

Abstract—Over the last few years, the exponential growth of

biological diversity achievements brought to light the need for

new efficient techniques to check evolutionary relationships.

One of the main methods to illustrate such relationships is

phylogenetic trees. A variety of approaches which are used for

tree reconstruction issue fall into two main groups: distance

based and sequence based. Sequence based methods, such as

maximum parsimony, can be used when the tree is

reconstructed on a sequence alignment. However, in most cases

it is inconceivable to compute parsimony score for all trees. On

the other hand, distance based methods are extremely faster

because the tree is usually constructed from a given distance

matrix; nevertheless, seldom can distance matrices show the

true identity of organisms. Here, we propose a novel technique

to approximate the parsimony tree with stepwise addition

method utilizing clustering. In this strategy we only calculate

parsimony score for a part of incompletely constructed tree

(called “cluster”) at each step instead of the whole tree.

Experiments confirm our hypothesis and do indicate that the

algorithm is quite fast to build the phylogenetic tree, often with

a satisfactory outcome, when there is a large dataset. We also

believe that our method could prove useful as a starter tree for

heuristic search approaches.

Index Terms—Phylogenetic tree construction, maximum

parsimony, step-wise addition.

I. INTRODUCTION

The study of evolutionary descent amongst species,

organisms, or genes as well as finding the right method to

classify them has always been an interesting subject for

biologists. In order to trace such evolutionary relationships,

phylogenetic trees are used. From mathematical point of view,

a rooted bifurcating phylogenetic tree is a non-empty proper

binary tree (sometimes called 2-tree), and therefore, all

mathematical relations would be the same for both tree types.

To reconstruct the tree, a variety of techniques have been

employed which can be divided into two main groups:

distance based and sequence based (otherwise known as

character based) techniques. Distance based methods are

widely used because they almost work with any type of data

and more importantly, they are very quick [1]. In this type of

approach the tree is generally constructed from a given

distance matrix, but approximating DNA/RNA/protein

sequence similarities and building a phylogeny from a

distance matrix have been two common problems in

Manuscript received March 4, 2014; revised May 12, 2014.

Abolfazl Ghavidel is with the Computer Engineering Department, Azad

University of Mashhad, Mashhad, Iran (e-mail: a.ghavidel@mshdiau.ac.ir).

Mahmoud Naghibzadeh is with the Computer Engineering Department,

Ferdowsi University of Mashhad, Mashhad, Iran.

Omid Mirshamsi is with the Department of Biology, Ferdowsi University

of Mashhad, Mashhad, Iran.

phylogenetics. Many researches have tried to find efficient

solutionsto address these problems. For example, M. A. Khan

et al. [2] presented Fastphylo, a software package containing

implementations of efficient algorithms. Nevertheless,

distance matrices could be helpful to discover the true

identity of operational taxonomic units (OTUs) only on rare

occasions. Thus, because of a lack of reliability, distance

based methods are usually of secondary importance to

evolutionists and they prefer to select the character-based

approach which contains three main methods: Bayesian

inference method which tries to compute posterior

distribution and estimate species divergence time. Maximum

likelihood aims at finding the tree which maximizes the

likelihood of the observed sequences under a given

evolutionary model and maximum parsimony approach

which looks for a phylogenetic tree with minimum point

mutations among all branches. In spite of popularity of

Bayesian inference and maximum likelihood, there has

always been a marked tendency for maximum parsimony

(MP), especially when morphological attributes play the

leading role.

As one of the most extensively used parsimony methods

for evolutionary tree reconstruction, Fitch’s MP method [3] is

a systematic approach in which every point mutation among

all branches is calculated. In other words, total number of

hypothetical substitutions for all OTUs coupled with

ancestors is counted up in two phases: bottom-up and

top-down. To evaluate the accuracy, Louxin Zhang et al. [4]

analyzed Fitch method on ultra-metric phylogenetic trees.

Yang et al. [5] have studied ambiguous and unambiguous

reconstruction accuracy for N-state evolutionary models, too.

Even though the final goal is finding tree(s) with minimum

parsimony score, calculating all possible trees is contained in

nondeterministic polynomial (NP) class. In order to solve this

problem, branch and bound technique (B&B) seems to be a

practical method [6] because it does accelerate execution

time. Yet, never does it reduce unfavorable time complexity.

Another solution would be to use machines with many

processors. The algorithm is to be paralleled [7], [8] but as it

was mentioned earlier, the problem is still NP-hard.

According to what mentioned, it is plain that researchers

often abandon exact method to find the most parsimonious

tree(s) when the number of OTUs is larger than 30. Clearly, if

practicality is an important property, we should avoid

strategies needing a very large memory space and/or

excessive computation. In this context, there are many

approaches to estimate the most parsimonious tree such as

star decomposition heuristic, branch swapping approaches,

etc. In general, such heuristic search methods gain benefit

from a starting tree produced by a fast method (i.e. neighbor

FSA: A Fast Stepwise Addition Algorithm for

Constructing Phylogenetic Trees

Abolfazl Ghavidel, Mahmoud Naghibzadeh, and Omid Mirshamsi

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 4, No. 5, September 2014

DOI: 10.7763/IJBBB.2014.V4.372 369

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 4, No. 5, September 2014

joining and stepwise addition). Although neighbor joining is

classified as a fast method, it cannot handle very large

datasets well. To solve this problem, Shenemanet al.

implemented Clearcut for the relaxed neighbor joining

algorithm which can handle large datasets with an

appropriate result [9]. Note that these estimation methods do

not guarantee the most parsimonious tree but there are,

however, some solutions to great approximations [10]-[12].

