The qualitative and quantitative knowledge result-
ing from this effort is expected to enable the analysis, optimiza-
tion, and synthesis of flexure mechanisms for improved dynamic
performance. [DOI: 10.1115/1.4026147]

1 Introduction and Motivation

Beam flexures are one of the most important building blocks in
flexure mechanisms. Flexure mechanisms provide guided motion
via elastic deformation, instead of employing sliding or rolling
joints, and are used in a variety of applications that demand high
precision, minimal assembly, long operating life, or design sim-
plicity [1,2]. Since they exhibit motion guidance as well as elastic
behavior, flexure mechanisms are also well-suited for applica-
tions, such as single-axis and multi-axis resonators, energy
harvesting devices, and high-speed scanners, where dynamics is
important.

Large motion range in flexure mechanisms implies large elastic
deflections of the constituent beams, which in turn give rise to
geometric nonlinearities [1,3]. Even though sometimes ignored,
these nonlinearities critically influence the dynamic characteristics
of beams [4]. In a flexure mechanism, the elastic motion provided
via flexure beams is transferred to one or more moving stages. For
example, consider the parallel-kinematic flexure mechanism

shown in Fig. 1, comprising a complex but systematic arrange-
ment of beam flexures and rigid stages [5]. This flexure mecha-
nism provides large and decoupled X and Y displacements at the
motion stage, with small cross-axis and parasitic errors, and good
actuator isolation. This design and its variations are being devel-
oped for desktop-scale nanopositioning [6], MEMS scanning [7],
and multi-axis energy harvesting applications, all of which are
critically affected by the dynamics of the flexure mechanism.
Moreover, given the range of flexure displacement, linear analysis
proves to be inadequate in capturing the experimentally observed
dynamic characteristics [6]. Depending on the application, the rel-
evant dynamic characteristics include vibrational mode-shapes,
flow of energy between modes, bandwidth or speed of response,
command tracking, noise and disturbance sensitivity, closed-loop
stability, and robustness, etc.

As a result, it is crucial that the flexure mechanism is
designed and optimized for dynamic performance in a given
application. A logical first step in a broader study of the dynam-
ics of flexure mechanisms is to consider and understand the dy-
namics of a simple beam with a tip mass in terms of its end
point displacements. Such a study is the focus of this paper.
This helps elucidate what nonlinearities influence the dynamic
behavior, what kind of dynamic behavior is seen as a conse-
quence, and how the flexure beam physical parameters (i.e., ge-
ometry, material, etc.) can be selected to mitigate or accentuate
certain dynamic behavior.

In general, nonlinearities may arise from the geometry of defor-
mation or from material properties. Geometric nonlinearity arises
from arc-length conservation of the beam and large deformation
curvatures due to which the linear relationship between displace-
ment field and strains no longer holds. Material nonlinearity
occurs when the stresses are nonlinear functions of strains [8].

Because of its long, slender geometry, a uniform-thickness pla-
nar beam flexure may be modeled using the Euler-Bernoulli beam
theory. This theory assumes that plane cross-sections continue to
remain plane and normal to the neutral axis after deformation [9]
and has been successfully utilized to study the static, dynamic,
and vibrational behavior of beams. In particular, large-amplitude
vibrations of beams have been extensively investigated both theo-
retically and experimentally in the literature. Crespo da Silva [10]
formulated the nonlinear differential equations of motion for
Euler-Bernoulli beams experiencing flexure along two principle
directions, along with torsion and extension. Furthermore, Crespo
da Silva [11] presented a reduced-order analytical model for the
nonlinear dynamics of a class of flexible multi-beam structures.
Nayfeh [12] modeled the nonlinear transverse vibration of beams
with properties that vary along the length. Zaretzky and da Silva
[13] experimentally investigated the nonlinear modal coupling in
the response of cantilever beams.

The presence of a tip mass on the beam changes the differential
equations governing its deflection. This is because the inertial
force exerted on the beam due to the presence of a concentrated
mass is a function of the deflection itself. Large-amplitude vibra-
tions of beams with tip mass have also been investigated in the lit-
erature. Hijmissen and Horssen [14] analyzed the weakly damped
transverse vibrations of a vertical beam with a tip mass. Zavodney
and Nayfeh [15] studied the nonlinear response of a slender beam
carrying a lumped mass to a principle parametric excitation. But
the axial dynamics of the beam, which can become important at
large deflections, was not considered in these formulations. The
dynamics of beam-based flexure mechanisms has also been inves-
tigated using the pseudorigid body modeling method [16]. While
this method simplifies the large deflection nonlinear analysis of
flexure mechanisms by modeling them as lumped-parameter
rigid-body mechanisms, it does not capture the effects of axial
stretching in individual beams.

