
  

 

Abstract—Over the last few years, the exponential growth of 

biological diversity achievements brought to light the need for 

new efficient techniques to check evolutionary relationships. 

One of the main methods to illustrate such relationships is 

phylogenetic trees. A variety of approaches which are used for 

tree reconstruction issue fall into two main groups: distance 

based and sequence based. Sequence based methods, such as 

maximum parsimony, can be used when the tree is 

reconstructed on a sequence alignment. However, in most cases 

it is inconceivable to compute parsimony score for all trees. On 

the other hand, distance based methods are extremely faster 

because the tree is usually constructed from a given distance 

matrix; nevertheless, seldom can distance matrices show the 

true identity of organisms. Here, we propose a novel technique 

to approximate the parsimony tree with stepwise addition 

method utilizing clustering. In this strategy we only calculate 

parsimony score for a part of incompletely constructed tree 

(called “cluster”) at each step instead of the whole tree. 

Experiments confirm our hypothesis and do indicate that the 

algorithm is quite fast to build the phylogenetic tree, often with 

a satisfactory outcome, when there is a large dataset. We also 

believe that our method could prove useful as a starter tree for 

heuristic search approaches. 

 

Index Terms—Phylogenetic tree construction, maximum 

parsimony, step-wise addition. 

 

I. INTRODUCTION 

The study of evolutionary descent amongst species, 

organisms, or genes as well as finding the right method to 

classify them has always been an interesting subject for 

biologists. In order to trace such evolutionary relationships, 

phylogenetic trees are used. From mathematical point of view, 

a rooted bifurcating phylogenetic tree is a non-empty proper 

binary tree (sometimes called 2-tree), and therefore, all 

mathematical relations would be the same for both tree types. 

To reconstruct the tree, a variety of techniques have been 

employed which can be divided into two main groups: 

distance based and sequence based (otherwise known as 

character based) techniques. Distance based methods are 

widely used because they almost work with any type of data 

and more importantly, they are very quick [1]. In this type of 

approach the tree is generally constructed from a given 

distance matrix, but approximating DNA/RNA/protein 

sequence similarities and building a phylogeny from a 

distance matrix have been two common problems in 
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phylogenetics. Many researches have tried to find efficient 

solutionsto address these problems. For example, M. A. Khan 

et al. [2] presented Fastphylo, a software package containing 

implementations of efficient algorithms. Nevertheless, 

distance matrices could be helpful to discover the true 

identity of operational taxonomic units (OTUs) only on rare 

occasions. Thus, because of a lack of reliability, distance 

based methods are usually of secondary importance to 

evolutionists and they prefer to select the character-based 

approach which contains three main methods: Bayesian 

inference method which tries to compute posterior 

distribution and estimate species divergence time. Maximum 

likelihood aims at finding the tree which maximizes the 

likelihood of the observed sequences under a given 

evolutionary model and maximum parsimony approach 

which looks for a phylogenetic tree with minimum point 

mutations among all branches. In spite of popularity of 

Bayesian inference and maximum likelihood, there has 

always been a marked tendency for maximum parsimony 

(MP), especially when morphological attributes play the 

leading role. 

As one of the most extensively used parsimony methods 

for evolutionary tree reconstruction, Fitch’s MP method [3] is 

a systematic approach in which every point mutation among 

all branches is calculated. In other words, total number of 

hypothetical substitutions for all OTUs coupled with 

ancestors is counted up in two phases: bottom-up and 

top-down. To evaluate the accuracy, Louxin Zhang et al. [4] 

analyzed Fitch method on ultra-metric phylogenetic trees. 

Yang et al. [5] have studied ambiguous and unambiguous 

reconstruction accuracy for N-state evolutionary models, too. 

Even though the final goal is finding tree(s) with minimum 

parsimony score, calculating all possible trees is contained in 

nondeterministic polynomial (NP) class. In order to solve this 

problem, branch and bound technique (B&B) seems to be a 

practical method [6] because it does accelerate execution 

time. Yet, never does it reduce unfavorable time complexity. 

Another solution would be to use machines with many 

processors. The algorithm is to be paralleled [7], [8] but as it 

was mentioned earlier, the problem is still NP-hard. 

