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This paper addresses a certain type of scheduling problem that arises when a parallel
computation is to be executed on a set of identical parallel processors. It is assumed that
if two precedence-related tasks are processed on two different processors, due to the
information transferring, there will be a task-dependent communication delay between
them. For each task, a processing time, a due date and a weight is given while the goal
is to minimize the total weighted late work. An integer linear mathematical programming
model and a branch-and-bound algorithm have been developed for the proposed problem.
Comparing the results obtained by the proposed branch-and-bound algorithm with those
obtained by CPLEX, indicates the effectiveness of the method.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

During the last two decades, the parallel processing has improved the performance of computing in many systems like
real-time signal processing (Tokhi and Hossain [1]), image processing (Prajapati and Vij [2]) and robotic control (Jadud
et al. [3]). Nevertheless, Ariosy et al. [4] show that the time restriction is usually an important factor in robotic control sys-
tems. In such systems the data, including a set of computational tasks, are collected using sensing devices and are processed
in predefined time windows. Some tasks are precedence related using communication messages where each message carries
certain amount of information. Usually, robots must react to particular programs on given due dates where each due date
corresponds to a task. If the required information for a suitable reaction is not processed completely before or at a given time
moment, the robot must react based on incomplete information. Obviously, the amount of gathered and processed data
affects the accuracy of the control process, and all the information exposed after the given due date (called the information
loss) is useless. The information lost is modeled as late work and should be minimized to increase the accuracy of the control
systems.

In this paper, we consider the problem of scheduling a set of precedence related tasks on a target parallel system (Sinnen
[5]), consisting of a set of identical processors connected by a communication network. In this system, each processor can
execute only one task at a time and the execution is not preemptive. Also, the cost of communication between tasks executed
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on the same processor, local communication, is negligible and therefore considered zero. This assumption is based on the
observation that for many parallel systems remote communication (i.e. interprocessor communication) is one or more orders
of magnitude more expensive than local communication (i.e. intraprocessor communication). In addition, intraprocessor
communication is performed by a dedicated communication subsystem. Interprocessor communication, referred to as
communication hereafter, in the system is performed concurrently; there is no contention for communication resources.
As an example the Uniform Memory Access (UMA), a shared memory architecture used in parallel computers, represents this
model. For scheduling, suppose we are given a directed acyclic graph which represents the precedence relations among the
tasks. The assumption is that for each task, a processing time, a due date and a weight corresponding to its relative
importance, are given. The goal is to determine the best schedule, the processor and the start time corresponding to each
task, in which the total weighted late work is minimized.

Using standard notification, which was originally presented by Graham et al. [6] and later extended by Veltman et al. [7],
this problem can be shown as Pmjprec; comujYw.

There are many papers related to the scheduling problems of identical processors in the literature such as Gendreau et al.
[8] and Blazewicz et al. [9]. Verrite [10] considered the problem Pmjprec; comujTmax and Pmjprec; comujLmax where Tmax and
Lmax indicate the maximum tardiness and the maximum lateness, respectively. Sinnen [5] reviewed different situations of task
scheduling for parallel systems. Similarly, Drozdowski [11] considered scheduling problems for parallel processing.

Many research papers related to the minimization of late work are proposed in the literature. In particular, these papers
can be classified into the five following categories: single machine (Potts and Van Wassenhove [12], Kovalyov et al. [13]),
parallel machine (Blazewicz [14]), flow shop (Blazewicz et al. [15], Pesch and Sterna [16]), job shop (Blazewicz et al. [17])
and open shop (Blazewicz et al. [18]). For a comprehensive survey, interested readers are referred to (Sterna [19]). However,
to the best of our knowledge, the problem Pmjprec; comujYw has not been taken into account in the literature.

As shown by Sterna [20], there is a polynomial time algorithm for Pmjri; pi ¼ 1jYw while P2jpj ¼ 1; cainsjY is NP-hard.
Since P2jprec; comujYw is a generalization of P2jpj ¼ 1; cainsjY , it is NP-hard as well.

The main contributions of this article are twofold: (1) we provide the first description of Pmjprec; comujYw and developed
an integer linear formulation for it; (2) we develop a branch-and-bound (B&B) algorithm for the problem and derive upper
and lower bounds as well as dominance rules to improve the performance of the B&B algorithm.

The remainder of this paper is organized as follows. Theory of the work including the mathematical statement of the
problem and the proposed B&B algorithm are presented in Sections 2 and 3, respectively. Results and discussions are
reported in Section 4. Finally, concluding remarks are presented in Section 5.