This paper presents an analytical investigation of the nonlinear
in-plane oscillations of a flexure beam with a tip mass, while
including axial stretching. With this problem definition, the partial
differential equations governing the dynamics of this system are

Contributed by the Mechanisms and Robotics Committee of ASME for
publication in the JOURNAL OF MECHANICAL DESIGN. Manuscript received August 27,
2012; final manuscript received November 27, 2013; published online February 26,
2014. Assoc. Editor: Craig Lusk.

Journal of Mechanical Design APRIL 2014, Vol. 136 / 044502-1Copyright VC 2014 by ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 04/16/2014 Terms of Use: http://asme.org/terms



derived. Using a single mode approximation, these equations are
reduced to coupled, ordinary, nonlinear differential equations.
Using a physically justified scaling of the problem’s variables,
these equations are solved using the perturbation method of multi-
ple time scales [8].

The specific contributions of this paper are (1) a first-time
investigation of the planar dynamics (transverse bending and axial
stretching) of a flexure beam with a tip mass while including geo-
metric nonlinearities. (2) A new analytical solution of these equa-
tions, albeit using known derivation and solution techniques,
which relates the beam’s design parameters to its dynamic behav-
ior. (3) Design insights into which geometric nonlinearities affect
the beam dynamics and how the dimensions and material of the
beam can be chosen to mitigate or accentuate certain dynamic
behavior.

2 Problem Formulation

The beam with tip-mass considered in this analysis is shown in
Fig. 2. The dashed line represents the undeformed state, while the
solid line represents a general deformed state. The gravitational
field, if any, is assumed normal to the plane and therefore does not
affect the planar analysis considered here.

As the first step, the equations of motion and boundary condi-
tions corresponding to the transverse and axial vibrations of a
slender beam will be derived using the generalized Hamilton’s
principle. In the Euler–Bernoulli beam theory, plane cross-
sections remain plane and perpendicular to the neutral axis after
deformation, which implies that distortions due to shear are
neglected. These assumptions are applicable for long and slender
beams, with length much greater than the thickness [9]. Since the
beam undergoes large deflections, the nonlinear strain expression
is used for calculating its strain energy.

The axial strain at a differential element at distance z, along the
Z direction, from the neutral axis may be expressed as follows
[17]:
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where u and w are the displacements along X and Z axes,
respectively.

Using Eq. (1), the strain energy of the beam assuming linear
elastic material properties would be
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where l is the undeformed length of the beam, A(x) is the area of
the cross-section, and I(x) is the second moment of the area of the
cross-section about the neutral axis.

It can be shown that for an infinitesimal element of the beam,
the ratio of the rotational kinetic energy to the translational kinetic
energy is approximately of the order of (h/l)2, where h is the in-
plane thickness of the beam. Since for a long and slender beam
h� l, the rotational kinetic energy may be ignored [8,9].
Additionally, since in a planar beam flexure, u(x,t) is approxi-
mately two orders of magnitude smaller than w(x,t), i.e.,
u(x,t)¼O(w(x,t)2), the axial kinetic energy of a beam element is
at least four orders of magnitude smaller than its transverse kine-
matic energy, and therefore may also be ignored [8]. Thus, the
total kinetic energy is simply given by
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where q is the material density and M is the tip mass.
Assuming that the beam vibrates in viscously damped media

and assuming that the axial damping is negligible with respect to
transverse damping, the virtual external work done on the beam
by distributed damping loads would be

dWe ¼ �
ðl

0

ct
@w x; tð Þ
@x

dw x; tð Þdx (4)

where ct is the damping coefficient per unit length in the trans-
verse direction.