According to what mentioned, it is plain that researchers 

often abandon exact method to find the most parsimonious 

tree(s) when the number of OTUs is larger than 30. Clearly, if 

practicality is an important property, we should avoid 

strategies needing a very large memory space and/or 

excessive computation. In this context, there are many 

approaches to estimate the most parsimonious tree such as 

star decomposition heuristic, branch swapping approaches, 

etc. In general, such heuristic search methods gain benefit 

from a starting tree produced by a fast method (i.e. neighbor 
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joining and stepwise addition). Although neighbor joining is 

classified as a fast method, it cannot handle very large 

datasets well. To solve this problem, Shenemanet al. 

implemented Clearcut for the relaxed neighbor joining 

algorithm which can handle large datasets with an 

appropriate result [9]. Note that these estimation methods do 

not guarantee the most parsimonious tree but there are, 

however, some solutions to great approximations [10]-[12]. 

Of all the above approaches, stepwise addition method [13] 

is a simple greedy algorithm with top-down construction 

pattern, which is perfectly understandable, to estimate the 

most parsimonious tree at a rapid rate. The other big 

advantage is that it does not need a large memory space either. 

Such substantial benefits have made it suitable as starting tree 

for heuristic search algorithms (e.g. Tree Bisection and 

Reconnection, Subtree Prune and Regraft and Nearest 

Neighbor Interchange). In order to prevent confusion in 

naming, in this paper we call it traditional stepwise addition 

method. Although traditional stepwise addition seems to be 

very quick, in fact the number of trees grows considerably for 

a large number of OTUs; thus, there would probably be an 

enormous amount of processing. 

In this paper, too, we will focus on MP criterion as well to 

approximate the best tree with a stepwise addition method. 

We begin to construct the tree with the stepwise addition 

approach for the first t nodes where t is the cluster threshold 

size. In other words, we define maximum number of nodes 

for each cluster so that if cluster size exceeds t then we break 

it into two clusters. We also calculate consensus sequence for 

each cluster, and then it will be aligned with every new node 

in order to select the cluster which holds the highest 

alignment score. Finally, using the traditional stepwise 

addition method, every new node is added to the optimal 

position among all leaf edges of the selected cluster. As it is 

shown in section 2.B, our technique improves the traditional 

stepwise addition algorithm on time complexity and builds a 

phylogenetic tree in a very short period of time without a 

significant difference in the result. We, therefore, feel our 

algorithm can be valuable for evolutionary reconstruction 

problem based on parsimony criterion and it could also prove 

useful as a starting tree for heuristic search approaches 

especially when there are a large number of taxa. 

 

II. METHODS 

A. Traditional Stepwise Addition 

A fast and very simple greedy method that makes a 

phylogenetic tree with top-down construction pattern is the 

traditional stepwise addition. The strategy of the algorithm is 

extremely easy. To estimate a rooted bifurcating 

phylogenetic tree, we start with a tree that has two leaves, and 

then at each step the optimal position is found to add a new 

leaf. Since we steadily look for the best location in the 

constructed tree, it is likely not to reach the optimal tree in the 

end owing to the key fact that the local optimality at current 

step does not guarantee the global optimality at all. More 

precisely, this type of hill climbing strategy just tries for local 

optimality without looking ahead. However, to make a better 

estimation, the OTUs can be inserted into the given 

incomplete tree in various orders: In a random order at which 

each step of an OTU is randomlyselected. Ranked list based 

which every OTU is ranked by the average difference to the 

other OTUs and perhaps more interesting selection method is 

that at each step we check each of the remaining OTUs one at 

a time in all positions and pick the one that gives the best 

score at each step. The main drawback to these approaches is 

that they tend to be undertaken on the off chance that they 

could succeed, rather than with definite expectations about 

the time when they will bear fruit. That is, they do not seem to 

be working properly because there is not a definite and 

reasonable rule to get the correct result. Furthermore, extra 

tasks need to be processed and therefore, those techniques 

will definitely increase the run time. To better understand, we 

discuss about time complexity in detailin the following 

subsection. 

1) Time complexity 

To simplify, let us assume that the main problem is the 

number of trees. We begin our discussion about the number 

of total trees which should be searched for the optimal 

position at each step. In spite of how to select nodes to insert 

to the tree, for each new node we must search for the optimal 

position in the incomplete constructed tree and therefor, for n 

nodes, searching to find the optimal position is carried out 

n−2 times, and this is while in the last steps it takes more time 

to find the optimal position compared to the first steps. To 

clarify, suppose we are going to run the algorithm for n OTUs. 

