
Journal of Industrial and Systems Engineering
Vol. 6, No. 4, pp 249-271
Winter 2013

Memetic and scatter search metaheuristic algorithms for a multi-
objective fortnightly university course timetabling problem: a case study

Nasibeh Movahedfar 1*, Mohammad Ranjbar 2*, Majid Salari3, Salim Rostami4

1,2,3,4 Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O.

Box: 91775-1111, Mashhad, Iran
1na.movahhedfar@stu-um.ac.ir, 2m_ranjbar@um.ac.ir, 3msalari@um.ac.ir, 4Salim.Rostami@gmail.com

ABSTRACT

This paper studies a multi-objective fortnightly university course timetabling problem. In this
research, the Industrial Engineering Department of the Ferdowsi University of Mashhad is
considered as the case study for investigation. Essentially, four objectives should be optimized
where we used the Lp-metric method to aggregate them into a single objective. An integer
linear programming model and two metaheuristic algorithms, i.e. memetic and scatter search,
have been developed for the studied problem. Comparing the proposed algorithms with the
results obtained by CPLEX, indicates the superiority of the scatter search algorithm. In
particular, high quality solutions are achieved in a reasonable CPU time.

Keywords: Fortnightly timetabling problem; integer linear programming; memetic algorithm;
scatter search.

1. INTRODUCTION

During the last decades, production has spread its inclusion area, so that nowadays it covers
providing services beside goods. Thus production scheduling entered to a wide relevant area of
scheduling services like timetabling problems which are concerned in optimally assigning some
limited resources to servicing tasks over time. This study focuses on a particular field of scheduling
problems known as university course timetabling problem which has been proved to be NP-hard
(Bardadym, 1996) and has been remained a confusing problem even after many years of research. A
reason for this complexity may be the high variety of constraints which come from the various
policies of institutions and universities, while, another reason could be the fact that educational
rules and methods are changing, so that the models have to be modified. In addition, reaching an
optimal solution for a large timetabling problem can be quite time-consuming. Finally, computing
facilities have been entirely influential in this issue. Therefore, it is necessary to adopt efficient
search algorithms to generate optimal or near optimal solutions.

The general term of university timetabling refers to both exam and course timetabling problems

* Corresponding Author

ISSN: 1735-8272, Copyright © 2013 JISE . All rights reserved.

250 Movahedfar, Ranjbar, Salari, and Rostami

(Lewis, 2008). In the exam timetabling problem, the goal is to spread the different exams to the best
possible extent for each individual student, while this is to propose a compact and uniform timetable
for the course timetabling problem in which recurring timetables (i.e. weekly, fortnightly and etc.)
are appreciated. The university course timetabling is the procedure of assigning lectures, presented
by professors (instructor, assistant professor, associate professor and professor), into room-time
slots subject to a given set of side constraints. Usually, constraints are classified into two categories
namely, hard constraints and soft constraints. An assignment satisfying all hard constraints is called
a feasible timetable. The objective of each timetabling problem is to minimize the total number of
soft constraints, violated in a feasible timetable.

The class of scheduling problems includes a wide variety of problems such as machine scheduling,
events scheduling, personnel scheduling and many others (see, e.g. Brucker et al., 1999 and Pinedo,
2008). Many real world scheduling problems are multi-objective by nature for which several
objectives have to be considered simultaneously (see, e.g. Bagchi, 1999; Ehrgott and Gandibleux,
2000; and T’kindt and Billaut, 2002). Examples of such objectives are: minimizing the length of the
schedule, optimizing the utilization of the available resources, satisfying the preferences of human
resources (personnel scheduling), minimizing the tardiness of orders (production scheduling),
maximizing the compliance with regulations (educational timetabling) and etc. Over the years,
several approaches have been used to deal with the various objectives in such problems.
Traditionally, the most common approach is to aggregate the multiple objectives into a single scalar
value by using weighted aggregating functions according to the preferences set by the decision-
maker (see, e.g. Belton and Stewart, 2002; and T’kindt and Billaut, 2002). However, in many real
multi-objective scheduling problems, it is preferable to present various compromise solutions to the
decision-makers, so that the most adequate schedule can be chosen. Although this can be achieved
by performing the search several times using different preferences each time, another approach is to
generate the set of compromise solutions in a single execution of the algorithm. The latter strategy
has attracted the interest of researchers for investigating the Pareto set of solutions to multi-
objective scheduling problems (see, e.g. Bagchi, 1999; and Ishibuchi et al., 2002). The aim in
Pareto optimization is to find a set of compromise solutions that represents a good approximation to
the Pareto optimal front (see Rosenthal, 1985). In recent years, the number of algorithms proposed
for Pareto optimization has increased tremendously mainly because multi-objective optimization
problems exist in almost any domain (see, e.g. Ehrgott and Gandibleux, 2000, Jones et al., 2001 and
Tan et al., 2002). The main weakness of the Pareto optimization technique is that when the number
of objectives increases, the computational works will be intractable and also analyzing the results
will be very complicated. Thus, this technique is usually used for bi-objective optimization
problems.