Of all the above approaches, stepwise addition method [13]

is a simple greedy algorithm with top-down construction

pattern, which is perfectly understandable, to estimate the

most parsimonious tree at a rapid rate. The other big

advantage is that it does not need a large memory space either.

Such substantial benefits have made it suitable as starting tree

for heuristic search algorithms (e.g. Tree Bisection and

Reconnection, Subtree Prune and Regraft and Nearest

Neighbor Interchange). In order to prevent confusion in

naming, in this paper we call it traditional stepwise addition

method. Although traditional stepwise addition seems to be

very quick, in fact the number of trees grows considerably for

a large number of OTUs; thus, there would probably be an

enormous amount of processing.

In this paper, too, we will focus on MP criterion as well to

approximate the best tree with a stepwise addition method.

We begin to construct the tree with the stepwise addition

approach for the first t nodes where t is the cluster threshold

size. In other words, we define maximum number of nodes

for each cluster so that if cluster size exceeds t then we break

it into two clusters. We also calculate consensus sequence for

each cluster, and then it will be aligned with every new node

in order to select the cluster which holds the highest

alignment score. Finally, using the traditional stepwise

addition method, every new node is added to the optimal

position among all leaf edges of the selected cluster. As it is

shown in section 2.B, our technique improves the traditional

stepwise addition algorithm on time complexity and builds a

phylogenetic tree in a very short period of time without a

significant difference in the result. We, therefore, feel our

algorithm can be valuable for evolutionary reconstruction

problem based on parsimony criterion and it could also prove

useful as a starting tree for heuristic search approaches

especially when there are a large number of taxa.

II. METHODS

A. Traditional Stepwise Addition

A fast and very simple greedy method that makes a

phylogenetic tree with top-down construction pattern is the

traditional stepwise addition. The strategy of the algorithm is

extremely easy. To estimate a rooted bifurcating

phylogenetic tree, we start with a tree that has two leaves, and

then at each step the optimal position is found to add a new

leaf. Since we steadily look for the best location in the

constructed tree, it is likely not to reach the optimal tree in the

end owing to the key fact that the local optimality at current

step does not guarantee the global optimality at all. More

precisely, this type of hill climbing strategy just tries for local

optimality without looking ahead. However, to make a better

estimation, the OTUs can be inserted into the given

incomplete tree in various orders: In a random order at which

each step of an OTU is randomlyselected. Ranked list based

which every OTU is ranked by the average difference to the

other OTUs and perhaps more interesting selection method is

that at each step we check each of the remaining OTUs one at

a time in all positions and pick the one that gives the best

score at each step. The main drawback to these approaches is

that they tend to be undertaken on the off chance that they

could succeed, rather than with definite expectations about

the time when they will bear fruit. That is, they do not seem to

be working properly because there is not a definite and

reasonable rule to get the correct result. Furthermore, extra

tasks need to be processed and therefore, those techniques

will definitely increase the run time. To better understand, we

discuss about time complexity in detailin the following

subsection.

1) Time complexity

To simplify, let us assume that the main problem is the

number of trees. We begin our discussion about the number

of total trees which should be searched for the optimal

position at each step. In spite of how to select nodes to insert

to the tree, for each new node we must search for the optimal

position in the incomplete constructed tree and therefor, for n

nodes, searching to find the optimal position is carried out

n−2 times, and this is while in the last steps it takes more time

to find the optimal position compared to the first steps. To

clarify, suppose we are going to run the algorithm for n OTUs.

In the first step, we take two OTUs and make a rooted

bifurcating tree with them. Then, for all n−2 remained OTUs,

each one will be added after the other. For example, in step

two, we have a constructed tree with two leaves and so to

insert the third leaf, parsimony score for three positions

should be checked; similarly, in step i we have an incomplete

constructed phylogenetic tree for the first i OTUs and 2i−1

different positions should be searched. Finally, at the last step

(step n−1) parsimony score for 2n−3 different trees will be

calculated. Therefore, if we consider the first step to be

equivalent to other steps, we arrive at the following formula:

𝑁 = 1 + 3 + 5 + ⋯ + 2𝑛 − 3 = (𝑛 − 1)2 (1)

where N is the number of total trees that should be calculated.