In the first step, we take two OTUs and make a rooted 

bifurcating tree with them. Then, for all n−2 remained OTUs, 

each one will be added after the other. For example, in step 

two, we have a constructed tree with two leaves and so to 

insert the third leaf, parsimony score for three positions 

should be checked; similarly, in step i we have an incomplete 

constructed phylogenetic tree for the first i OTUs and 2i−1 

different positions should be searched. Finally, at the last step 

(step n−1) parsimony score for 2n−3 different trees will be 

calculated. Therefore, if we consider the first step to be 

equivalent to other steps, we arrive at the following formula: 

 

𝑁 = 1 + 3 + 5 + ⋯ +  2𝑛 − 3 = (𝑛 − 1)2    (1) 

 

where N is the number of total trees that should be calculated. 

More precisely, as it was mentioned, in the second step 

parsimony score is calculated for three different trees while 

each of the incomplete trees has three leaves and in the step 

three, parsimony score is calculated for five trees while each 

one has four leaves. That is to say, in step i we calculate 2i−1 

trees with size of i+1 and therefore, it sounds, a more 

accurate formula is needed to consider the weight of trees 

because there is a great difference between the trees are 

checked at the first steps with those at the last steps. A simple 

but effective solution would be calculating total complete 

trees with n nodes, which take equal search time for finding 

the optimal positions to total trees with the number of nodes 

in range of two and n. For this purpose, we can multiply the 

weight of each tree in the number of total trees at each step. 

More exactly, in step i there are 2i−1 incomplete trees that 

should be checked while each tree has i+1 leaves and so, each 

tree has the weight of (i+1)/n compared to the complete tree 

with n nodes. If we apply the weight to the formula (1), total 

complete trees can be calculated as follows: 
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𝑇 𝑛 = 1 × 2
𝑛 + 3 × 3

𝑛 + ⋯ +  2𝑛 − 3 × 𝑛
𝑛 =

                   1 𝑛   2𝑖 − 1  𝑖 + 1 ∈ 𝑂 𝑛2 
𝑛−1

𝑖=1

 

T(n) denotes the number of complete trees with n leaves 

which will take the same time to process as N incomplete 

trees (see formula 1) with leaves in range of 2 and n, and it is 

clearly evident that it has order of 𝑛2 time complexity. Please 

note that we assumed the number of trees as the main 

problem whereas score calculation procedure and number of 

attributes for OTUs (for example sequence length if OTUs 

are DNA, RNA or protein sequences) affect time complexity 

but for comparison, the same operations for both methods can 

be overlooked. The next section is devoted to our algorithm 

in detail and we will see how it reduces this time complexity 

to a linear order. 

B. FSA (Fast Stepwise Addition) 

Performance of hill climbing algorithms is highly 

dependent on implementation details. For example, having 

aglance ahead, it is likely to make better decisions even 

though local optimality is not accessed. In fact, this makes 

our main approach to find the best edge to insert every new 

leaf. In this way, we utilize a novel technique to break the 

incomplete constructed tree into two sub-trees named clusters. 

For every new leaf, we first find the closest cluster and then 

we apply the traditional stepwise addition method to the 

selected cluster to insert the new leaf in the optimal position 

but only among leaf edges (and not all edges). That is, not 

only do we try to lower the total number of searches in the 

incompletely constructed tree by clustering, but the number 

of searches to find the optimal position in the selected cluster 

is also reduced by half and owing to this in proper binary 

trees the number of external nodes (leaves) is simply one 

more than the number of internal nodes (common ancestors). 

Thus, we could rightly expect that there would be a marked 

difference between running times of our algorithm and the 

traditional method. Furthermore, we use efficient techniques 

to find the closest cluster and the best leaf edge in the selected 

cluster in order to compensate for the decrease in accuracy 

caused by declining the total number of searches. It is also 

necessary to define the cluster threshold size that denotes the 

maximum number of possible leaves in each cluster in which 

if cluster size exceeds the threshold size it will be broken into 

two new clusters (left child and right child). The algorithm is 

outlined in Fig. 1 and we elaborate on it in the following 

subsection. 

1) Algorithm description 

Here, we explain our technique to reconstruct rooted 

bifurcating phylogenetic trees. We also describe how the 

clustering technique can be used to reduce time complexity 

compared with the traditional stepwise addition. Our method 

of calculating consensus to prevent loss of accuracy is also 

presented. 