A large variety of metaheuristic algorithms have been applied to the course timetabling problems.
Examples of these algorithms include genetic algorithm (Wang, 2003), simulated annealing (see
Ceschia et al. ,2012), tabu search (see Lü and Hao, 2010), particle swarm optimization (see Shiau,
2011), graph coloring (see Burke et al., 2007) and hybrid variable neighborhood approach (see
Burke at al., 2010). Interested readers are referred to Lewis (2008) for a comprehensive survey of
metaheuristic-based techniques for the university timetabling problems.

In contrast to the metaheuristic algorithms, the literature of exact solution methods in the context of
timetabling is very limited, because, these approaches cannot tackle large scale timetabling
problems. Integer programming approach is one of the most used exact approaches for the course
timetabling problem (see, e.g. Daskalaki et al., 2004; Daskalaki and Birbas, 2005; Mirhassani,
2006; and Boland et al., 2008).

Memetic and scatter search metaheuristic algorithms for a … 251

In this paper, we study the fortnightly university course timetabling problem (FUCTP) for the
Ferdowsi University of Mashhad. In each semester, we face the challenging timetabling problem
which varies from a semester to another because some professors prefer to change their courses in
some academic years. Both professors and students prefer to have a compact and uniform timetable.
Also, students have two other preferences as follows: (1) they prefer to participate in more hard-
understanding lectures in the morning; (2) also students prefer that non-precedent courses do not
overlap such that they have more options for course selection. We need to develop a timetable
which considers the aforementioned objectives. This task has been done manually already using try
and error method. In this study, we try to improve the quality of the developed timetable using
optimization techniques. For this purpose, we aggregate the four conflicting objectives into a single
objective by applying the Lp-metric method.

Each lecture of a course has to be presented in a 120-minutes time slot where 100 minutes of that is
assigned for teaching and the remaining 20 minutes is dedicated to the gap between two consecutive
lectures. Courses are partitioned into two subsets. Particularly, the first and the second subsets
include the courses which must be presented 120 and 180 minutes in each week, respectively. Thus,
each course may need 1 or 1.5 lecture per week. Since it is not possible to assign half of a time slot
to a lecture, the total frequency period of the timetable is set to two weeks in which each course
may need two or three lectures per two-weeks. In contrast to weekly timetables in which course
timetable is identical for all weeks, in fortnightly timetables there are odd and even weeks. For those
courses needing two lectures per two-weeks, their corresponding timetables are identical in odd and
even weeks. In contrast, for the courses with three lectures per two-weeks, the timetable for odd and
even weeks are different such that each course has a fixed lecture per week and an alternate lecture
per two weeks (either in odd or in even weeks).The Engineering Faculty of the Ferdowsi University
includes seven departments where each department has a given number of identical rooms, all
having the same capacity and other equipments. Moreover, each department can share its rooms
with other departments where, a central educational office coordinates the sharing. Thus, it is
assumed that for each department, a minimum number of identical rooms are available in each time
slot but they may be increased in different time slots. In this paper, we focus on developing an
optimal timetable for the Industrial Engineering Department presenting Bachelor of Science (B.Sc.)
and Master of Science (M.Sc.) programs for which three identical rooms are available in each time
slot.

The contributions of this article are twofold: (1) we develop an integer linear programming model
for the FUCTP and solve it using ILOG CPLEX 12.3 solver; (2) we develop a memetic algorithm
(MA) and also a scatter search (SS) to find optimal or near optimal solutions.

The remainder of this paper is organized as follows. In Section 2, a formal description of the
problem and an integer linear programming formulation are provided. Section 3 is dedicated to the
description of the MA and the SS. Computational experiments are reported in Section 4. Finally,
conclusions and suggestions for future works are presented in Section 5.

2. PROBLEM DESCRIPTION AND FORMULATION

In order to define the FUCTP, assume we are given n courses gathered in set
ܥ ൌ ሼ1, … , ݊ሽwhich is divided into two subsets ܥଶ and ܥଷ in terms of number of the required
lectures per two-weeks. In particular, ܥଶ ൌ ሼ݅: ௜ݑ ൌ 2ሽ and ܥଷ ൌ ሼ݅: ௜ݑ ൌ 3ሽ where, for each ݅ א ,ܥ
 ௜ indicates the number of required lectures per two-weeks. These two subsets are mutuallyݑ
exclusive and jointly exhaustive. In another point of view, we divide set C into 4 families where
each family ܨ௙indicates a set of coursesthat are usually attended by a group of students with