More precisely, as it was mentioned, in the second step

parsimony score is calculated for three different trees while

each of the incomplete trees has three leaves and in the step

three, parsimony score is calculated for five trees while each

one has four leaves. That is to say, in step i we calculate 2i−1

trees with size of i+1 and therefore, it sounds, a more

accurate formula is needed to consider the weight of trees

because there is a great difference between the trees are

checked at the first steps with those at the last steps. A simple

but effective solution would be calculating total complete

trees with n nodes, which take equal search time for finding

the optimal positions to total trees with the number of nodes

in range of two and n. For this purpose, we can multiply the

weight of each tree in the number of total trees at each step.

More exactly, in step i there are 2i−1 incomplete trees that

should be checked while each tree has i+1 leaves and so, each

tree has the weight of (i+1)/n compared to the complete tree

with n nodes. If we apply the weight to the formula (1), total

complete trees can be calculated as follows:

370

𝑇 𝑛 = 1 × 2
𝑛 + 3 × 3

𝑛 + ⋯ + 2𝑛 − 3 × 𝑛
𝑛 =

 1 𝑛 2𝑖 − 1 𝑖 + 1 ∈ 𝑂 𝑛2
𝑛−1

𝑖=1

T(n) denotes the number of complete trees with n leaves

which will take the same time to process as N incomplete

trees (see formula 1) with leaves in range of 2 and n, and it is

clearly evident that it has order of 𝑛2 time complexity. Please

note that we assumed the number of trees as the main

problem whereas score calculation procedure and number of

attributes for OTUs (for example sequence length if OTUs

are DNA, RNA or protein sequences) affect time complexity

but for comparison, the same operations for both methods can

be overlooked. The next section is devoted to our algorithm

in detail and we will see how it reduces this time complexity

to a linear order.

B. FSA (Fast Stepwise Addition)

Performance of hill climbing algorithms is highly

dependent on implementation details. For example, having

aglance ahead, it is likely to make better decisions even

though local optimality is not accessed. In fact, this makes

our main approach to find the best edge to insert every new

leaf. In this way, we utilize a novel technique to break the

incomplete constructed tree into two sub-trees named clusters.

For every new leaf, we first find the closest cluster and then

we apply the traditional stepwise addition method to the

selected cluster to insert the new leaf in the optimal position

but only among leaf edges (and not all edges). That is, not

only do we try to lower the total number of searches in the

incompletely constructed tree by clustering, but the number

of searches to find the optimal position in the selected cluster

is also reduced by half and owing to this in proper binary

trees the number of external nodes (leaves) is simply one

more than the number of internal nodes (common ancestors).

Thus, we could rightly expect that there would be a marked

difference between running times of our algorithm and the

traditional method. Furthermore, we use efficient techniques

to find the closest cluster and the best leaf edge in the selected

cluster in order to compensate for the decrease in accuracy

caused by declining the total number of searches. It is also

necessary to define the cluster threshold size that denotes the

maximum number of possible leaves in each cluster in which

if cluster size exceeds the threshold size it will be broken into

two new clusters (left child and right child). The algorithm is

outlined in Fig. 1 and we elaborate on it in the following

subsection.

1) Algorithm description

Here, we explain our technique to reconstruct rooted

bifurcating phylogenetic trees. We also describe how the

clustering technique can be used to reduce time complexity

compared with the traditional stepwise addition. Our method

of calculating consensus to prevent loss of accuracy is also

presented.

In order to fully understand our algorithm illustrated in Fig.

1, let us assume that the main objective is to find the optimal

position in the incompletely constructed tree at each step. As

positions are checked, while they are not in our method. It is

be explained step bystep as follows: At first, we take t OTUs

from a given dataset (OTU_Set) to make a rooted bifurcating

tree with the traditional stepwise addition method where t

determines the maximum number of OTUs in each cluster

(cluster threshold size). Then we add this sub-tree to the set of

all clusters (Clusters_Set). It also should be remembered that

each cluster is a sub-tree from the approximated tree, which is

already being constructed. Of course, should the closest

cluster be chosen with the highest possible precision and

additionally if we have some success in finding the best leaf

edge in the selected cluster, a satisfactory outcome in a short

time will not be out of reach. However, since we try to reduce

time complexity by decreasing the number of total searches

to find the optimal position at each step, it seems reasonable

to assume that the accuracy is declined, and therefore it is

necessary that an efficient method must be used to find the

best cluster, which isas close as possible to the new OTU to

compensate. Consequently, to avoid blinddecision-making in

the traditional stepwise addition, we use a threshold size for

clusters so that if the number of OTUs in a cluster exceeds

thethreshold size, a predefined constant1,we break the cluster

into two new clustersas shown in Fig. 2. Thus, after inserting

 We first calculate the consensus sequence for each cluster.

 Then pairwise alignment is done for the new OTU and

each consensus separately.

SelectedCluster is a cluster which holds the highest

alignment score between its consensus and the new

OTUcompared to the other clusters. Here, the new leaf is

added to a leaf edge of the selectedCluster with stepwise

addition methodand then cluster size is checked if it should

be divided or not.The consensus sequence will be updated

too.