2. Problem statement

In Pmjprec; comujYw, a set of tasks N ¼ f1; . . . ;ng must be processed on a set of identical parallel processors
M ¼ fM1; . . . ;Mmg. For each task i 2 N, we are given a processing time pi, a due date di and a weight wi where all parameters
are supposed to be deterministic and non-negative integer values. Each task i 2 N must be processed without preemption on
a processor. The output of some tasks constitutes the input of some others; thus, there is finish-to-start precedence relation
between some pairs of tasks, represented by set A, i.e. a (strict) partial order on N. If si indicates the start time of task i, set A is
defined as an irreflexive and transitive relation imposing the constraints si þ pi þ Dik 6 sk for all ði; kÞ 2 A in which Dik shows
the communication delay between tasks i and k and is zero if both are processed on the same processor. We establish the
directed acyclic graph GðN;AÞ in which sets N and A correspond to the set of nodes and arcs, respectively. We aim to find
a schedule that minimizes the total weighted late work where such a schedule can be obtained by employing efficient task
partitioning and scheduling strategies. The late work of task i is mathematically defined as LWi ¼minfTri; pig where
Tri ¼maxffi � di; 0g indicates the tardiness of task i in which fi shows the finish time of task i.

In order to formulate the problem, in the following we introduce some variables.
Xijt ¼
1; if task i is completed on processor Mj at time instant t;

0; Otherwise:

�

Zi ¼
1; ifTri 6 pi;

0; ifTri > pi:

�

The model reads as follows:
Min
Xn

i¼1

wiLWi: ð1Þ
Subject to
Tri P tXijt � di; 8i 2 N; 8j 2 M and t ¼ 1; . . . ; T; ð2Þ

LWi 6 Tri; 8i 2 N; 8j 2 M and t ¼ 1; . . . ; T; ð3Þ
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LWi 6 pi; 8i 2 N; ð4Þ

Zi P
pi � Tri

H
; 8i 2 N; ð5Þ

Zi 6 1� Tri � pi

H
; 8i 2 N; ð6Þ

LWi P Tri � Hð1� ZiÞ; 8i 2 N; ð7Þ

LWi P pi � HZi; 8i 2 N; ð8Þ

Xm

j¼1

XT

t¼1

Xijt ¼ 1; 8i 2 N; ð9Þ

Xn

i¼1

Xijt þ
XT�t

s¼1

X
ijpi>s

XijðtþsÞ 6 1; 8j 2 M and 8t ¼ 1; . . . ; T; ð10Þ

XT

t¼1

tXijt 6 H 1�
XT

t¼1

Xkjt

 !
þ
XT

t¼1

tXkjt � pk; 8ði; kÞ 2 A and 8j 2 M; ð11Þ

XT

t¼1

tXijt þ Dik

XT

t¼1

Xkj0t 6 Dik

XT

t¼1

tXkj0t � pk þ H 1�
XT

t¼1

Xkj0t

 !
þ H 1�

XT

t¼1

Xijt

 !
; 8ði; kÞ 2 A and 8j; j0ðj – j0Þ 2 M; ð12Þ

Xijt 2 f0;1g; 8i 2 N; 8j 2 M and t ¼ 1; . . . ; T; ð13Þ

Zi 2 f0;1g; 8i 2 N; ð14Þ

Tri 2 zþ; 8i 2 N: ð15Þ
The objective function (1) is to minimize the total weighted late work. The constraint set (2) shows the tardiness of task i
where tXijt indicates the finish time of this task and t is the time index. Also, T indicates an upper bound on the completion
time of the project. If we assume all tasks are processed on a single processor, no communication delay will be applied and
consequently we have T ¼

Pn
i¼1pi. In the Appendix A, we prove that T ¼

Pn
i¼1pi does not eliminate the optimal solution. The

relation LWi ¼minfTri;ig is formulated using constraints (3)-(8) in which H indicates a very big number. In fact, if Tri 6 pi

then we must have Zi ¼ 1 to activate the constraint (8); hence, the constraint (7) will be redundant and we have
LWi ¼ Tri. So, the constraints (4) and (5), by considering the values of Tri and pi, determine the value of Zi appropriately.
The constraint (9) indicates that each task is completed only at a unique time and on a specified processor. The constraint
set (10) is a set of forcing constraint and imposes that on each processor at most one task to be processed in a given time
instant. Finish-to-start type precedence relations and communication delays among directly dependent tasks are formulated
using the constraint (11) and (12). The rest of constraints define the domains of variables where zþ indicates the set of
non-negative integers.