252 Movahedfar, Ranjbar, Salari, and Rostami

identical entrance year. Also, the families are mutually exclusive ൫݂׊, ݂ᇱ: ܨ௙ܨځ௙ᇲ ൌ ൯and jointly׎

exhaustive൫ڂ ௙௙ܨ ൌ ൯. All families are determined based on the curriculum of the Ferdowsiܥ
University. It should be noticed that it is possible for a student to take courses from different
families. Let ܲ ൌ ሼ1, … , ݉ሽ represent the set of professors in which each professor݆ א ܲmust
present a subset of courses shown by ܲܥ௝. Moreover, each lecture of a course ݅ א should beܥ
assigned to a time slot ݐ where ݐ א ሼ1, … ,60ሽ. Number of time slots has been determined by
considering six time slots in each working day (i.e. [8-10], [10-12], [12-14], [14-16], [16-18] and
[18-20]) and ten working days in a two- week period in which the union of time slots ሼ6ሺ݀ െ 1ሻ ൅
1,6ሺ݀ െ 1ሻ ൅ 2, … ,6݀ሽ constitutes the day ݀.

It should be noticed that each lecture of a course ݅ א for whichݐ௝ can be assigned to a time slotܥܲ
professor ݆ is available on that time slot. In order to determine the optimal time slot for each lecture
of a course, we consider preferences of students and professors, shown by the set PF. The relative
preference for assigning a lecture of course i to the time slot is determined based on both professors
and students' opinion.

As a set of hard constraints, the courses of a family ܨ௙ could not overlap but there may be courses
from different families which are attended by a noticeable number of students. Particularly, we
consider a penalty, shown by ܿ݋௜௜ᇲ, for overlapping of courses ݅ א ௙ and ݅ᇱܨ א ݂ ௙ᇲ whereܨ ്
݂ᇱ.The overlapping costs are determined based on the students' enrollment data. Also, in order to
have a compact program for both students and professors, we consider a cost for each busy day for
students and professors, respectively.

On the other hand, for constructing a uniform timetable we consider an upper bound on the
maximum number of lectures participated by a student (݈ݔܽ݉ݏ) or presented by a professor (݈ݔܽ݉݌) in
each day. Since some courses are presented by professors coming from outside of the department,
we assume that the timetable of these courses has been pre-assigned in advance. Descriptions of the
parameters introduced for the model are provided in Table 1 while Table 2 gives the definition of
the variables used to model the problem.

Table1 Set of parameters used to model the FUCTP

Parameter Description

ܥ ൌ ሼ1, … , ݊ሽ The set of courses,

2ܥThe set of courses having two lectures per two-weeksሺ 2ܥ ك ,ሻܥ

3ܥThe set of courses having three lectures per two-weeksሺ 3ܥ ك ,ሻܥ

۴ ൌ ൛ܨ௙ൟ The set of families,

ܲ ൌ ሼ1, … , ݉ሽ The set of professors,

۱۾ ൌ ൛ܲܥ௝ൟ The set of professor-course where ݆ܲܥ indicates a subset of courses presented by professor ݆݌;݆ ൌ 1, … , ݉,

ܶܵ ൌ ሼ1, … ,60ሽ The set of time slots,

۲ ൌ ሼ1, … ,10ሽ The set of days,

܁܂۾ ൌ ݐ݆ݏݐ݌ ௝௧൧ݏݐ݌ൣ ൌ 1if professor ݆ א ܲ is available at time slotݐ א ܶܵ, and zero otherwise,

ܨܲ ൌ ሼ݌ ௜݂௧ሽ The set of preferences, where,ݐ݂݅݌ indicates the relative preference of professors and students to participate

Memetic and scatter search metaheuristic algorithms for a … 253

Parameter Description

in course ݅ א ݐduringtime slotܥ א ܶܵ,

ܥܱ ൌ ሼܿ݋௜௜ᇲሽ The set of overlapping costs where ݅݅ܿ݋Ԣ indicates overlapping cost,

݅ The number of lectures of course ݅ݑ א ,in two weeks ܥ

 ,The maximum number of lectures for a family of students in a day ݔܽ݉ݏ݈

 ,The maximum number of lectures for a professor in a day ݔܽ݉݌݈

ൌ ݐ݅ܽ݌ ൜1; If course ݅ א ଶܥ is preassigned to the time slot ;ݐ ݐ ൌ 1, … ,60
0; Otherwise,

ݐ݅ܽ݌
1 ൌ ൜1; If the fixed lecture of course ݅ א ଷܥ is preassigned to the time slot ݐ; ݐ ൌ 1, … ,60

0; Otherwise,

ݐ݅ܽ݌
2 ൌ ൜1; If the alternative lecture of course ݅ א ଷܥ is preassigned to the time slot ݐ; ݐ ൌ 1, … ,60