In order to fully understand our algorithm illustrated in Fig. 

1, let us assume that the main objective is to find the optimal 

position in the incompletely constructed tree at each step. As 

positions are checked, while they are not in our method. It is 

be explained step bystep as follows: At first, we take t OTUs 

from a given dataset (OTU_Set) to make a rooted bifurcating 

tree with the traditional stepwise addition method where t 

determines the maximum number of OTUs in each cluster 

(cluster threshold size). Then we add this sub-tree to the set of 

all clusters (Clusters_Set). It also should be remembered that 

each cluster is a sub-tree from the approximated tree, which is 

already being constructed. Of course, should the closest 

cluster be chosen with the highest possible precision and 

additionally if we have some success in finding the best leaf 

edge in the selected cluster, a satisfactory outcome in a short 

time will not be out of reach. However, since we try to reduce 

time complexity by decreasing the number of total searches 

to find the optimal position at each step, it seems reasonable 

to assume that the accuracy is declined, and therefore it is 

necessary that an efficient method must be used to find the 

best cluster, which isas close as possible to the new OTU to 

compensate. Consequently, to avoid blinddecision-making in 

the traditional stepwise addition, we use a threshold size for 

clusters so that if the number of OTUs in a cluster exceeds 

thethreshold size, a predefined constant1,we break the cluster 

into two new clustersas shown in Fig. 2. Thus, after inserting 

 We first calculate the consensus sequence for each cluster. 

 Then pairwise alignment is done for the new OTU and 

each consensus separately. 

SelectedCluster is a cluster which holds the highest 

alignment score between its consensus and the new 

OTUcompared to the other clusters. Here, the new leaf is 

added to a leaf edge of the selectedCluster with stepwise 

addition methodand then cluster size is checked if it should 

be divided or not.The consensus sequence will be updated 

too. 

The key to this idea is focusing on how to specify cluster 

threshold size, how to calculate consensus for each cluster 

and finally, determine which pairwise alignment algorithm is 

the best to be used. If we set cluster threshold size to a high 

number, the number of clusters will be decreased so that with 

t= n we will only have one cluster all the time (it would never 

be broken) and our algorithm will work exactly the same as 

the traditional stepwise addition. On the other hand, if we set 

the cluster threshold size to a low number then the total 

number of clusters will go up (clusters will be broken at a 

rapid rate) so that with t=1, we will have the maximum 

number of possible clusters. Therefore, the tree is completely 

constructed by pairwise sequence alignment in which for 

every new node, we add it to the leaf with the highest score. 

From what was said it is easily seen that the number of 

clusters and cluster threshold size are inversely related and it 

can be argued which is the best threshold due to the trade-off 

between the local optimality of the traditional stepwise 

addition method and uncertain outcome in pairwise 

alignment. However, in our experiments, a large number of 

values were checked to find the best possible cluster size and 

 
1For our experiments, we choose 20 as the cluster threshold size but it is 

adjustable in the implemented application. 
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(2)

it was discussed in Section II A, in step i we have a 

constructed tree withi leaves andi+1thOTU should 

beinserted in the one of 2i−1 different positions.Although in 

the traditional stepwise addition method all different 

t+1th OTU to the cluster, we break it into its two children 

(leftand right sub-trees). As of now, to insert other remained 

OTUs,the closest cluster to every new OTU is assessed using 

two components:
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we eventually concluded that trying to keep a balance 

between using the stepwise addition method and pairwise 

ali-gnment would often yield a more reasonable evolutionary 

inference. 
 

 
Fig. 1. Pseudo-code that presents our algorithm to reconstruct evolutionary tree. 

 

In addition to the abovementioned explanation, it is also 

essential that we use an efficient procedure to calculate 

consensus for all clusters. More precisely, since there would 

be a pairwise alignment between each new sequence and 

consensuses of all clusters separately, these two important 

questions arise: How consensus is calculated for each 

cluster?And which pairwise alignment algorithm should be 

used? 