Now using the generalized Hamilton’s principle, the equations
governing the nonlinear dynamics of a beam undergoing large in-
plane motions and the related geometric boundary conditions are
obtained as follows:
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Fig. 2 Schematic view of a beam with a tip mass

Fig. 1 A parallel-kinematic XY flexure mechanism [5]

044502-2 / Vol. 136, APRIL 2014 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 04/16/2014 Terms of Use: http://asme.org/terms



u 0; tð Þ ¼ w 0; tð Þ ¼ @w x; tð Þ
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¼ 0 (7)

In Eq. (5), f̂ xð Þ is the Dirac delta function which is used to
model the concentrated inertial load at x¼ l.

In long slender beams where u(x,t)¼O(w(x,t)2), the axial iner-
tia of the beam can be ignored compared with the concentrated in-
ertial loads applied at the tip of the beam [8]. Assuming that axial
damping is also negligible, the axial force E�A(x)�(@u/@xþ 1/
2(@w/@x)2) would remain constant along the neutral axis of the
beam. In such a condition, Eq. (5) is simplified as
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Additionally, since axial force E�A(x)�(@u/@xþ 1/2(@w/@x)2) is
constant along the neutral axis of the beam, one can say
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Using integration by parts, Eq. (9) can be expressed as
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In this paper, it is assumed that the beam’s cross-sectional geom-
etry and material remains constant along the beam length. There-
fore, with d(E�A(x))/dx¼ 0, Eq. (10) can be further simplified as
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With the assumption that the second moment of area of cross-
section remains constant along the beam length and substituting
Eq. (11) into Eqs. (8) and (6), the governing equations of the
dynamic behavior of the flexure beam with tip mass can be
obtained as
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For convenience, the following dimensionless variables are
introduced:

x̂ ¼ x

l
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l
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By substituting these dimensionless quantities into Eqs. (5) and
(6), dropping the hats, and assuming q�A and M are constant with
respect to time, the following equations may be derived:
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where u(t) is the normalized axial displacement of the tip mass
and

r1 ¼
Al2

I
; r2 ¼

M

q � A � l (17)
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The first mode of a typical system is generally the most impor-
tant one. When the system is excited by a broadband signal, most
of the input excitation energy is injected into this first mode.
Assuming this to be the case for the system being considered, one
may employ the Galerkin projection method [8]. Accordingly, the
transverse response of the system to an initial disturbance can be
assumed to be as follows:

w x; tð Þ ¼ u xð Þ
u 1ð Þw tð Þ (19)

Here, w(t) is the transverse displacement of the beam tip. Fur-
thermore, u(x) is the first linear undamped transversal vibrational
mode of the system. u(x) can be used as the basis function for
describing the nonlinear behavior of the system. For a beam with
a tip mass, u(x) is given by [9]

u xð Þ ¼ cos bxð Þ � cosh bxð Þf g�
cos bð Þ þ cosh bð Þ
sin bð Þ þ sinh bð Þ sin bxð Þ � sinh bxð Þf g

(20)

In this equation, b is the smallest positive root of Eq. (21)

1þ 1

cos bð Þ cosh bð Þ �
M

m
b tan bð Þ � tanh bð Þf g ¼ 0 (21)

It needs to be noted that u(x,t) did not appear in the equations
of motion (12) and (13). However, if the area of cross-section was
assumed to be variable with respect to x, then the equations would
contain both u(x,t) and w(x,t). In such a case, in order to reduce
the governing partial differential equations of motion to ordinary
ones, an axial mode-shape would be needed along with a trans-
verse mode-shape. In general, analytical functions are not avail-
able for the transverse and axial mode-shapes of beams with
variable cross-section. Therefore, the proposed analytical
approach in this paper is valid only for beam flexures with con-
stant cross-section.

Substituting Eq. (19) into Eq. (15), multiplying it by u(x) and
then integrating the resulting equation over the dimensionless do-
main, the following nonlinear ordinary differential equation is
obtained:

d2w tð Þ
dt2

þ c2=c1ð Þ dw tð Þ
dt
þ c3=c1ð Þw tð Þ

þ c4=c1ð Þw tð Þ3 þ c5=c1ð Þw tð Þu tð Þ ¼ 0 (22)

Furthermore, by substituting Eq. (19) into Eq. (16), the following
equation is obtained for the axial displacement of the beam tip:
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In Eqs. (22) and (23), ci (i¼ 1–5) and d1 are defined as follows:
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In order for the coefficients of equations (22) and (23) to appear
at the same order, the following dimensionless variable is
introduced:

s ¼ t=
ffiffiffi
k
p

(30)