The key to this idea is focusing on how to specify cluster

threshold size, how to calculate consensus for each cluster

and finally, determine which pairwise alignment algorithm is

the best to be used. If we set cluster threshold size to a high

number, the number of clusters will be decreased so that with

t= n we will only have one cluster all the time (it would never

be broken) and our algorithm will work exactly the same as

the traditional stepwise addition. On the other hand, if we set

the cluster threshold size to a low number then the total

number of clusters will go up (clusters will be broken at a

rapid rate) so that with t=1, we will have the maximum

number of possible clusters. Therefore, the tree is completely

constructed by pairwise sequence alignment in which for

every new node, we add it to the leaf with the highest score.

From what was said it is easily seen that the number of

clusters and cluster threshold size are inversely related and it

can be argued which is the best threshold due to the trade-off

between the local optimality of the traditional stepwise

addition method and uncertain outcome in pairwise

alignment. However, in our experiments, a large number of

values were checked to find the best possible cluster size and

1For our experiments, we choose 20 as the cluster threshold size but it is

adjustable in the implemented application.

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 4, No. 5, September 2014

(2)

it was discussed in Section II A, in step i we have a

constructed tree withi leaves andi+1thOTU should

beinserted in the one of 2i−1 different positions.Although in

the traditional stepwise addition method all different

t+1th OTU to the cluster, we break it into its two children

(leftand right sub-trees). As of now, to insert other remained

OTUs,the closest cluster to every new OTU is assessed using

two components:

371

we eventually concluded that trying to keep a balance

between using the stepwise addition method and pairwise

ali-gnment would often yield a more reasonable evolutionary

inference.

Fig. 1. Pseudo-code that presents our algorithm to reconstruct evolutionary tree.

In addition to the abovementioned explanation, it is also

essential that we use an efficient procedure to calculate

consensus for all clusters. More precisely, since there would

be a pairwise alignment between each new sequence and

consensuses of all clusters separately, these two important

questions arise: How consensus is calculated for each

cluster?And which pairwise alignment algorithm should be

used?

Another point is that we have implemented our application

so as to approximate the most parsimonious tree on DNA

sequences. There is, nevertheless, no restriction to use gene

sequences as OTUs. According to IUPAC nucleotide

ambiguity codes for calculating consensus [14], we keep on

counting the number of instances of the different characters

in the same columns of all sequences, which are contained in

the cluster. If thenumber of thecharacter exceeds the presence

percentage, a predefined constant2, this character would be

included to calculate consensus. The idea of presence

percentage is similar to the notion of “support” for

association rules. For example suppose there are 10

sequences in the cluster which we are to calculate their

consensus, if the ithcolumn contains 1“C” and 9“T” it would

be given a consensus of “Y” (where Y stands for pYrimidine

C or T), providing that the presence percentage is set to 10 or

lower. More exactly, if a character is presented below the

presence percentage, it would be ignored for making

2 Our experiments were carried out using values in the range of 10% to

30%. However, more appropriate results were obtained with 25%.

consensus. We also ignore all non ACGT characters in

calculating consensus. It means that in the ith column of 10

sequences contains 6 gaps, 3 “T” and 1“C”, the presence

percentage of “C” would be considered to 25% not 10%.

The other case that may occur is that none of the characters

reach the presence percentage. Take, for instance, the

presence percentage is set to 30. For an arbitrary column of

five sequences in a specific cluster we have 1“A”, 1“C”,

1“G”, 1“T” and 1 gap. It is clearly evident that the presence

percentage of every character is 25% (by default, gap is

ignored) while the minimum required presence percentage

for calculating consensus is 30%. In such cases, that all

characters are presented below the presence percentage, the

consensus iscalculated by discarding the presence percentage

value. Hence, it would be given a consensus of “N” (where N

stands for aNy base). It is, however, possible to change the

default settings of the application software to meet any other

objective.

Pairwise alignment is another related subject that plays an

important role in our approach. In fact, it is our main key to

make better decisions by looking ahead rather than blind

searches to find the optimal position in the traditional

stepwise addition method. Its role would be more prominent

if the cluster threshold size is set to a low value because the

lower the threshold, the more the clusters and the more

clusters the more consensuses. So to add new leaves, every

leaf has to be aligned with all consensuses to locate a suitable

cluster.

// FSA (Fast Stepwise Addition)

// INPUT: OTU_Set: represents the operational taxonomic units chosen by user(OTU dataset)

// OUTPUT: Approximated_Tree: the approximated tree returned from the function

// Cluster: is a sub-tree from Approximated_Tree contains some OTUs and their consensus

// t: predefined cluster threshold size which determines maximum number of OTUs in the clusters

// Clusters_Set: the set of all clusters

FastStepwiseAddition(OTU_Set)

{

 Take t OTUs from OTU_Set and make a rooted bifurcating tree with stepwise addition method