Another point is that we have implemented our application 

so as to approximate the most parsimonious tree on DNA 

sequences. There is, nevertheless, no restriction to use gene 

sequences as OTUs. According to IUPAC nucleotide 

ambiguity codes for calculating consensus [14], we keep on 

counting the number of instances of the different characters 

in the same columns of all sequences, which are contained in 

the cluster. If thenumber of thecharacter exceeds the presence 

percentage, a predefined constant2, this character would be 

included to calculate consensus. The idea of presence 

percentage is similar to the notion of “support” for 

association rules. For example suppose there are 10 

sequences in the cluster which we are to calculate their 

consensus, if the ithcolumn contains 1“C” and 9“T” it would 

be given a consensus of “Y” (where Y stands for pYrimidine 

C or T), providing that the presence percentage is set to 10 or 

lower. More exactly, if a character is presented below the 

presence percentage, it would be ignored for making 

 
2 Our experiments were carried out using values in the range of 10% to 

30%. However, more appropriate results were obtained with 25%. 

consensus. We also ignore all non ACGT characters in 

calculating consensus. It means that in the ith column of 10 

sequences contains 6 gaps, 3 “T” and 1“C”, the presence 

percentage of “C” would be considered to 25% not 10%. 

The other case that may occur is that none of the characters 

reach the presence percentage. Take, for instance, the 

presence percentage is set to 30. For an arbitrary column of 

five sequences in a specific cluster we have 1“A”, 1“C”, 

1“G”, 1“T” and 1 gap. It is clearly evident that the presence 

percentage of every character is 25% (by default, gap is 

ignored) while the minimum required presence percentage 

for calculating consensus is 30%. In such cases, that all 

characters are presented below the presence percentage, the 

consensus iscalculated by discarding the presence percentage 

value. Hence, it would be given a consensus of “N” (where N 

stands for aNy base). It is, however, possible to change the 

default settings of the application software to meet any other 

objective. 

Pairwise alignment is another related subject that plays an 

important role in our approach. In fact, it is our main key to 

make better decisions by looking ahead rather than blind 

searches to find the optimal position in the traditional 

stepwise addition method. Its role would be more prominent 

if the cluster threshold size is set to a low value because the 

lower the threshold, the more the clusters and the more 

clusters the more consensuses. So to add new leaves, every 

leaf has to be aligned with all consensuses to locate a suitable 

cluster. 

// FSA (Fast Stepwise Addition) 

// INPUT: OTU_Set: represents the operational taxonomic units chosen by user(OTU dataset) 

// OUTPUT: Approximated_Tree: the approximated tree returned from the function 

// Cluster: is a sub-tree from Approximated_Tree contains some OTUs and their consensus 

// t: predefined cluster threshold size which determines maximum number of OTUs in the clusters 

// Clusters_Set: the set of all clusters 

FastStepwiseAddition(OTU_Set) 

{ 

    Take t OTUs from OTU_Set and make a rooted bifurcating tree with stepwise addition method 

    Add aforementioned incomplete tree to the Clusters_Set as a cluster of the Approximated_Tree 

for each remained OTU in OTU_Set{ 

for each Cluster in Clusters_Set 

{  Do pairwise alignment between OTU and consensus of all OTUs in the Cluster} 

selectedCluster = the cluster which holds the highest alignment score 

       Using stepwise addition, insert OTU to a leaf edge of the selectedClusterof the       

    Approximated_Tree 

if (number of OTUs in the selectedCluster>t)   { 

     Add (selectedCluster->RightSubtree) as a new cluster to the Clusters_Set 

    Add (selectedCluster->LeftSubtree) as a new cluster to the Clusters_Set 

    Calculate consensus for each of two new clusters 

    Remove selectedCluster from Clusters_Set 

} 

else 

    Update consensus for selectedCluster 

} 

returnApproximated_Tree 

} 
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Global alignments are widely used when sequences are 

similar and of approximately equal size.  Saul B. Needleman 

and Christian D. Wunsch [15] published a well-known global 

alignment on two sequences based on dynamic programming  

known as Needleman–Wunsch algorithm. On the other hand, 

local alignments are used for the most unlike sequences. A 

general local alignment algorithm was proposed by Temple F. 

Smith and Michael S. Waterman [16]. Smith–Waterman is 

also based on dynamic programming such as 

Needleman–Wunsch algorithm. With regard to the fact that 

finding common sub-sequences is the touchstone in sequence 

alignment, MajidSazvar et al. [17] proposed a one-pass linear 

algorithm, based on dynamic programming, to discover the 

longest common sub-sequence (LCS) quickly. Reddy et al 

[18] also worked on Planted (l, d)-Motif finding which tries 

to identify meaningful patterns in biological sequences. 