Substituting Eq. (30) into Eqs. (22) and (23), the following
equations are obtained:
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þ x2
n � w sð Þ þ C1
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ds
þ C2w sð Þ3 þ C3w sð Þu sð Þ ¼ 0

(31)
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ds2

þ u sð Þ þ d1w sð Þ2¼ 0 (32)

where xn and Ci’s (i¼ 1–3) are defined as
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It should be noted that the natural frequency xn in Eq. (31) is
not the actual frequency but instead a normalized one. Also, in
Eq. (32), which captures axial dynamics, the first term corre-
sponds to elastic stretching and the third term corresponds to geo-
metric nonlinearity. If elastic stretching had not been included in
the formulation, then this equation would simply reduce to a kine-
matic relation between the transverse and axial displacements.

3 Solution Procedure

While Eqs. (31) and (32) may be solved numerically using a fi-
nite difference method (as done later in Sec. 4 for the purpose of
validation), that approach does not offer any design insight.
Instead, the multiple time scales perturbation method is used here
to derive analytical closed-form solutions to these equations. In
this method, time variable s is expanded in terms of multiple time
scales T0¼ s and T1¼ es where e is a small book-keeping parame-
ter [8]. Using the chain rule, the first and the second derivatives
with respect to s become

d
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3.1 The Nonresonant Case. Although the transverse dis-
placement of the beam’s tip is much larger than the beam’s thick-
ness, resulting in the geometric nonlinearities seen in Eqs. (31)
and (32), it can still be assumed to be an order of magnitude
smaller than the beam’s length for most applications of interest.
This implies

w sð Þ � O eð Þ (36)

Considering Eq. (32) and recognizing that d1�O(1) (see Table
2 for typical numbers), it can be argued that at least in the static
case where d2u(s)/ds2¼ 0

u sð Þ � O e2
� 	

(37)

These results, which also agree with a physical understanding
of the beam mechanics, have been shown to be valid in previous
analytical results [17].

Therefore, the solution of Eqs. (31) and (32) are sought in the
form

u T0;T1ð Þ ¼ e2 u0 T0;T1ð Þ þ eu1 T0;T1ð Þ þ :::ð Þ (38)

w T0;T1ð Þ ¼ e w0 T0; T1ð Þ þ ew1 T0;T1ð Þ þ :::ð Þ (39)

Assuming that the damping coefficient, i.e., C1, is small, one
may state

C1 ¼ eC10 (40)

By substituting Eqs. (34), (35), (38), (39), and (40) into Eqs.
(31) and (32), and equating the coefficients of like powers of e in
both sides of each equation, the following sets of equations are
obtained:

e1 :
@2w0 T0; T1ð Þ

@T2
0

þ x2
nw0 T0;T1ð Þ ¼ 0 (41)

e2 :
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@2u0 T0; T1ð Þ
@T0@T1

� 2d1w0 T0;T1ð Þw1 T0;T1ð Þ (44)

Equations (41) and (42) constitute a system of linear ordinary
differential equations with constant coefficients and their solution
can be written as

w0 T0;T1ð Þ ¼ A T1ð Þ exp IxnT0ð Þ þ cc (45)

u0 T0;T1ð Þ ¼ d1A T1ð Þ2

�1þ 4x2
n

exp 2ixnT0ð Þ

� d1A T1ð Þ �A T1ð Þ þ B T1ð Þ exp IT0ð Þ þ cc (46)

where �A T1ð Þ and �B T1ð Þ are complex conjugate of A(T1) and B(T1),
respectively. In these equations, as well as in the rest of this paper,
cc means the complex conjugate of all of the preceding terms.