3. A branch-and-bound algorithm

In this section, we develop a B&B algorithm to the resolution of the proposed problem. Particularly, the developed method
is based on the depth-first strategy which works based upon assigning each task to different processors. Usually, each B&B
algorithm includes two main schemes, i.e. branching and bounding. In the branching scheme, the B&B tree is constructed and
different feasible schedules are investigated while in the bounding scheme, the goal is to fathom the nodes using suitable and
efficient dominance rules.

3.1. The branching scheme

In our B&B, each schedule (solution) s is represented as s ¼ ðPrð1Þ; . . . ; PrðnÞ; s1; . . . ; snÞ where PrðiÞ and si indicate the
processor and start time of task i 2 N, respectively. For each schedule in each level of the B&B tree, PrðiÞ and si are zero
for unscheduled tasks. Moreover, let v l

u be the uth node in level l of the B&B tree in which an eligible task i 2 N i.e. a task that
all of its predecessors are scheduled already, is scheduled on a processor PrðiÞ 2 M in the earliest possible start time. This
node corresponds to a partial schedule s in which values of some si and PrðiÞ for scheduled tasks have been determined.
The B&B tree includes n + 2 levels where root node is placed in the highest level ðl ¼ 0Þ and all complete schedules are
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obtained in the lowest level ðl ¼ nþ 1Þ. Also, the number of offspring corresponding to node v l
u equals to jEðv l

uÞj �m where
jEðv l

uÞj specifies the number of eligible tasks in node v l
u, gathered in set Eðv l

uÞ. In the worst case in which A = £, we have
jEðv l

uÞj ¼ n� l and consequently, at most n!mn schedules have to be investigated in total. Since the problem
Pmjprec; comujYw is NP-hard, an exact algorithm with better than exponential time complexity is unlikely to exist. As a result,
our developed B&B algorithm which implicitly enumerates the solution space has complexity of Oðn!mnÞ.

The branching scheme is illustrated on an example problem, shown in Fig. 1. This example includes n = 10 tasks and m = 3
identical processors in which the number inside each node gives the corresponding task number while the number along
each arc displays the amount of communication delay. Finally, processing time, due date and weight corresponding to each
task are listed in Table 1.

Fig. 2 demonstrates some different branching choices at levels l ¼ 1;2 and 3 of the B&B tree, in which each ordered pair
i� j represents the assignment of task i to the processor Mj. In this figure, all possible nodes of level l ¼ 1 are depicted. Since
there are numerous possible nodes at levels l ¼ 2 and 3, only offspring of nodes 3–2 and 1–3 are shown in the second and
third levels, respectively.
Fig. 1. The example problem.

Table 1
Data corresponding to the example problem.

Task 1 2 3 4 5 6 7 8 9 10

Duration 3 1 8 1 4 5 4 5 5 9
Weight 1 6 2 9 6 5 4 9 9 8
Due date 1 2 3 3 3 6 7 9 13 15

Fig. 2. Illustration of the branching scheme.
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3.2. The bounding scheme

In this section, we propose some rules to obtain upper and lower bounds for the optimal objective value of
Pmjprec; comujYw. Moreover, some efficient dominance rules are developed to enhance the performance of the B&B
algorithm.

3.2.1. Upper bound
In order to reach a fast algorithm to construct an initial feasible solution, to be considered as an upper bound (UB) for

Pmjprec; comujYw, we first construct a priority list of tasks, sorted based on the non-decreasing order of h-values as follows:
for each task i 2 N, we define SucþðiÞ as the set including task i and all (direct and indirect) of its successors and
hi ¼

P
k2SucþðiÞ

MWLWk
dkþ1 in which MWLWk and dk represent the minimum weighted late work and the slack corresponding to task

k, respectively. For each task k, we have dk ¼ lsk � esk where lsk and esk indicate the latest and earliest start time of task k,
respectively, and are calculated using the well-known critical path method (CPM) developed by Kelley and Walker [21].

It should be noticed that for each task k, MWLWk is calculated based on the earliest finish time of task k where the earliest
finish times are calculated based upon the CPM without taking into account the communication delays.