Regardless of using local or global alignment algorithm, 

setting scores for gap penalties could have an important part 

in the result. Y.Nozaki and M.Bellgard [19] developed a 

technique that allows the user to assign a priori set of the 

number of allowable gaps but it seems to be still difficult to 

precisely determine the penalties for a given pair of 

sequences. To avoid complexity, we use affine gap penalty 

function3.  

Having taken all the aforementioned issues into 

consideration, wenow would like to explain how our method 

could build the phylogenetic trees quickly. Following 

subsection discusses time complexity in detail. 
 

 

 
Fig. 2. Above: If the number of leaves in each cluster is greater than the 

cluster threshold size, then it will be broken into two clusters (left and right 

child) Bellow: The worst case happens if the tree is lopsided, as shown some 

leaves have high depths (e.g. 8, 9) in comparison to the other ones. 

 

2) Time complexity 

As it was explained in Section II (A), we assume that the 

main problem is the number of complete trees that are 

searched for the optimal position. Let us calculate time 

complexity for the worst case even though it seems not to 

occur. If we have n OTUs and define t as the maximum 

number of nodes in each cluster then the tree is being 

constructed with the traditionalstepwise addition method for 

 
3 For our experiments, we choose −1for extend-gap penalty score and −4, 

−2 for open-gap penalty score for similar and semi-similar sequences 

respectively. 

first t OTUs and therefor, time complexity of this part is 

calculated exactly the same as equation (2). As of now, the 

closest cluster for each remained OTU is found by pairwise 

sequence alignment and then, in the worst case, at most t 

different incomplete trees should be searched while each tree 

weighs (i+1)/n  in step i. 

 

 

 

where ζ= the sum total of pairwise alignment cost at each 

step. 

W(n) determines the number of complete trees with n 

leaves that are searched in our algorithm for the optimal 

position in the worst case, plus pairwise sequence alignment 

cost. Please note that t is a predefined constant and does not 

affect the time order of the number of trees. Thus, we easily 

do see that the algorithm has a linear time order of total 

number of trees by comparison with the traditional stepwise 

addition method. However, ζ is a little more difficult to talk 

about. More exactly, ζ is the cost of the second “for each” 

loop in our algorithm outlined in Fig. 1 and states that 

sequence alignment cost is obviously important, even though 

it is independent of the number of trees. In other words, to 

insert n−t remained OTUs at each step, pairwise alignment is 

done between every OTU and consensus of each cluster 

separately; pairwise alignment’s cost depends on clusters 

count at each step and clusters count depends on the number 

of OTUs and the value of t. However, for n−t remained 

OTUs, the worstcase might happen if the tree has a 

comb-shaped topology. For example, suppose we have 

constructed a rooted bifurcating tree with the first t nodes. 

Since there is only one cluster, adding the next node is to be 

done to this cluster. Now, cluster size is t+1 which is greater 

than t and this cluster is broken to its left child and right child. 

The worst case occurs when one child has t leaves whereas 

the other has only one. Imagine that the next node has the 

highest alignment score with the consensus of the cluster with 

size of t compared to the cluster with size of 1. It means we 

should again insert the new node to the largest cluster and 

therefor its size would be t+1 > t. After breaking such cluster 

to its left and right sub-trees, previous result may be obtained 

in order that one sub-tree has t leaves whereas the other has 

one (see Fig. 2). 

 

III. RESULTS AND DISCUSSION 

The study investigates the impact of clustering on 

phylogenetic tree reconstruction with the stepwise addition 

method. We also compared the performance of the traditional 

stepwise addition method and improved stepwise method4. 

Although there is not any restriction for our algorithm for the 

input data types, we chose gene sequences so that the 

comparison is performed on run time and estimated 

parsimony score for a variety of different sequences of “COI” 

mitochondrial genes of animals. The impact of 

 
4 All experiments were performed on Windows 7(64-bit, Ultimate edition) 

with a 3.3GHz Intel64 Core i3family 6 model 42 processor and 4 GB of 

RAM 
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𝑊 𝑛 =  
(2𝑖 − 1)(𝑖 + 1)

𝑛

𝑡− 1

𝑖=1

+   
𝑖 + 1

𝑛
𝑡 + 𝜁 

𝑛− 1

𝑖=𝑡

∈ 𝑂 𝑛 (3)

373



  

clusterthreshold size is discussed in our experiments too. 
 