0; Otherwise,

Table2. Set of variables used to model the FUCTP

Variable Definition

௜ܺ௧ ൌ ൜1; If course ݅ א ଶ is assignedܥ to the time slot ݐ
0; Otherwise,

௜ܺ௧
ଵ ൌ ൜1; If the fixed lecture of course ݅ א ଷܥ is assigned to the time slot ݐ

0; Otherwise,

௜ܺ௧
ଶ ൌ ൜1; If the alternative lecture of course ݅ א ଷܥ is assigned to the time slot ݐ

0; Otherwise,

ܻ௜௜ᇲ ൌ ൜
1; If two diffrent course ݅ and ݅ᇱ are overlapped for at least one time slot
0; Otherwise,

௝ܹௗ ൌ ൜
1; If at least a lecture of a course from seubset ௝ܥܲ is assigned to day ݀
0; Otherwise,

௙ܼௗ ൌ ൜
1; If at least a lecture of a course from seubset ௙ܨ is assigned to day ݀
0; Otherwise,

There are four objectives ଵ݂ to ସ݂in our introduced model, i.e. maximization of the courses' profits
(ଵ݂), minimization of the overlapping costsሺ ଶ݂ሻ, minimization the number of professors' busy days
ሺ ଷ݂ሻand minimization the number of students' busy days ሺ ସ݂ሻ. These four objectives are described
mathematically as follows:

ଵ݂ ൌ ෍ ෍ ݌ ௜݂௧ ௜ܺ௧

௜א஼మ

଺଴

௧ୀଵ

൅ ෍ ෍ ݌ ௜݂௧൫ ௜ܺ௧
ଵ ൅ ௜ܺ௧

ଶ ൯
௜א஼య

଺଴

௧ୀଵ

,

ଶ݂ ൌ ෍ ෍ ௜௜ᇲܻ௜௜ᇲܿ݋

௡

௜ᇲୀ௜ାଵ

௡

௜ୀଵ

,

254 Movahedfar, Ranjbar, Salari, and Rostami

ଷ݂ ൌ ෍ ෍ ௙ܼௗ

ସ

௙ୀଵ

 ,

ଵ଴

ௗୀଵ

ସ݂ ൌ ෍ ෍ ௝ܹௗ

௠

௝ୀଵ

.

ଵ଴

ௗୀଵ

This problem is referred to as a Multi-Objective Decision Making (MODM) problem in the
literature in which each objective function may have a different weight and scale. The weighted
metric method, referred to as ܮ௉-metric method (Triantaphyllou, 2000), is developed to solve such a
multi-objective problems. The ܮ௉ metric is a MODM optimization technique that aggregates
multiple objectives into a single one by multiplying each objective function k by its corresponding
weight ݓ௞. In a maximization problem, the weighted ܮ௉-metric distance measure of any ௞݂ from its

ideal value ௞݂
ାcan be minimized as follows ሼ∑ ௞ሺݓ ௞݂

כ െ ௞݂ሻ௣ସ
௞ୀଵ ሽ

ଵ ௣ൗ where ݓ௞ is a non-negative
weight assigned to each objective function by the decision maker and p indicates the importance of
each objective function's deviation from its ideal value. We use ݌ ൌ 1and the resulting problem
reduces to a weighted sum of the deviations. In order to obtain ௞݂

ା, only the objective function ௞݂ is
included in the model while other objective functions are excluded. Then, the objective value of the
optimal solution results in ௞݂

ା. It should be noticed that objective functions ଵ݂ to ସ݂ do not have the
same scale. So each objective function ௞݂ is made scale-less as follows. We define ௞݂

ି as the worst

value of ௞݂ when only ௞݂ is included in the objective function. Now, we consider
௙ೖ

శି௙ೖ

௙ೖ
శି௙ೖ

ష instead of

௞݂ in the objective function to prevent the problems of different scales.The FUCTP reads as follows:

.ܱ݊݅ܯ .ܨ ൌ ଵݓ
ଵ݂
ା െ ଵ݂

ଵ݂
ା െ ଵ݂

ି ൅ ଶݓ
ଶ݂ െ ଶ݂

ା

ଶ݂
ି െ ଶ݂

ା ൅ ଷݓ
ଷ݂ െ ଷ݂

ା

ଷ݂
ି െ ଷ݂

ା ൅ ସݓ
ସ݂ െ ସ݂

ା

ସ݂
ି െ ସ݂

ା (1)

s.t.