According to the priority list, tasks are sequentially scheduled on the earliest possible start time until a feasible complete
solution is obtained. In each iteration, the next task from the priority list is chosen and for that the earliest possible start
time, in which communication delays are considered, is assigned such that no precedence constraint is violated.

For instance, consider the example problem for which the values of hi are reported in the second row of Table 2. Conse-
quently, the priority list is constructed as (3,1,2,10,4,7,8,5,6,9). Applying the described procedure to this example problem,
we obtain finish times reported in the last row of Table 2. As a result, the weighted late work of the obtained schedule,
depicted in Fig. 3, is 119.

3.2.2. Lower bound
Having a partial schedule s corresponding to Pmjprec; comujYw, let ST be the set of scheduled tasks. A very simple lower

bound (LB1) for the partial schedule s is calculated by taking into account the weighted late work of scheduled tasks as
follows:
Table 2
Illustrat

Task

hi

fi
LB1 ¼
X
i2ST

wiminðpi; maxð0; fi � diÞÞ: ð16Þ
On the other hand, corresponding to each partial schedule s, it is possible to find a second lower bound, LB2, for the weighted
late work of unscheduled tasks (UT) which is given in (17). In particular, for each task i 2 UT, maximum value of the earliest
finish time ðefiÞ must be calculated. Finally, combining LB1 and LB2 leads us to LB ¼ LB1 þ LB2.
LB2 ¼
X
i2UT

wiminðpi;maxð0; efi � diÞÞ: ð17Þ
ion of the initial solution procedure.

1 2 3 4 5 6 7 8 9 10

24.2 23.2 33.2 8.2 0.67 0 7.2 7.2 0 16
3 1 8 4 8 10 5 16 16 17

Fig. 3. Initial solution of the example problem.
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Letting efi ¼ esi þ pi, in what follows, three rules are developed to calculate esi. It should be noticed that in calculation of LB2,

for each i 2 ST , we assume that efi ¼ fi. For each unscheduled task i 2 N, let predi
v l

u
represent the set of direct predecessors of

task i at node v l
u of the B&B tree, partitioned into two subsets scheduled tasks (spredi

v l
u
) and unscheduled tasks (upredi

v l
u
). In

the first case, it is assumed that jpredi
v l

u
j ¼ 1, in the second case, the assumption is that 1 < jpredi

v l
u
j 6 m while in the third

case, it is presumed that jpredi
v l

u
j > m.

� Case 1 ðjpredi
v l

u
j ¼ 1): If k 2 spredi

v l
u

and PrðiÞ ¼ PrðkÞ, then esi ¼ fk. Also, if k 2 spredi
v l

u
and PrðiÞ– PrðkÞ, then esi is calculated

as esi ¼ fk þ Dki. Moreover, if k 2 upredi
v l

u
, then it is possible that in the optimal solution either PrðiÞ ¼ PrðkÞ or PrðiÞ – PrðkÞ.

However, as a lower bound, we assume PrðiÞ ¼ PrðkÞ to ignore communication delay Dki. Consequently, esi is calculated as
esi ¼ efk.
� Case 2 ð1 < jpredi

v l
u
j 6 mÞ: In this case, esi is calculated as esi ¼maxfes1

i ; es2
i ; es3

i g in which es1
i ; es2

i and es3
i are formally

described as follows:
es1
i ¼ min

k2spredi
vl

u

max
a2spredi

v l
u
;PrðkÞ–PrðaÞ

ðfk; fa þ DaiÞ; max
b2spredi

v l
u
;PrðkÞ¼PrðbÞ

ðfk; fbÞ

0
@

1
A; ð18Þ

es2
i ¼ min

k;a2upredi
v l

u

maxðefk þ Dki; efaÞ;maxðefa þ Dai; efkÞ; efk þ pa; efa þ pkð Þ; ð19Þ

es3
i ¼ min

k2spredi
vl

u
;a2upredi

v l
u

ðfk þ pa;max efa þ Dai; fkð Þ;maxðfk þ Dki; efaÞÞ: ð20Þ
A simple lower bound for tasks of subset spredi
v l

u
is maxk2spredi

v l
u

ðfkÞ, while this bound could be significantly improved by taking

into account the communication delays. To this aim, we assume the case in which PrðiÞ ¼ PrðkÞ – PrðaÞ where k; a 2 spredi
v l

u
,

then esi P maxa2spredi
v l

u
; PrðkÞ – PrðaÞðfk; fa þ DaiÞ. Also, for the case in which PrðiÞ ¼ PrðkÞ ¼ PrðbÞ and b 2 spredi