TABLE I: EXPERIMENTS FOR SOME SAMPLE DATASETS OF ANIMALS 

 
 

Fifty “COI” datasets with sequences of different length 

and number were selected from NCBI GeneBank5. 

Implemented application software coupled with all sample 

datasets is also available at our website6. 

A. Fitch’s Standard Parsimony 

In order to assess the performance of the traditional 

stepwise addition method and our technique to reconstruct 

the phylogenetic tree, we consider the standard Fitch 

algorithm to calculate parsimony score, which is one of the 

most extensively used parsimony methods for evolutionary 

tree reconstruction. In this systematic approach, every point 

mutation among all branches is calculated and total number 

ofhypothetical substitutions for all OTUs and ancestors are 

counted in two phases: bottom-up and top-down. We have 

compared our algorithm against the traditional stepwise 

addition method using “COI” datasets. Table I shows the 

average MP score and execution time of sample datasets 

calculated by our method. Looking at Table I, for more than 

25 taxa, we saw how run time of FSA has reduced compared 

with the traditional stepwise addition method. However, 

when the number of taxa is lower than 25 improvements 

cannot be seen in the run time because of additional 

computations to calculate consensus and pairwise sequence 

alignments. 

 
5National Center for Biotechnology Information (The GenBank® nucleic 

acid sequence database http://www.ncbi.nlm.nih.gov/nucleotide/) 
6 Application software and datasets can be accessed through: 

www.blueweb.ir/phylogeny 

B. The Impact of Phylogenetic Tree Shape and the 

Number of Clusters 

The analysis of phylogenetic tree shape can provide 

important clues as to understanding the evolutionary forces 

[20]. In this context, Nicolas Bortolussiet al. [21] described 

the computer package “apTreeshape” that is dedicated to 

simulation and analysis of phylogenetic tree topologies using 

statistical indices. Although analysis of the tree shape is not 

completely studied in this paper, it is important in our 

algorithm because it can influence the run time. Clearly, as it 

was explained earlier, the worst case occurs if our tree has a 

comb-shaped topology. In other words, comb-shaped means 

that the incomplete tree with n leaves consists of n−t+1 

clusters (in the worst case) and it is the maximum number of 

possible clusters where t determines the cluster threshold 

size. 
 

 
Fig. 3. The relation between the number of taxa and the number of clusters 

with t=20. 

 

For example, suppose our incomplete tree has 5 leaves. 

 

Datasets Average MP Score Execution Time (s) 

Class #taxa– #sites Traditional Step-wise FSA Traditional Step-wise FSA 

 21 – 628 51 52 3 3.5 

 33 – 540 40 46 11 11 

Amphibia 49 – 644 42 40 48 47 

 77 – 540 87 81 189 88 

 109 – 543 129 141 737 232 

      

 23 – 914 926 945 6 7 

 47 – 1237 187 188 102 77 

Aves 57 – 379 844 854 51 27 

 63 – 666 12087 10453 146 81 

 111 – 455 32 23 719 170 

      

 25 – 677 1361 1296 6 6 

 50 – 657 1439 1297 105 49 

Mammalia 68 – 411 1042 901 105 51 

 94 – 470 1609 1132 355 128 

 107 – 657 106 114 924 242 

      

 36 – 599 623 567 17 15 

 63 – 563 1341 1058 114 69 

Reptilia 66 – 627 1014 961 144 95 

 73 – 645 3843 4327 199 106 

 110 – 552 253 289 700 193 
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Also assume we set t=3. Therefore, the worst case occurs if 

we have three clusters in which one cluster has 3 leaves and 

each of the other two clusters has 1 (see Fig. 2). Though we 

calculated time complexity for the worst case, our 

experiments showed that this case almost does not occur (see 

Fig. 3). 

From mathematical point of view, if we consider clusters 

as leaves of tree, in the worst case, the following relation 

between the number of clusters and the depth of tree is 

certified: 

_ _ _ _depth of tree number of clusters         (4) 

Please note that we assumed each cluster as a leaf of tree 

(tree of trees). Additionally, we assumed that the level of root 

is 1. It should also be remembered that we are talking about 

rooted bifurcating trees; similarly, with these assumptions the 

minimum number of clusters appears in balanced trees (see 

Fig. 2) and we have the following formula: 

_ _ [ ( _ _ )] 1depth of tree Log number of clusters 

(5) 

On the other hand, we can also show the relation between 

the minimum number of clusters and total number of taxa as 

follows: 

[ _ _ / min_ _ _x number of taxa number of clusters

(6) 

Equation (6) is generalized version of the pigeonhole 

principle and states that, at least one cluster must hold no 

fewer than x taxa.  Another form of this equation could be: 

_ _
_ _ _ [ ]

number of taxa
min number of clusters

t
  

(7) 

where t is a predefined variable for the cluster threshold size. 