 Add aforementioned incomplete tree to the Clusters_Set as a cluster of the Approximated_Tree

for each remained OTU in OTU_Set{

for each Cluster in Clusters_Set

{ Do pairwise alignment between OTU and consensus of all OTUs in the Cluster}

selectedCluster = the cluster which holds the highest alignment score

 Using stepwise addition, insert OTU to a leaf edge of the selectedClusterof the

 Approximated_Tree

if (number of OTUs in the selectedCluster>t) {

 Add (selectedCluster->RightSubtree) as a new cluster to the Clusters_Set

 Add (selectedCluster->LeftSubtree) as a new cluster to the Clusters_Set

 Calculate consensus for each of two new clusters

 Remove selectedCluster from Clusters_Set

}

else

 Update consensus for selectedCluster

}

returnApproximated_Tree

}

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 4, No. 5, September 2014

372

Global alignments are widely used when sequences are

similar and of approximately equal size. Saul B. Needleman

and Christian D. Wunsch [15] published a well-known global

alignment on two sequences based on dynamic programming

known as Needleman–Wunsch algorithm. On the other hand,

local alignments are used for the most unlike sequences. A

general local alignment algorithm was proposed by Temple F.

Smith and Michael S. Waterman [16]. Smith–Waterman is

also based on dynamic programming such as

Needleman–Wunsch algorithm. With regard to the fact that

finding common sub-sequences is the touchstone in sequence

alignment, MajidSazvar et al. [17] proposed a one-pass linear

algorithm, based on dynamic programming, to discover the

longest common sub-sequence (LCS) quickly. Reddy et al

[18] also worked on Planted (l, d)-Motif finding which tries

to identify meaningful patterns in biological sequences.

Regardless of using local or global alignment algorithm,

setting scores for gap penalties could have an important part

in the result. Y.Nozaki and M.Bellgard [19] developed a

technique that allows the user to assign a priori set of the

number of allowable gaps but it seems to be still difficult to

precisely determine the penalties for a given pair of

sequences. To avoid complexity, we use affine gap penalty

function3.

Having taken all the aforementioned issues into

consideration, wenow would like to explain how our method

could build the phylogenetic trees quickly. Following

subsection discusses time complexity in detail.

Fig. 2. Above: If the number of leaves in each cluster is greater than the

cluster threshold size, then it will be broken into two clusters (left and right

child) Bellow: The worst case happens if the tree is lopsided, as shown some

leaves have high depths (e.g. 8, 9) in comparison to the other ones.

2) Time complexity

As it was explained in Section II (A), we assume that the

main problem is the number of complete trees that are

searched for the optimal position. Let us calculate time

complexity for the worst case even though it seems not to

occur. If we have n OTUs and define t as the maximum

number of nodes in each cluster then the tree is being

constructed with the traditionalstepwise addition method for

3 For our experiments, we choose −1for extend-gap penalty score and −4,

−2 for open-gap penalty score for similar and semi-similar sequences

respectively.

first t OTUs and therefor, time complexity of this part is

calculated exactly the same as equation (2). As of now, the

closest cluster for each remained OTU is found by pairwise

sequence alignment and then, in the worst case, at most t

different incomplete trees should be searched while each tree

weighs (i+1)/n in step i.

where ζ= the sum total of pairwise alignment cost at each

step.

W(n) determines the number of complete trees with n

leaves that are searched in our algorithm for the optimal

position in the worst case, plus pairwise sequence alignment

cost. Please note that t is a predefined constant and does not

affect the time order of the number of trees. Thus, we easily

do see that the algorithm has a linear time order of total

number of trees by comparison with the traditional stepwise

addition method. However, ζ is a little more difficult to talk

about. More exactly, ζ is the cost of the second “for each”

loop in our algorithm outlined in Fig. 1 and states that

sequence alignment cost is obviously important, even though

it is independent of the number of trees. In other words, to

insert n−t remained OTUs at each step, pairwise alignment is

done between every OTU and consensus of each cluster

separately; pairwise alignment’s cost depends on clusters

count at each step and clusters count depends on the number

of OTUs and the value of t. However, for n−t remained

OTUs, the worstcase might happen if the tree has a

comb-shaped topology. For example, suppose we have

constructed a rooted bifurcating tree with the first t nodes.

Since there is only one cluster, adding the next node is to be

done to this cluster. Now, cluster size is t+1 which is greater

than t and this cluster is broken to its left child and right child.

The worst case occurs when one child has t leaves whereas

the other has only one. Imagine that the next node has the

highest alignment score with the consensus of the cluster with

size of t compared to the cluster with size of 1. It means we

should again insert the new node to the largest cluster and

therefor its size would be t+1 > t. After breaking such cluster

to its left and right sub-trees, previous result may be obtained

in order that one sub-tree has t leaves whereas the other has

one (see Fig. 2).

III. RESULTS AND DISCUSSION

The study investigates the impact of clustering on

phylogenetic tree reconstruction with the stepwise addition

method. We also compared the performance of the traditional

stepwise addition method and improved stepwise method4.