v l
u
, leads to

esi P maxb2spredi
v l

u
; PrðkÞ¼PrðbÞðfk; fbÞ. As a result, es1

i is constructed as shown already in (18).Similarly, instead of the simple lower

bound maxk2upredi
vl

u

ðefkÞ, we can construct es2
i based on every two tasks k; a 2 upredi

v l
u
. Since processors of tasks k; a 2 upredi

v l
u

are not determined yet, we consider four scenarios to construct es2
i . In the first two scenarios, it is assumed that tasks k and a

are processed on different processors while in the two other scenarios it is supposed that they are processed on the same
processor. For instance, if PrðiÞ ¼ PrðaÞ – PrðkÞ, then esi P maxðefk þ Dki; efaÞ and esi P maxðefa þ Dai; efkÞ while if
PrðiÞ ¼ PrðaÞ ¼ PrðkÞ then esi P minðefk þ pa; efa þ pkÞ. Thus, es2

i is obtained by following what is given in (19). It is worth
nothing that es2

i could be improved by considering more than two tasks but it would be very time consuming.Finally, we

develop es3
i for tasks k and a where k 2 spredi

v l
u

and a 2 upredi
v l

u
. Assuming PrðiÞ ¼ PrðkÞ ¼ PrðaÞ then esi P fk þ pa, while, if

PrðiÞ ¼ PrðkÞ – PrðaÞ, then esi P maxðefa þ Dai; fkÞ and for the case in which PrðiÞ ¼ PrðaÞ – PrðkÞ, we have
esi P maxðfk þ Dki; efaÞ. Thus, es3

i is constructed as shown in (20).Now, consider the partial schedule depicted in Fig. 4
corresponding to the example problem in which tasks 1 and 2 are scheduled and the goal is to calculate es10. Since task 3
is the only unscheduled predecessor of task 10, es2

10 is not defined and es10 is calculated as follows:
Fig. 4. Illustration of the lower bound in case (2).
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es1
10 ¼minðmaxðf1; f2 þ D2;10Þ;maxðf2; f1 þ D1;10ÞÞ ¼minðmaxð3;1þ 1Þ;maxð1;3þ 5ÞÞ ¼ 3;

es3
10 ¼minðf1 þ p3; f2 þ p3; maxðf1; ef3 þ D3;10Þ; maxðf2; ef3 þ rDelta3;10Þ; maxðef3; f1 þ D1;10; f2 þ D2;10ÞÞ
¼minð3þ 8;1þ 8; maxð3;8þ 3Þ; maxð1;8þ 3Þ; maxð8;3þ 5;1þ 1ÞÞ ¼minð11;9;11;11;8Þ ¼ 8:
As a result, we have es10 ¼ maxð3;8Þ ¼ 8 and consequently ef10 ¼ 17

� Case 3 ðjpredi
v l

u
j > mÞ: It is trivial that in this case, the predecessors of task i cannot all be processed in parallel and con-

sequently some ones must precede some others. For each t = 1, . . . ,T, we represent by PPj
v l

u
ðtÞ the profile of processor

Mj 2 M corresponding to node v l
u at time interval t ([t � 1, t)). In case of having a task being processed on processor Mj

at time interval t, we have PPj
v l

u
ðtÞ ¼ 1, otherwise; PPj

v l
u
ðtÞ ¼ 0. Moreover, for each node v l

u, let aj be the earliest possible

start time of a task k 2 upredi
v l

u
on processor Mj. Letting pmin ¼mink2upredi

v l
u

fpkg, aj equals to the minimum time instant sat-

isfying two conditions (21) and (22).
aj P min
k2upredi

vl
u

feskg; ð21Þ

Xajþpmin

t¼aj

PPj
v l

u
ðtÞ ¼ 0: ð22Þ
The first condition corresponds to the definition of the earliest start time while the second condition implies that proces-
sor Mj must be free consecutively, starting from time instant aj for pmin time intervals. Assume b indicates the minimum
completion time of all tasks of set upredi

v l
u
. In order to calculate b, we use the idea developed for the lower bound of Pm||Cmax