෍ ௜ܺ௧

ଷ଴

௧ୀଵ

ൌ ݅׊ ;1 א ଶ (2)ܥ

௜ܺሺ௧ାଷ଴ሻ ൌ ௜ܺ௧; ݐ׊ א ሼ1, … ,30ሽ and ݅׊ א ଶ (3)ܥ

෍ ௜ܺ௧
ଵ

ଷ଴

௧ୀଵ

ൌ ݅׊ ;1 א ଷ (4)ܥ

௜ܺሺ௧ାଷ଴ሻ
ଵ ൌ ௜ܺ௧

ଵ ݐ׊ ; א ሼ1, … ,30ሽ and ݅׊ א ଷ (5)ܥ

෍ ௜ܺ௧
ଶ

଺଴

௧ୀଵ

ൌ ݅׊ ;1 א ଷ (6)ܥ

௜ܺ௧ ൑ ;௝௧ݏݐ݌ ݅׊ א ,ଶܥ :݆׊ ݅ א ௝ܥܲ and ݐ׊ א ܶܵ (7)

௜ܺ௧
ଵ ൑ ;௝௧ݏݐ݌ ݅׊ א :݆׊ ,ଷܥ ݅ א ௝ܥܲ and ݐ׊ א ܶܵ (8)

௜ܺ௧
ଶ ൑ ;௝௧ݏݐ݌ ݅׊ א ,ଷܥ :݆׊ ݅ א ௝ܥܲ and ݐ׊ א ܶܵ (9)

Memetic and scatter search metaheuristic algorithms for a … 255

෍ ൫ ௜ܺ௧
ଵ ൅ ௜ܺ௧

ଶ ൯

ఛାଵଵ

௧ୀఛ

൑ ݅׊ ;1 א ଷܥ and ߬ א ሼ1,7,13,19,31,37,43,49ሽ (10)

௜ܺ௧ ൒ ;௜௧ܽ݌ ݅׊ א ݐ ଶ andܥ א ሼ1, … ,30ሽ (11)

௜ܺ௧
ଵ ൒ ௜௧ܽ݌

ଵ ݅׊ ; א ݐ ଷ andܥ א ሼ1, … ,30ሽ (12)

௜ܺ௧
ଶ ൒ ௜௧ܽ݌

ଶ ݅׊ ; א ݐ ଷ andܥ א ܶܵ (13)

෍ ௜ܺ௧

஼మא௜׊

൅ ෍ ൫ ௜ܺ௧
ଵ ൅ ௜ܺ௧

ଶ ൯
஼యא௜׊

൑ 3; ݐ׊ א ܶܵ (14)

෍ ௜ܺ௧

௉஼ೕא஼మ&௜א௜׊

൅ ෍ ൫ ௜ܺ௧
ଵ ൅ ௜ܺ௧

ଶ ൯
௉஼ೕא஼య&௜א௜׊

൑ 1; ݐ׊ א ܶܵ and ݆׊ א ܲ (15)

ܻ௜௜ᇲ ൒
൫ ௜ܺ௧ ൅ ܺ௜ᇲ௧ ൅ ௜ܺ௧

ଵ ൅ ௜ܺᇲ௧
ଵ ൅ ௜ܺ௧

ଶ ൅ ௜ܺᇲ௧
ଶ െ 1൯

5
; ݅׊ ് ݅ᇱ א ܥ and ݐ׊ א ሼ1, … ,60ሽ (16)

∑ ௜ܺ௧׊௜א஼మ& ௜אி೑
൅ ∑ ൫ ௜ܺ௧

ଵ ൅ ௜ܺ௧
ଶ ൯׊௜א஼య& ௜אி೑

൑ 1; ݐ׊ א ܶܵ and ݂ =1,…,5 (17)

෍ ෍ ൫ ௜ܺ௧ ൅ ௜ܺ௧
ଵ ൅ ௜ܺ௧

ଶ ൯
௜א൫஼ת௉஼ೕ൯

ఛାହ

௧ୀఛ

൑ ;௠௔௫݌݈ ߬׊

א ሼ1,7,13,19,25,31,37,43,49,55ሽ and ݆׊ א ܲ

(18)

෍ ෍ ൫ ௜ܺ௧ ൅ ௜ܺ௧
ଵ ൅ ௜ܺ௧

ଶ ൯
௜א൫஼תி೑൯

ఛାହ

௧ୀఛ

൑ ;௠௔௫ݏ݈ ߬׊

א ሼ1,7,13,19,25,31,37,43,49,55ሽ and ௙ܨ׊ א ۴

(19)

௙ܼௗ ൒
൫ ௜ܺ௧ ൅ ௜ܺ௧

ଵ ൅ ௜ܺ௧
ଶ ൯

3
 ; ݅׊ א ൫ܥ ת ,௙൯ܨ ௙ܨ׊ א ۴, :ݐ׊ ඃݐ

6ൗ ඇ ൌ ݀ and ݀׊ א (20) ܦ

௝ܹௗ ൒
൫ ௜ܺ௧ ൅ ௜ܺ௧

ଵ ൅ ௜ܺ௧
ଶ ൯

3
 ; ݅׊ א ൫ܥ ת ,௝൯ܥܲ ௙ܨ׊ א ۴, :ݐ׊ ඃݐ

6ൗ ඇ ൌ ݀ and ݀׊ א (21) ܦ

௜ܺ௧ א ሼ0,1ሽ; ݅׊ א ݐ׊ ଶandܥ א ܶܵ (22)