Substituting Eqs. (45) and (46) into Eq. (43), the latter can be
readily solved using linear ordinary differential equation solution
techniques. But any particular solution of this equation would
contain a secular term, T0exp( 6 IxnT0), unless the coefficient of
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exp(IxnT0) in the right-hand side of Eq. (43) is zero. Therefore,
the following condition has to be satisfied in order to avoid any
secular terms in the response:

2Ixn
dA T1ð Þ

dT1

þ IxnC10A T1ð Þ ¼ 0 (47)

To solve Eq. (47), it is convenient to write A(T1) in the polar form

A T1ð Þ ¼
1

2
a1 T1ð Þ exp a1 T1ð ÞIð Þ (48)

By substituting Eq. (48) into Eq. (47) along with making the
necessary simplifications, and equating both the real and imagi-
nary parts of these equations with zero, the following conditions
are obtained:

da1 T1ð Þ
dT1

þ 1

2
C10a1 T1ð Þ ¼ 0 (49)

da1 T1ð Þ
dT1

¼ 0 (50)

The solution of Eqs. (49) and (50) is simply

a1 T1ð Þ ¼ a1 exp � 1

2
C10T1

� �
(51)

a1 T1ð Þ ¼ a1 (52)

Using Eqs. (45), (48), (51), and (52), w0(T0,T1) is obtained as
follows:

w0 T0; T1ð Þ ¼ a1 exp � 1

2
C10T1

� �
cos xnT0 þ a1ð Þ (53)

By substituting Eq. (53) in Eq. (43), the particular solution of
the resulting equation is easily obtained as

w1 T0; T1ð Þ ¼ 0 (54)

Using Eqs. (46), (53), and (54), Eq. (44) may be rewritten in the
form

@2u1 T0;T1ð Þ
@T2

0

þ u1 T0;T1ð Þ ¼ 2I
dB T1ð Þ

dT1

exp IT0ð Þ

þ I � d2a2
0xnC10 exp �C10T1ð Þ

1� 4x2
n

exp 2I a0 þ xnT0ð Þð Þ þ cc (55)

Appearance of secular terms in the response of Eq. (55) can be
avoided by using a similar procedure as above. Doing so, one can
obtain

2I
dB T1ð Þ

dT1

¼ 0 (56)

To solve Eq. (56), it is convenient to write B(T1) in the polar form

B T1ð Þ ¼
1

2
b T1ð Þ exp Ib T1ð Þð Þ (57)

By substituting Eq. (57) in Eq. (56), and separating real and
imaginary parts of the obtained algebraic expressions, the follow-
ing conditions are obtained:

� b T1ð Þ
db T1ð Þ

dT1

¼ 0 (58)

db T1ð Þ
dT1

¼ 0 (59)

The solutions of Eqs. (58) and (59) are

b T1ð Þ ¼ b0 (60)

b T1ð Þ ¼ b0 (61)

Therefore, using Eqs. (46), (57), (60), and (61), u0(T0,T1) is
obtained as

u0 T0;T1ð Þ ¼ b0 cos T0 þ b0ð Þ � 1

2
d1a2

1 exp �C10T1ð Þ

� 1þ cos 2 xnT0 þ a0ð Þð Þ
1� 4x2

n

� �
(62)

By substituting T0¼ s and T1¼ es, in Eqs. (53) and (62), a
zero-order approximate solution for w(s) and u(s) is obtained as

w sð Þ ¼ ea1 exp � 1

2
C10es

� �
cos xnsþ a0ð Þ (63)

u sð Þ ¼ e2b0 cos sþ b0ð Þ

� 1

2
d1 ea1ð Þ2exp �C10esð Þ 1þ cos 2 xnsþ a0ð Þð Þ

1� 4x2
n

� �
(64)

Since e is a book-keeping dummy parameter, one can substitute
a¼ ea1 and b1¼ e2b0 and using Eq. (40), the zero order perturba-
tion approximation for w(s) and u(s) can be further simplified as

w sð Þ ¼ a exp � 1

2
C1s

� �
cos xnsþ a0ð Þ (65)

u sð Þ ¼ b1 cos sþ b0ð Þ � 1

2
d1a2 exp �C1sð Þ

� 1þ cos 2 xnsþ a0ð Þð Þ
1� 4x2

n

� �
(66)

In above solution for u(s), the first term corresponds to axial
stretching of the beam, while the second term corresponds to the
geometric nonlinearity associated with arc-length conservation.