(McNaughton [22]) in which it is assumed that the preemption is allowed and all tasks of set upredi
v l

u
are processed on those

processors such that the minimum makespan is obtained for them. Thus, b equals to the maximum value satisfying (23).
Xm

j¼1

Xb

t¼aj

PPj
v l

k

ðtÞ 6
X

k2upredi
vl

u

pk: ð23Þ
It should be noticed that b is identical for all processors and in the best case, all processors will be busy consequently until
at least time instant b. Usually, if the communication delays are not much larger than the processing times, we can establish
(24).
es4
i P bþ min

k2upredi
v l

u

fDkig: ð24Þ
Also, if communication delays are much larger than the processing times, it may be better to schedule all tasks k 2 upredi
v l

u

on the same processor, leading to (25).
es4
i ¼min bþ min

kinupredi
v l

u

fDkig; min
j2M
fajg þ

X
k2upredi

v l
u

pk

8>><
>>:

9>>=
>>;: ð25Þ
Fig. 5. Illustration of the lower bound in case (3).
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On the other hand, since all arguments proposed in case (2) are applicable to this case, esi could be developed as
esi ¼maxfes1

i ; es2
i ; es3

i ; es4
i g.

As an example, consider the partial schedule depicted in Fig. 5 in which tasks 1–4 are scheduled while we desire to cal-
culate es9. Here, we have a1 ¼ 5; a2 ¼ 10; a3 ¼ 0 and b ¼ 7 where b ¼ 7 has been shown in Fig. 5 by dashed boxes. Upon
calculating es1

9 ¼ 4; es2
9 ¼ 6; es3

9 ¼ 6 and es4
9 ¼ 8, we get es9 ¼maxfes1

9; es2
9; es3

9; es4
9g ¼ 8.

3.2.3. Dominance rules
In this section, three dominance rules are developed. The first two rules are proposed to prevent the creation of repetitive

schedules, generated due to the branching scheme. Demeulemeester and Herroelen [23] and Demeulemeester et al. [24]
have developed such rules, referred to as cut set rules, in their developed B&B algorithms. Also, the third rule is constructed
to avoid low quality schedules. In each node of the B&B tree, these dominance rules are applied consecutively. In other
words, if a node is not fathomed by the dominance rule 1, the second dominance rule is applied and so forth.

Definition. Two tasks i and k are called independent, if there is no path between them in directed graph G(N,A).
Dominance rule 1. Consider two nodes v l
u and v l0

u0 corresponding to assignments i� j and i0 � j0, respectively. Also, assume
l0 ¼ lþ 1 and there is a path between nodes v l

u and v l0
u0 in the B&B tree. Node v l0

u0 is fathomed, if the following conditions are
satisfied:

(I) Tasks i and i0 are independent,
(II) i > i0.
Proof. Assume node v l0
u0 corresponds to a partial schedule s. The first condition implies that if two nodes v l

u and v l0
u0 are

exchanged in the B&B tree, the partial schedule s is obtained again. Consequently, in such condition, we must consider either
assignment i� j before assignment i0 � j0 or vice versa. Since, i > i0, we prefer to investigate the former case. h
Fig. 6. Illustration example for dominance rule 1.

Fig. 7. Partial schedule corresponding to Fig. 6.
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For example, consider the B&B tree illustrated in Fig. 6, in which two different paths are displayed where both correspond
to the partial schedule depicted in Fig. 7.

Based on dominance rule 1, since tasks 1 and 5 are independent and they are assigned to two differ processors M1 and M3,
respectively, the right path in which assignment 1–1 is investigated after assignment 5–3 is fathomed.

Dominance rule 2. Consider two nodes v l
u and v l

u0 corresponding to assignments i� j and i� j0ðj0 < jÞ, respectively. If v l
u and

v l
u0 have the same parent at level l � 1 and si ¼ s0

i0
, fathom node v l

u0 (si and s0i correspond to assignments i� j and i� j0,
respectively).
Proof. Since nodes v l
u and v l

u0 have the same parent at level l � 1, for each t ¼ 1; . . . ; T , before doing assignments i� j and
i� j0, PPj

v l
u
ðtÞ and PPj0

v l
u0
ðtÞ are identical. Thus, for each offspring of node v l

u0 such as assignment k� j00 and its corresponding
partial schedule s, there is an identical assignment among offspring of node v l

u which corresponds exactly to the partial
schedule s. h

As an example, consider the B&B tree illustrated in Fig. 8 and its corresponding partial schedule, depicted in Fig. 9. It is
obvious that scheduling of task 3 on processor M2 or M3 is identical because these two processors are identical.