௜ܺ௧
ଵ , ௜ܺ௧

ଶ א ሼ0,1ሽ; ݅׊ א ଷandܥ ݐ׊ א ܶܵ (23)

ܻ௜௜ᇲ א ሼ0,1ሽ; ݅׊, ݅ᇱ א (24) ܥ

௙ܼௗ א ሼ0,1ሽ; ௙ܨ׊ א ۴ and ݀׊ א ܶܵ (25)

௝ܹௗ א ሼ0,1ሽ; ݆׊ א ܲ and ݀׊ א ܶܵ (26)

The objective function (1) is to minimize the total weighted sum of objective functions from their
ideal values. For each ݅ א ଶ, constraint (2) indicates that a time slot of the first (odd) week must beܥ
assigned to the first lecture while constraint (3) imposes the similar restriction for the second lecture
of this course in the second (even) week. Similarly, for the fixed lecture of a course ݅ א ଷ, we haveܥ
constraints (4) and (5) but in order to assign a time slot to the alternative lecture of this course,
constraint (6) is applied. For each ݅ א ݆ and ܥ א ܲ, constraints (7) to (9) indicate that each lecture of

256 Movahedfar, Ranjbar, Salari, and Rostami

a course ݅ where ݅ א in which the professor ݆ is available. On ݐmust be presented in a time slot݆ܥܲ
the basis of the Educational Office's rules, two lectures of a course ݅ א ଷare not allowed to beܥ
presented in the same day or in two consecutive days and such is imposed to the model by using
constraint (10). Since it is not known whether the alternate lecture of such a course is presented in
odd or even weeks,  gets its values from{1,7,13,19,31,37,43,49}. It must be noticed that we have
excluded =25 because there are always two days between the last working day of the first week
and the first working day of the second week. The constraints (11) to (13) indicate pre-assignments.
Constraint (14) shows that the number of parallel lectures in a time slot cannot be greater than the
three available rooms on that time slot. Also, each professor can present at most one lecture in each
time slot where such is imposed by applying constraint (15). The constraint (16) is related to the
overlapping issue in which if a lecture of course ݅ overlaps with a lecture of course ݅ᇱ, then we must
have ܻ௜௜ᇲ ൌ 1. In order to prevent overlapping of courses of a given family, constraint (17) is
applied. The constraints (18) and (19) impose a threshold on the maximum number of lectures in a
day for students and professors, respectively. In order to determine busy days for each family of
students, we need the constraint (20) in which ۀכڿ indicates the smallest integer larger than or equal
to *. Similarly, the constraint (21) determines the busy days of each professor. Finally, constraints
(22) to (26) restrict the variables to be binary.

3. SOLUTION APPROACHES

Due to the high complexity of the timetabling problems especially in large scale instances, heuristic
and metaheuristic algorithms seem to be more efficient than exact solutions approaches. In this
section, we develop two population-based metaheuristic algorithms, i.e. memetic and scatter search,
for which most of their components are identical and they differ mainly in the generation strategy of
new populations. The details concerning the proposed techniques are provided in the following
sections.

3.1. Memetic algorithm

The MA is the genetic algorithm (GA) hybridized with local search ideas (see Neri et al. 2011). The
GAs and MAs are successfully used in solving a set of difficult search and optimization problems,
including the real-world timetabling problems (see, e.g. Paechter et al., 1998, Krasnogor, 2002, and
Alkan and Ozcan, 2003).

Figure 1 represents the pseudo-code of the MA, developed for the FUCTP. At first, an initial
population set POP of size psize is generated using the initial population generation method,
described in section 3.1.2. Next, for each parent chromosome ଵܲ, denoting ith chromosome of POP
and shown as POP(i), we apply the selection phase in which another parent chromosomes ଶܲ will
be selected based on the selection procedure, described in section 3.1.3. In step 5, the two-point
crossover operator, described in section 3.1.4, is applied to parents ଵܲ and ଵܲto generate children ܳଵ
and ܳଶ. Following this step, the mutation operator, described in section 3.1.5, is applied over each
child chromosome by probability of ݌௠௨௧. If generated children are feasible, they are added to the
POP, otherwise; the repairing operator, described in section 3.1.6, is applied over each infeasible
generated child in step 5.

Memetic and scatter search metaheuristic algorithms for a … 257

1.Generate an initial population POP with size of pszie using the initial population generation

method.

2. ݅ ൌ 1.

3. ଵܲ ՚ ܱܲܲሺ݅ሻ.