Although there is not any restriction for our algorithm for the

input data types, we chose gene sequences so that the

comparison is performed on run time and estimated

parsimony score for a variety of different sequences of “COI”

mitochondrial genes of animals. The impact of

4 All experiments were performed on Windows 7(64-bit, Ultimate edition)

with a 3.3GHz Intel64 Core i3family 6 model 42 processor and 4 GB of

RAM

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 4, No. 5, September 2014

𝑊 𝑛 =
(2𝑖 − 1)(𝑖 + 1)

𝑛

𝑡− 1

𝑖=1

+
𝑖 + 1

𝑛
𝑡 + 𝜁

𝑛− 1

𝑖=𝑡

∈ 𝑂 𝑛 (3)

373

clusterthreshold size is discussed in our experiments too.

TABLE I: EXPERIMENTS FOR SOME SAMPLE DATASETS OF ANIMALS

Fifty “COI” datasets with sequences of different length

and number were selected from NCBI GeneBank5.

Implemented application software coupled with all sample

datasets is also available at our website6.

A. Fitch’s Standard Parsimony

In order to assess the performance of the traditional

stepwise addition method and our technique to reconstruct

the phylogenetic tree, we consider the standard Fitch

algorithm to calculate parsimony score, which is one of the

most extensively used parsimony methods for evolutionary

tree reconstruction. In this systematic approach, every point

mutation among all branches is calculated and total number

ofhypothetical substitutions for all OTUs and ancestors are

counted in two phases: bottom-up and top-down. We have

compared our algorithm against the traditional stepwise

addition method using “COI” datasets. Table I shows the

average MP score and execution time of sample datasets

calculated by our method. Looking at Table I, for more than

25 taxa, we saw how run time of FSA has reduced compared

with the traditional stepwise addition method. However,

when the number of taxa is lower than 25 improvements

cannot be seen in the run time because of additional

computations to calculate consensus and pairwise sequence

alignments.

5National Center for Biotechnology Information (The GenBank® nucleic

acid sequence database http://www.ncbi.nlm.nih.gov/nucleotide/)
6 Application software and datasets can be accessed through:

www.blueweb.ir/phylogeny

B. The Impact of Phylogenetic Tree Shape and the

Number of Clusters

The analysis of phylogenetic tree shape can provide

important clues as to understanding the evolutionary forces

[20]. In this context, Nicolas Bortolussiet al. [21] described

the computer package “apTreeshape” that is dedicated to

simulation and analysis of phylogenetic tree topologies using

statistical indices. Although analysis of the tree shape is not

completely studied in this paper, it is important in our

algorithm because it can influence the run time. Clearly, as it

was explained earlier, the worst case occurs if our tree has a

comb-shaped topology. In other words, comb-shaped means

that the incomplete tree with n leaves consists of n−t+1

clusters (in the worst case) and it is the maximum number of

possible clusters where t determines the cluster threshold

size.

Fig. 3. The relation between the number of taxa and the number of clusters

with t=20.

For example, suppose our incomplete tree has 5 leaves.

Datasets Average MP Score Execution Time (s)

Class #taxa– #sites Traditional Step-wise FSA Traditional Step-wise FSA

 21 – 628 51 52 3 3.5

 33 – 540 40 46 11 11

Amphibia 49 – 644 42 40 48 47

 77 – 540 87 81 189 88

 109 – 543 129 141 737 232

 23 – 914 926 945 6 7

 47 – 1237 187 188 102 77

Aves 57 – 379 844 854 51 27

 63 – 666 12087 10453 146 81

 111 – 455 32 23 719 170

 25 – 677 1361 1296 6 6

 50 – 657 1439 1297 105 49

Mammalia 68 – 411 1042 901 105 51

 94 – 470 1609 1132 355 128

 107 – 657 106 114 924 242

 36 – 599 623 567 17 15

 63 – 563 1341 1058 114 69

Reptilia 66 – 627 1014 961 144 95

 73 – 645 3843 4327 199 106

 110 – 552 253 289 700 193

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 4, No. 5, September 2014

374

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 4, No. 5, September 2014

Also assume we set t=3. Therefore, the worst case occurs if

we have three clusters in which one cluster has 3 leaves and

each of the other two clusters has 1 (see Fig. 2). Though we

calculated time complexity for the worst case, our

experiments showed that this case almost does not occur (see

Fig. 3).

From mathematical point of view, if we consider clusters

as leaves of tree, in the worst case, the following relation

between the number of clusters and the depth of tree is

certified:

_ _ _ _depth of tree number of clusters (4)

Please note that we assumed each cluster as a leaf of tree

(tree of trees). Additionally, we assumed that the level of root

is 1. It should also be remembered that we are talking about

rooted bifurcating trees; similarly, with these assumptions the

minimum number of clusters appears in balanced trees (see

Fig. 2) and we have the following formula:

_ _ [(_ _)] 1depth of tree Log number of clusters

(5)

On the other hand, we can also show the relation between

the minimum number of clusters and total number of taxa as

follows:

[_ _ / min_ _ _x number of taxa number of clusters

(6)

Equation (6) is generalized version of the pigeonhole

principle and states that, at least one cluster must hold no

fewer than x taxa. Another form of this equation could be:

_ _
_ _ _ []

number of taxa
min number of clusters

t

(7)

where t is a predefined variable for the cluster threshold size.