Dominance rule 3. In each node of the B&B tree, if UB 6 LB, fathom the node.
Proof. Straightforward. h

It should be mentioned that when using dominance rule 3, we first check the condition UB 6 LB1 and in case of violating,
we then check whether UB 6 LB or not.

4. Results and discussion

The B&B algorithm is implemented in Visual C++ 2010 and all experiments were run on a Core i5 2.4 GHz Pentium IV lap-
top computer with 4 GB of RAM, equipped with Windows 7 Ultimate. The maximum CPU usage for running the program is
restricted to 25% (1 Core) and the maximum memory size for storing the tree structure is restricted to 1 MB.
Fig. 8. Illustration example for dominance rule 2.

Fig. 9. Partial schedule corresponding to Fig. 8.
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4.1. Experimental setup

Since there is no benchmark instance, available in the literature for this problem, we generated a set of random test prob-
lems using the random network generator RanGen (Demeulemeester et al. [25]). For this purpose, a full factorial design
based on various values of the three following parameters is developed: number of tasks ðn ¼ 12;14;16Þ, number of proces-
sors ðm ¼ 2;3;4Þ and order strength ðOS ¼ 0:4;0:6;0:8Þ. For each combination of n, m and OS, five random test problems are
generated, resulting in 135 test problems. Moreover, processing times, communication delays and weights of the tasks are
realizations of independent discrete uniform random variables on the interval [1,10]. The due date di of each task i 2 N is a
realization of normal random variables N½li; r2

i �where li and ri are determined as follows. If jPredij ¼ 0, then li ¼ efi; else if
jPredij ¼ 1, then li ¼ lpredðiÞ þ pi; otherwise, li ¼ efi þ Avgcomu in which Avgcomu gives the average values of communication
delays which is set to 5 for the generated test instances. The parameter ri is determined such that fi is less than efi with
probability of approximately zero.

For this purpose, we consider ri ¼ li�efiffiffiffiffi
10
p . Also, it should be noticed that, since generated due dates may not be integer, their

rounded values are considered as due dates.
In order to evaluate the impact of processing times and communication delays on the quality of the obtained solutions,

we consider uniform random variables on the interval [1,10] and [11,20] as small and large values, respectively. Thus, we
refer to the abovementioned test set as TSSS in which both processing times and communication delays are small. We
generated there other test sets, referred to as TSSL, TSLS and TSLL where TSSL indicates the test set in which processing times
are small and communication delays are large.

4.2. Summary results

In this section, the total CPU run time of the B&B algorithm is referred to as TTotal and is expressed in seconds. Table 3
represents TTotal for the full factorial experiments, constructed based on parameters n, m and OS. Each cell of this table rep-
resents the average TTotal for the corresponding five test problems of TSLL while in the last row and column, the average TTotal

for different values of n and OS are reported, respectively. Moreover, based on the information reported in this table, the
average TTotal for m ¼ 2;3 and 4 is 87.09, 318.09 and 372.59 s, respectively. Also, the total average of all experiments is
259.26 s. As it was expected, the CPU run time is increased by increasing the values of n, m and decreasing the value of OS.

It should be noticed that both processing times and communication delays affect the performance of the B&B algorithm
such that the average TTotal is increased for the three other test sets. The results reported in Table 4 indicate that communi-
cation delays have larger impact on the average TTotal rather than processing times.

4.3. Comparative results with time limits

In order to evaluate the performance of the developed B&B algorithm, we compare it with ILOG CPLEX solver 12.3. Based
upon the formulation developed in Section 2.3, we compare the performance of the B&B algorithm and CPLEX solver based
upon four test sets TSSS, TSSL, TSLS and TSLL and for the time limits TL ¼ 1;10;30;60 and 100 s. Each triple reported in Table 5
gives, respectively, the average percentage of deviation (APD) of the best found solutions from the optimal ones, the number
of optimal solutions found (#opt) and total number of test instances for which no feasible solution exist, within the
corresponding time limits. Since the CPLEX could not find any feasible solution for some test problems within some given
time limits, APD and #opt are reported based on those test instances for which at least a feasible solution has been found.
It should be noticed that the B&B algorithm has been able to find feasible solution for all test instances even for TL ¼ 1 s.

The results of Table 5 indicate that our developed B&B algorithm outperforms CPLEX especially for smaller time limits.
Our developed B&B algorithm is efficient such that it is able to find the optimal solutions of around (in average) 79% of
Table 3
The average TTotal for different values of n, m and OS.

OS

0.4 0.6 0.8
n m m m Avg.