4. Select ଶܲ from ܱܲܲbased on the selection procedure where ଵܲ ് ଶܲ.

5. Apply the two-point crossover over two parent chromosomes ଵܲand ଶܲto obtain children

chromosomes ܳଵ and ܳଶ. Next, apply the mutation operator to ܳଵ and ܳଶ by probability of

 .௠௨௧݌

6. If ܳଵ and ܳଶare infeasible, apply the repairing operator to infeasible individuals to obtain feasible

chromosomes ܴଵ and ܴଶ. Next, add ܴଵ and ܴଶ to the POP.

7. If ݅ ൏ ݅ let ,݁ݖ݅ݏ݌ ൌ ݅ ൅ 1 and go to step 3.

8. Apply the local search operator to each of chromosomes of POP by probability of ݌௟௦.

9. Keep the best psize of POP's chromosomes and remove the others.

10. If the termination criterion is met, return the best element of POP as the solution and stop; else,

go to step 2.

Figure 1: the pseudo-code of MA developed for the FUCTP

The repaired feasible children, shown as ܴଵ and ܴଶ, are added to the POP. Steps 3 to 6 are repeated
for all chromosomes 1, … , In step 8, the local search operator, described in section 3.1.6, is .݁ݖ݅ݏ݌
applied to each chromosome of POP by probability of ݌௟௦. In step 9, the best psize chromosomes of
POP are kept and the remaining chromosomes are removed. If the termination criterion, considered
as a maximum time limit, is met the best solution of POP is retuned as the best found solution,
otherwise; the algorithm is restarted from step 2.

3.1.1. Solution representation

In the FUCTP, each solution is represented by a two-dimensional chromosome including three rows
and sixty columns where each row indicates a classroom and each column indicates a time slot.
Each cell is either empty or assigned to a lecture of a course for which the corresponding course
number is written inside the cell. An illustrative example is given in Figure 2. In this figure, the
fixed lectures of the three-unit course 9 are presented in time slots 1 and 31 while its alternate
lecture is in time slot 30. Also, the second cell of time slot 1 is allocated to the alternate lecture of
course 25 since it is not repeated in time slot 31.

 1 2 … 30 31 … 60

1 9 9 9

2 25

3

Figure 2: Solution representation

258 Movahedfar, Ranjbar, Salari, and Rostami

3.1.2. The initial population generation method

The initial population is generated based upon a biased random sampling method. Before
description of this procedure, we define the flexibility of a course i as the total number of time slots
to which course i could be assigned. The pseudo-code of the initial population generation method is
provided in Figure 3. At first, the set of available courses C are sorted in non-decreasing order of
their flexibility (we use course numbers as a tie breaker). Starting from the first unassigned course i
in the sorted list, a time slot is selected to assign the fixed lecture of course i. Essentially, assuming
݅ א ௙ and to be presented by professor j, in step 4, for the fixed lecture of course i, all feasible timeܨ
slotsሺܮܨܵܶܣ௜ሻ will be determined. Assuming time slot t is in odd (even) weeks and corresponding
to the constraints (3) and (5), ݐ א ݐ ௜ if and only ifܮܨܵܶܣ ൅ 30 ሺݐ െ 30ሻ א ௜ isܮܨܵܶܣ ௜. Ifܮܨܵܶܣ
empty, we should stop because no feasible solution can be obtained. Otherwise, a time slot ݐ א
 ௜ is selected based on the roulette-wheel rule (see step 5). Roulette-wheel is a biased randomܮܨܵܶܣ
selection method in which the probability selection of each time slot corresponds to its profit value.
After selection a time slot t, the two fixed lectures of course i are assigned to the time slots t and
t+30 (t-30). Also, these two time slots will be inaccessible for professor j and all courses of family
 .௙ (see step 6)ܨ

1. Sort set C based on the non-decreasing order of the courses flexibility degree.

2. i=1.

3. Select course ݅ א .௙ and presented by professor jܨ Assume course i is a member of family .ܥ

4. Determine all available time slots to which the fixed lecture of course icould be allocated

௜ܮܨܵܶܣ If .(௜ܮܨܵܶܣ) ൌ .stop (no feasible solution can be obtained) ,׎

5. Select a time slot ݐ א ௜ based on roulette-wheel rule. If t belongs to the odd (even)ܮܨܵܶܣ

weeks, assign course i to the time slots t and t+30 (t-30).

6. Make time slots t and t+30 (t-30) inaccessible for professor j and all courses of family ܨ௙.

7. Assume time slot t is placed in day d. If the number of assigned lectures to day d for

professor j(family ܨ௙) equals ݈݌௠௔௫ሺ݈ݏ௠௔௫ሻ, make all other times slots of this day

inaccessible for the professor j (family ܨ௙).