According to equation (7), we will have the minimum

number of clusters if all clusters perhaps except one; have

maximum number of nodes (cluster threshold size). Similarly,

the worst case occurs when we have one cluster with t nodes

and n−t clusters with one node, where n is the number of

taxa.

_ _ _ 1max number of clusters n t (8)

According to the mentioned equations, let us calculate the

more exact cost for ζ in equation (3). As it was discussed, ζ is

the total cost of pairwise alignments at each step and it

depends on the number of clusters at each step. Therefore, we

have the following equation in step i:

ζ = 𝜑 , 𝑖 𝑡 ≤ 𝑚 ≤ 𝑖 − 𝑡 + 1
𝑚

𝑗=1
 (9)

where φ is pairwise sequence alignment cost between two

sequences (the new sequence, which we want to insert to the

incomplete tree, and consensus sequence of any cluster).

The minimum and maximum values for m are directly

related to the minimum and maximum number of clusters at

each step respectively. If we apply the value of ζ to the

equation (3), for the worst case W(n) can be calculated as

follows:

𝑊 𝑛 =
 2𝑖 − 1 𝑖 + 1

𝑛

𝑡−1

𝑖=1

+ (
𝑖 + 1

𝑛
𝑡

𝑛−1

𝑖=𝑡

+ 𝜑)

𝑖−𝑡+1

𝑗=1

(10)

Although the total cost of pairwise alignment has order of

𝑛2 time complexity in our algorithm, the number of total

positions that should be searched has order of n time

complexity and therefore our algorithm, as it was shown in

Table I, is much faster. Moreover, with a quick glance at Fig.

3, we do say that the worst case in our experiments not only

did not occur, but on average, each cluster has also 𝑡/2 nodes

as well.

IV. CONCLUSION

In this paper, we detailed a novel algorithm to estimate the

most parsimonious tree with clustering technique that

employs local and global alignment algorithms. In a brief

summary, we utilized clustering technique to decline the

number of searchesto find the optimal position at each step.

For that, we defined the maximum number of possible leaves

in each cluster (cluster threshold size) in which if the number

of leaves in a cluster exceeds the threshold size then we break

it into two clusters (left and right sub trees). Though

experiments showed that the cluster threshold size is a good

criterion to decide when a cluster should be divided, the

variance could be a good parameter to find the best time to

break the cluster too. However, calculating the variance for

sequences in the cluster and define a threshold value to check

with it does not seem to be so easy and usually needs practical

experiments too.

If we consider that the main problem is the number of

incomplete trees that should be searched to find the optimal

position at each step, by our construction technique, the tree

is built with computational complexity of O(n) while the

computational complexity of the traditional stepwise addition

method is 𝑂(𝑛2) . In practice, generally our method

constructs phylogenetic trees with lower parsimony scores

rather than the traditional stepwise addition method provided

that reasonable values are selected for both the presence

percentage constant and especially cluster threshold size.

Since we used DNA gene sequences as input data –due to the

simple assumption of equal probability of A, C, G or T– it

seems reasonable that we set 25% for the presence percentage

constant and more, the inverse of the number of various

attributes could be a proper value for presence percentage

when morphological attributes play the leading role. It may

be, however, necessary to do some practical experiments to

find the best number for the cluster threshold size because it

is a parameter that directly affects the outcome.

The source code of FSA was written in

C#.net4programming language with a sequential single

thread programming model7 and it was shown that the FSA

implementation for gene sequences has a better performance

7 Application software and datasets can be accessed through:

http://www.blueweb.ir/phylogeny

375

International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 4, No. 5, September 2014

compared with the traditional stepwise addition method. We

believe that our method is useful as a starter tree for heuristic

search approaches. Furthermore, we also think that it can be

improved by multi-threading programming model, however

parallelism brings some challenges.

ACKNOWLEDGMENT

We wish to thank MostafaSabzekar and Amin Rezaeian

for helpful discussions and suggestions on some of the issues,

and A.Ghavidel would especially like to thank Ferdowsi

University of Mashhad’s knowledge engineering research

group (KERG) as well as all those who helped with this

research.

REFERENCES

[1] D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks:

Concepts, Algorithms And Applications, Cambridge University Press,

2010.

[2] M. A. Khan, I. Elias, K. Nylander, R. V. Guimera, R. Schobesberger, P.

Schmitzberger, et al., “Fastphylo: Fast tools for phylogenetics,” BMC

bioinformatics, vol. 14, pp. 334, 2013.

[3] W. M. Fitch, “Toward defining the course of evolution: minimum

change for a specific tree topology,” Systematic Biology, vol. 20, pp.

406-416, 1971.

[4] L. Zhang, J. Shen, J. Yang, and G. Li, “Analyzing the Fitch method for

reconstructing ancestral states on ultrametric phylogenetic trees,”

Bulletin of Mathematical Biology, vol. 72, pp. 1760-1782, 2010.

[5] J. Yang, J. Li, L. Dong, and S. Grünewald, “Analysis on the

reconstruction accuracy of the Fitch method for inferring ancestral

states,” BMC Bioinformatics, vol. 12, pp. 18, 2011.