3.2 The Resonant Case. Next, one may mathematically ana-
lyze the resonant case where xn is close to 1=2, which represents a
condition of internal resonance in the system of nonlinear ordinary
differential equations given by Eqs. (31) and (32). It is important
to note that this normalized value of xn¼ 1=2 actually corresponds
to a large frequency. For the example case considered in Sec. 4
below, this natural frequency corresponds to 5874 rad/s. At such
large frequencies, the approximations made in deriving Eqs. (31)
and (32) break down. To accurately analyze the dynamics of the
system in this frequency range, several transverse and axial modes
will need to be considered and the axial kinetic energy cannot be
ignored. Therefore, solving the above equations for the case when
xn� 1=2 is a strictly mathematical exercise and of little physical
relevance. Nevertheless, an analytical solution is presented here
for the sake of completeness.

Equation (66) shows that when xn� 1=2, u(s) increases signifi-
cantly which is a sign of resonance. Therefore, to solve near this
resonance state, one needs to start perturbation expansion of u(s)
from a lower order, i.e., from e instead of e2

u T0; T1ð Þ ¼ e u0 T0;T1ð Þ þ eu1 T0;T1ð Þ þ :::ð Þ (67)

In this case, by following a similar procedure presented for the
nonresonant case, the following equations are obtained for
ui(T0,T1) and wi(T0,T1), where i¼ 0, 1:
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e1 :
@2w0 T0; T1ð Þ

@T2
0

þ x2
nw0 T0;T1ð Þ ¼ 0 (68)

e1 :
@2u0 T0;T1ð Þ

@T2
0

þ u0 T0; T1ð Þ ¼ 0 (69)

e2 :
@2w1 T0;T1ð Þ

@T2
0

þ x2
nw1 T0; T1ð Þ ¼ �2

@2w0 T0;T1ð Þ
@T1@T0

� C10

@w0 T0;T1ð Þ
@T0

� C3w0 T0;T1ð Þu0 T0;T1ð Þ (70)

e2 :
@2u1 T0;T1ð Þ

@T2
0

þ u1 T0;T1ð Þ ¼ �2
@2u0 T0;T1ð Þ
@T1@T0

� d1w0 T0;T1ð Þ2

(71)

The solution of Eq. (68) is of the same form as given in
Eq. (45) and the solution of Eq. (69) is as

u0 T0;T1ð Þ ¼ B T1ð Þ exp IT0ð Þ þ cc (72)

In the internal resonance state, the nearness of xn can be
described mathematically as

xn ¼
1

2
þ er (73)

where r�O(1).
Using Eq. (73), one can conclude

exp 6IxnT0ð Þ ¼ exp 6
IT0

2

� �
exp 6IrT1ð Þ (74)

exp 6IT0ð Þ ¼ exp 62IxnT0ð Þ exp �2IrT1ð Þ (75)

By substituting Eqs. (45), (72), (74), and (75) in the right-hand
side of Eqs. (70) and (71), the terms capable of producing secular
terms in the response of these latter equations are obtained as

2Ixn
dA T1ð Þ

dT1

þ IC10xnA T1ð Þ ¼ 0 (76)

2I
dB T1ð Þ

dT1

þ d1A T1ð Þ2exp 2IrT1ð Þ ¼ 0 (77)

Substituting Eqs. (48) and (57) into Eqs. (76) and (77), and
equating the real and imaginary parts to zero gives

xn
da1 T1ð Þ

dT1

þ 1

2
xnC1a1 T1ð Þ ¼ 0 (78)

da1 T1ð Þ
dT1

¼ 0 (79)

db T1ð Þ
dT1

þ 1

4
d1a1 T1ð Þ2sin 2a1 T1ð Þð �b T1ð Þ þ 2rT1Þ ¼ 0 (80)

� b T1ð Þ
db T1ð Þ

dT1

þ 1

4
d1a1 T1ð Þ2cos 2a1 T1ð Þð �b T1ð Þ þ 2rT1Þ ¼ 0

(81)

Equations (78)–(81) can be transformed into an autonomous
system by letting

c T1ð Þ ¼ 2a1 T1ð Þ � b T1ð Þ þ 2rT1 (82)

The results are

da1 T1ð Þ
dT1

¼ � 1

2
C10a1 T1ð Þ (83)

dc T1ð Þ
dT1

¼ 2r� db T1ð Þ
dT1

(84)

db T1ð Þ
dT1

¼ � 1

4
d1a1 T1ð Þ2sin c T1ð Þð Þ (85)

b T1ð Þ
db T1ð Þ

dT1

¼ 1

4
d1a1 T1ð Þ2cos c T1ð Þð Þ (86)

By solving Eqs. (83)–(86), one can find a1(T1), c(T1), b(T1), and
b(T1).