According to equation (7), we will have the minimum 

number of clusters if all clusters perhaps except one; have 

maximum number of nodes (cluster threshold size). Similarly, 

the worst case occurs when we have one cluster with t nodes 

and n−t clusters with one node, where n is the number of 

taxa. 

 

_ _ _ 1max number of clusters n t               (8) 

 

According to the mentioned equations, let us calculate the 

more exact cost for ζ in equation (3). As it was discussed, ζ is 

the total cost of pairwise alignments at each step and it 

depends on the number of clusters at each step. Therefore, we 

have the following equation in step i: 

 

ζ =  𝜑   ,  𝑖 𝑡  ≤ 𝑚 ≤ 𝑖 − 𝑡 + 1
𝑚

𝑗=1
                  (9) 

 

where φ is pairwise sequence alignment cost between two 

sequences (the new sequence, which we want to insert to the 

incomplete tree, and consensus sequence of any cluster). 

The minimum and maximum values for m are directly 

related to the minimum and maximum number of clusters at 

each step respectively. If we apply the value of ζ to the 

equation (3), for the worst case W(n) can be calculated as 

follows: 

 

𝑊 𝑛 =  
 2𝑖 − 1  𝑖 + 1 

𝑛

𝑡−1

𝑖=1

+  (
𝑖 + 1

𝑛
𝑡

𝑛−1

𝑖=𝑡

+  𝜑)

𝑖−𝑡+1

𝑗=1

 

(10) 

 

Although the total cost of pairwise alignment has order of 

𝑛2  time complexity in our algorithm, the number of total 

positions that should be searched has order of n time 

complexity and therefore our algorithm, as it was shown in 

Table I, is much faster. Moreover, with a quick glance at Fig. 

3, we do say that the worst case in our experiments not only 

did not occur, but on average, each cluster has also 𝑡/2 nodes 

as well. 

 

IV. CONCLUSION 

In this paper, we detailed a novel algorithm to estimate the 

most parsimonious tree with clustering technique that 

employs local and global alignment algorithms. In a brief 

summary, we utilized clustering technique to decline the 

number of searchesto find the optimal position at each step. 

For that, we defined the maximum number of possible leaves 

in each cluster (cluster threshold size) in which if the number 

of leaves in a cluster exceeds the threshold size then we break 

it into two clusters (left and right sub trees). Though 

experiments showed that the cluster threshold size is a good 

criterion to decide when a cluster should be divided, the 

variance could be a good parameter to find the best time to 

break the cluster too. However, calculating the variance for 

sequences in the cluster and define a threshold value to check 

with it does not seem to be so easy and usually needs practical 

experiments too. 

If we consider that the main problem is the number of 

incomplete trees that should be searched to find the optimal 

position at each step, by our construction technique, the tree 

is built with computational complexity of O(n) while the 

computational complexity of the traditional stepwise addition 

method is 𝑂(𝑛2) . In practice, generally our method 

constructs phylogenetic trees with lower parsimony scores 

rather than the traditional stepwise addition method provided 

that reasonable values are selected for both the presence 

percentage constant and especially cluster threshold size. 

Since we used DNA gene sequences as input data –due to the 

simple assumption of equal probability of A, C, G or T– it 

seems reasonable that we set 25% for the presence percentage 

constant and more, the inverse of the number of various 

attributes could be a proper value for presence percentage 

when morphological attributes play the leading role. It may 

be, however, necessary to do some practical experiments to 

find the best number for the cluster threshold size because it 

is a parameter that directly affects the outcome. 

The source code of FSA was written in 

C#.net4programming language with a sequential single 

thread programming model7 and it was shown that the FSA 

implementation for gene sequences has a better performance 

 
7 Application software and datasets can be accessed through: 

http://www.blueweb.ir/phylogeny 
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compared with the traditional stepwise addition method. We 

believe that our method is useful as a starter tree for heuristic 

search approaches. Furthermore, we also think that it can be 

improved by multi-threading programming model, however 

parallelism brings some challenges. 
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