[6] M. Hendy and D. Penny, “Branch and bound algorithms to determine

minimal evolutionary trees,” Mathematical Biosciences, vol. 59, pp.

277-290, 1982.

[7] D. A. Bader, V. P. Chandu, and M. Yan, “ExactMP: An efficient

parallel exact solver for phylogenetic tree reconstruction using

maximum parsimony,” Parallel Processing, 2006, pp. 65-73.

[8] W. T. J. White and B. R. Holland, “Faster exact maximum parsimony

search with XMP,” Bioinformatics, vol. 27, pp. 1359-1367, 2011.

[9] L. Sheneman, J. Evans, and J. A. Foster, “Clearcut: a fast

implementation of relaxed neighbor joining,” Bioinformatics, vol. 22,

pp. 2823-2824, 2006.

[10] I. Elias and J. Lagergren, “Fast neighbor joining,” Theoretical

Computer Science, vol. 410, pp. 1993-2000, 2009.

[11] J. Felenstein, Inferring Phylogenies, vol. 2, Sinauer Associates

Sunderland, 2004.

[12] U. W. Roshan, T. Warnow, B. M. Moret, and T. L. Williams,

“Rec-I-DCM3: a fast algorithmic technique for reconstructing

phylogenetic trees,” in Proc. Computational Systems Bioinformatics

Conference, 2004, pp. 98-109.

[13] J. Felsenstein, “Evolutionary trees from DNA sequences: a maximum

likelihood approach,” Journal of Molecular Evolution, vol. 17, pp.

368-376, 1981.

[14] A. Cornish-Bowden, “Nomenclature for incompletely specified bases

in nucleic acid sequences: recommendations 1984,” Nucleic Acids

Research, vol. 13, p. 3021, 1985.

[15] S. B. Needleman and C. D. Wunsch, “A general method applicable to

the search for similarities in the amino acid sequence of two proteins,”

Journal of Molecular Biology, vol. 48, pp. 443-453, 1970.

[16] T. F. Smith and M. S. Waterman, “Comparison of biosequences,”

Advances in Applied Mathematics, vol. 2, pp. 482-489, 1981.

[17] M. Sazvar, M. Naghibzadeh, and N. Saadati, “Quick-MLCS: a new

algorithm for the multiple longest common subsequence problem,” in

Proc. the Fifth International C* Conference on Computer Science and

Software Engineering, 2012, pp. 61-66.

[18] U. S. Reddy, M. Arock, and A. Reddy, “A particle swarm optimization

solution for challenging planted (l, d)-Motif problem,” in Proc.

Computational Intelligence in Bioinformatics and Computational

Biology , 2013, pp. 222-229.

[19] Y. Nozaki and M. Bellgard, “Statistical evaluation and comparison of a

pairwise alignment algorithm that a priori assigns the number of gaps

rather than employing gap penalties,” Bioinformatics, vol. 21, pp.

1421-1428, 2005.

[20] F. A. Matsen, “A geometric approach to tree shape statistics,”

Systematic Biology, vol. 55, pp. 652-661, 2006.

[21] N. Bortolussi, E. Durand, M. Blum, and O. François, “apTreeshape:

statistical analysis of phylogenetic tree shape,” Bioinformatics, vol. 22,

pp. 363-364, 2006.

Abolfazl Ghavidel

is a M.S.

student in software

engineering at Azad University of Mashhad,

Mashhad, Iran. He was born in 1983, received his BS

degree in 2007.

He currently works as expert of “Statistics & IT” as

well as network administrator in Cultural Heritage and

Tourism Organization of Mashhad. He was the head

of“IT Office” of the organization between 2009 and

2010.

His research interests in computational vision relate to algorithms,

computational complexity, bioinformatics and phylogeny. He has developed

FSA software application which can be accessed through:

http://www.blueweb.ir

Omid

Mirshamsi

is an assistant professor in zoology

at the Department of Biology, Ferdowsi University of

Mashhad, Mashhad, Iran. His research interests include

phylogeny and systematics of arachnids in Iran.

Mahmoud Naghibzadeh received his B.S. degree in

statistics and computer science from Ferdowsi

University of Mashhad, Iran and his MS and PhD

degrees in computer science and computer

engineering, respectively, from University of

Southern California, USA. He is now a full professor

at the Department of Computer Engineering,

Ferdowsi University of Mashhad, Mashhad, Iran.

He is currently teaching graduate courses and

supervising both MS and PhD students. In addition, he is the director of

Knowledge Engineering Research Group (KERG) laboratory. His research

interests include the scheduling aspects of real-time systems, Grid, Cloud,

Multiprocessor, and Multicore and Bioinformatics computer algorithms. He

has published numerous papers in international journals and conference

proceedings as well as eight books in the field of computer science and

engineering.

Prof. Naghibzadeh was the general chair of an international computer

conference and technical chair of two others. He is the reviewer of many

journals and a member of many computer societies as well as a senior

member of IEEE. He is the recipient of many awards including MS and PhD

study scholarship and outstanding professor award.

376