After eliminating secular terms, the solution of Eq. (71)
becomes

u1 T0;T1ð Þ ¼ � 1

2
d1a1 T1ð Þ2 (87)

Substituting Eq. (48) in the response of Eq. (68) (i.e., Eq. (45)),
a zero order approximation for w(s) is obtained as

w sð Þ ¼ a exp � 1

2
C1s1

� �
cos xnT0 þ a1ð Þ (88)

where a¼ e�a1.
Similarly by substituting Eqs. (87) and (72) in Eq. (67), a first-

order approximation for u(s) is obtained as

u sð Þ ¼ � 1

2
d1a2 exp �C1sð Þ þ b1 sð Þ cos sþ b sð Þð Þ (89)

where b1(s)¼ e2b(s)

4 Case Study

A flexure beam with a tip mass with material and geometric
properties listed in Table 1 is considered.

To provide a sense of the order of magnitude of the intermedi-
ate parameters defined in the above derivations, their values are
compiled in Table 2.

In addition, the damping coefficient ct is selected such that the
final damping coefficient becomes C1¼ 0.001, a nominal small
value. For a practical choice of dimensions, as listed in Table 1,
even though the non-normalized natural frequency is finite (equal
to 37.6 rad/s), the normalized natural frequency xn in Eq. (31) is
very small. This is simply a consequence of the fact that time is

Table 1 Characteristics of the simulated beam and its tip mass

Symbol Definition Value

E Young’s Modulus of elasticity of the beam material 69 GPa

q Density of the beam material 7800 kg/m3

l Beam’s length 0.15 m

b Beam’s width 0.015 m

h Beam’s thickness 0.001 m

M Tip mass 0.050 kg

Table 2 Values of the intermediate parameters defined in the
analysis. Parameters listed without any units represent normal-
ized quantities.

A¼ 1.5� 10�5 m2 c1¼ 13.033
I¼ 1.25� 10�12 m4 c3¼ 13.729
m¼ 1.755� 10�2 kg c4¼ 8.845� 105

r1¼ 2.7� 105 c5¼ 1.477� 106

r2¼ 2.849 d1¼ 0.598
k1¼ 1.055� 10�5 xn¼ 3.334� 10�3

b¼ 0.993 C2¼ 0.716
C1¼ 0.001 C3¼ 1.196
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normalized via Eq. (30) using the natural frequency of the axial
direction dynamics, given by Eq. (23).

Figures 3 and 4 present the results of the above analytical
model validated against numerical simulations for the undamped
and damped cases, respectively, for a set of initial conditions. In
these figures, the numerical results have been obtained by solving
Eqs. (31) and (32) using the ode45 initial value solver in MATLAB

[18]. The error percentages ew(s) and eu(s), plotted on the right
side vertical axes of these figures, are defined as follows:

ew sð Þ ¼ wAnalytic sð Þ � wNumeric sð Þ
wNumeric 0ð Þ


 �
� 100% (90)

eu sð Þ ¼ uAnalytic sð Þ � uNumeric sð Þ
uNumeric 0ð Þ


 �
� 100% (91)

where wAnalytic(s) and uAnalytic(s) are the analytical transverse and
axial response, respectively, and wNumeric(s) and uNumeric(s) are
the numerical transverse and axial response, respectively.

It is observed that when there is no internal resonance in the
system, the analytical results follow the numerical ones, thus vali-
dating the accuracy of the analytical modeling presented in this
paper.

The normalized transverse dynamics presented in Figs. 3(a)
and 4(a) consists of a large-amplitude low-frequency component.
The normalized axial dynamic presented in Figs. 3(b) and 4(b) is
composed of a high-frequency small-amplitude component and a
low-frequency large-amplitude component. The former is due to
the effect of the transverse vibration of the beam on its axial
vibration (i.e., geometric nonlinearity of arc-length conservation),
while the latter is the direct consequence of the large axial stiff-
ness associated with the elastic stretching of the beam. Zoomed
views of the latter component are shown in Fig. 5. This compo-
nent would not appear if the analytical formulation did not include
elastic stretching.