2 3 4 2 3 4 2 3 4

12 0.90 1.83 1.75 0.10 0.34 0.74 0.02 0.01 0.02 0.55
14 14.57 21.31 88.92 1.28 6.34 22.76 0.00 0.02 0.03 17.25
16 739.96 2154.53 2364.40 26.95 678.93 873.62 0.01 0.27 1.07 759.97
Avg. 598.60 198.54 0.16 259.26

Table 4
The average TTotal for test sets TSSS, TSSL, TSLS and TSLL.

TSSS TSSL TSLS TSLL

54.60 236.75 79.07 259.26



Table 5
Comparing the performance of the B&B algorithm and CPLEX in limited times.

Test set TL= 1 10 30 60 100

TSSS B&B 3.26, 111, 0 1.66, 124, 0 1.09, 128, 0 1.04, 129, 0 0.73, 130, 0
CPLEX –, 0, 135 76.15, 9, 93 58.73, 30, 62 45.31, 57, 36 32.78, 77, 19

TSSL B&B 5.70, 103, 0 1.48, 117, 0 1.13, 122, 0 0.91, 125, 0 0.60, 128, 0
CPLEX –, 0, 135 77.85, 4, 108 45.48, 38, 80 30.04, 40, 53 25.31, 53, 42

TSLS B&B 5.53, 113, 0 1.31, 125, 0 0.86, 127, 0 0.71, 127, 0 0.53, 128, 0
CPLEX –, 0, 135 83.25, 0, 134 81.31, 0, 117 89.28, 1, 109 75.35, 4, 92

TSLL B&B 2.73, 102, 0 1.32, 119, 0 0.86, 124, 0 0.42, 127, 0 0.41, 128, 0
CPLEX –, 0, 135 –, 0, 135 47.26, 0, 127 60.61, 0, 116 49.82, 1, 107

Table 6
Impact of the communication delays on the performance of the initial solution.

TSSS TSSL TSLS TSLL

19.43 26.14 13.35 7.41
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the test instances in at most one second while CPLEX has not been able to find any optimal solutions in this time limit. This
percentage is increased to around 95% and 25% for B&B and CPLEX, respectively, when TL = 100 s.

4.4. Impact of the processing times and communication delays on the performance of the initial solution

In order to evaluate the impact of the processing times and communication delays on the performance of the initial solu-
tion, we consider the average percent deviation of the solutions obtained by the initialization procedure, from the optimal
solutions for four test sets TSSS, TSSL, TSLS and TSLL. The results represented in Table 6 indicate that the performance of the
initial solution will be increased when processing times are increased. As it was expected, increasing the communication
delays has a negative impact on the efficiency of the initial solutions, since the communication delays are not considered
in calculation of hi values.

5. Conclusions

This article has studied a model for scheduling a set of precedence-dependent tasks on a set of identical processors while
communication delays are imposed between tasks due to the data transferring by processing two directly dependent tasks
on different processors. An integer linear model and an efficient B&B algorithm were developed for Pmjprec; comujYw. Com-
putational performance of the developed B&B algorithm has been examined. Also, the developed integer linear model has
been solved by ILOG CPLEX 12.3 and computational results indicate the superiority of our developed B&B algorithm, espe-
cially for small time limits.

Developing more sophisticated exact or (meta) heuristic solution techniques could be interesting research topics. Fur-
thermore, developing smaller valid upper bound T for the makespan of the optimal solution of Pmjprec; comujYw, can in-
crease noticeably the efficiency of the developed model. Finally, as a more fundamental extension, it could be assumed
that the communication delays are dependent to the location of processors.

Appendix A

Remark. There is an optimal solution for Pmjprec; comujYw with the makespan less than or equal to T ¼
Pn

i¼1pi.
Proof. Consider the schedule s in which all tasks are sequentially processed with respect to precedence relations on the
same processor with the makespan

Pn
i¼1pi. Also, assume this makespan is not a valid upper bound for the makespan of

the optimal solution of Pmjprec; comujYw. In order to construct a valid upper bound for the makespan of the optimal solution,
we need to construct a schedule with the makespan larger than

Pn
i¼1pi. For this purpose, we need to postpone at least one

task in schedule s but this makes the late work of this job worse and consequently the obtained schedule cannot be optimal.
Thus, T ¼

Pn
i¼1pi is a valid upper bound for the makespan of the optimal solution of Pmjprec; comujYw. h
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