Although the amplitudes of response in the analytical and nu-
merical results are very close, there exist small discrepancies in
the frequencies. These discrepancies lead to the errors seen in
Figs. 3 and 4, and the phase mismatch in Fig. 5. For the particular

case considered here, the frequency discrepancy between low-
frequency components is less than 0.36% for the undamped case
and less than 1.35% for the damped case. The frequency discrep-
ancy between the high-frequency components is less than 0.3%
for the undamped as well as damped case. Even though these dis-
crepancies are small, over time they result in a phase mismatch as
seen in Fig. 5, and an overall error as seen in Figs. 3 and 4. For
the undamped case, this error grows to a maximum value when

Fig. 3 Comparison of analytical results with numerical simula-
tions for an undamped system with initial conditions w(0) 5 0.1
and u(0) 5 20.006. (a) Tip transverse displacement and (b) tip
axial displacement.

Fig. 4 Comparison of the analytical results with numerical
simulations for a damped system with C1 5 0.001 and initial
conditions w(0) 5 0.1 and u(0) 5 20.006. (a) Tip transverse dis-
placement and (b) tip axial displacement.

Fig. 5 Zoomed view of the normalized axial displacement: (a)
undamped system, and (b) damped system, C1 5 0.001
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the phase mismatch becomes 180 deg. However, in the damped
case, which better represents a real situation, the error percentage
decays with normalized time in spite of the phase mismatch
because the amplitude itself decreases due to damping.

5 Results and Discussion

The importance of studying the dynamics of flexure mecha-
nisms to better inform their design and optimization is well-
recognized. However, the presence of effects, such as elastic
stretching and geometric nonlinearities in flexure mechanics, can
make this investigation complicated and nontrivial. From a design
stand-point, several important questions arise: When should such
effects be taken into consideration if designing for dynamic per-
formance? What design changes can be made to mitigate or
accentuate these effects? Therefore, as a starting point in a
broader investigation, we modeled a simple beam flexure with a
tip mass in this paper and analyzed its large-amplitude in-plane
oscillations. Axial stretching of the beam and geometric nonli-
nearity associated with arc-length conservation were included.
Once the equations of motion were formulated, analytical zero
order and first order expressions for the beam tip displacement
were derived and validated using numerical simulations.

The value of analytical results, such as (65) and (66), which
provide closed-form free vibration solution for the nonresonant
case (xn � 1=2), lies in the fact that they help identify when the
axial stretching and geometric nonlinearity become important. For
a given initial conditions, w(0) and u(0), one can further show that
the amplitude of transverse vibration, a, in expression (65) is of
the order of w(0). The axial vibration given by expression (66) has
two components: a high-frequency (normalized value of 1) com-
ponent with amplitude b1 which arises due to axial stretching, and
a low-frequency (normalized value of xn) component with ampli-

tude d1a2=2ð1� 4x2
nÞ which arises due to geometric nonlinearity.

Moreover, the former amplitude can be shown to be approximately

2d1x2
nwð0Þ2 þ ðuð0Þ þ d1wð0Þ2Þ, while the latter amplitude is

approximately d1wð0Þ2=2.
Thus, closed-form analysis explicitly separates out the various

physical effects in parametric mathematical terms. This helps elu-
cidate how the physical parameters of the beam flexure (dimen-
sions, material, tip mass, etc.) and initial conditions contribute to
the various mathematical terms and associated physical effects
that appear in the dynamics. For example, under certain condi-
tions, the high-frequency component of the axial vibration associ-
ated with elastic stretching can become negligible compared with
the low-frequency component associated with geometric nonli-
nearity, and vice versa. With this clear understanding, one can
now make informed decisions regarding the choice of physical pa-
rameters, which is an essential aspect of design. This connection

between physical parameters, mathematical terms, and associated
physical phenomena helps generate design insight.

As noted earlier, this work is still preliminary. Having investi-
gated free vibrations here, the immediate next goal is to extend
this analysis to forced vibrations, which are relevant in many
applications. Furthermore, while the approximations and assump-
tions made in the analysis approach presented here are justified by
physical and mathematical arguments, the final results are yet to
be validated via experimental measurements. In addition to exper-
imental validation, our on-ongoing research effort includes
extending the above analysis approach to include greater number
of mode shapes in a single beam with tip mass, and to more com-
plex flexure modules and mechanisms.
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