8. If ݅ א ௜ܮܣܵܶܣ If .(௜ܮܣܵܶܣ) ଷ, determine time slots for alternate of course iܥ ൌ stop (no ,׎

feasible solution can be obtained). Otherwise, select a time slot ݐᇱ א ௜ܮܣܵܶܣ based on

roulette-wheel rule and assign alternate lecture of course i to that. Similar to steps 6 and 7,

update accessible time slots for professor j and family ܨ௙ and remove course i from set C.

9. If ܥ ൌ .stop (a feasible solution has been obtained), otherwise; let i=i+1 and go to step3 ,׎

Figure 3 Pseudo-code of the initial population generation method

According to the constraints (22) and (23), in step 7 we check to see if the number of assigned
lectures to day d, which includes time slot t, is equal to݈݌௠௔௫ሺ݈ݏ௠௔௫ሻ for professor j (family ܨ௙). If

Memetic and scatter search metaheuristic algorithms for a … 259

such equality holds, other time slots of that day have to be inaccessible for professor j (family ܨ௙).
Step 8 is related to the assignment of the alternate lecture of each course ݅ א ,௜ܮܨܵܶܣ ଷ. Similar toܥ
we define ܮܣܵܶܣ௜ as the set of all feasible time slots for assigning the alternate lecture of course
݅ א ᇱݐ ଷ. A feasible time slotܥ א ௜, based on roulette-wheel rule, is selected to assign courseܮܣܵܶܣ
i. Steps 3 to 8 are repeated until lectures of all courses are assigned to the suitable time slots and a
feasible solution is obtained. As it has been indicated in steps 4 and 8, this procedure does not
necessarily lead to a feasible solution.

3.1.3. The selection procedure

After generation of the initial population, for each parent chromosomes ଵܲ, a partner chromosome
ଶܲ should be selected. The selection procedure is based on roulette-wheel rule (Mitchell, 1998),

described in the previous section. In this stage, the selection chance of each chromosome
corresponds to its objective function. Thus, chromosomes with better objective cost have more
chance to be selected as the partner.

3.1.4. The crossover operator

We choose to work with the well-known two-point crossover to generate the children chromosomes
(ܳଵ and ܳଶ) from parent chromosomes (ଵܲ and ଶܲ)(Mitchell, 1998). For this purpose, two random
integers ݎଵ and ݎଶ are taken from [1,60]. Following this step, all cells corresponding to chromosome
ܳଵ between columns ݎଵ and ݎଶ are copied from chromosome ଵܲ and the other cells are copied from
chromosomes ଶܲ. Chromosome ܳଶ is generated similar to chromosome ܳଵ by exchanging the role
of chromosome ଵܲ and ଶܲ. It is obvious that children chromosomes ܳଵ and ܳଶ may be infeasible
and need to be repaired by the repairing operator, described in section 3.1.6.

3.1.5. The mutation operator

The mutation operator is applied over each generated child chromosome with probability ݌௠௨௧
which is an input parameter. This operator selects two set of cells, each including five genes,
randomly, and exchange each cell of the first set by the corresponding cell in the second set.

3.1.6. The repairing operator

Assume we are given a timetable in which some of the hard constraints are violated. In order to
repair this timetable, we keep in the timetable all courses for which no hard constraint is violated.
Also, for those courses that their lectures number is more than predetermined values, we delete
extra time slots starting from these having less flexibility. In addition, if there is a course for which
the number of fixed lectures is one and the corresponding time slot in the other week is empty, that
time slot is assigned to the second fixed lecture of this course. We remove all other courses for
which at least one hard constraint has been violated. Now, we have a partial timetable and a set of
unassigned courses. To make a feasible solution, the algorithm follows the initial population
generation method to stop with a feasible or infeasible solution but with two differences. The first
difference is that in step 1, in which the set C includes only unassigned courses. The second
difference is related to the steps 5 and 8 of Figure 3 where from the set of feasible time slots, one is
selected randomly based on roulette-wheel rule. In the repairing operator, we define the flexibility
degree for each feasible time slot t as the total number of courses which could be assigned to it.
Based on this definition, course ݅ א is assigned to the time slot t where it has the least flexibility ܥ
among all time slots ݐ א .௜ܮܨܵܶܣ

260 Movahedfar, Ranjbar, Salari, and Rostami

3.1.7. The local search operator

The local search operator is an iterative procedure in which the rescheduling of all courses will be
considered and the best feasible substitution, i.e. the one with the greatest impact on the objective
function, will be implemented. When a course i is selected to be rescheduled, exchanging the time
slots of this course with empty time slots and also with possible time slots of another course ݅ᇱ is
considered while other courses remain unchanged in their original places. Starting from the first
course, this process is repeated for all available courses and the cost and benefit of each substitution
is calculated. Finally, the best feasible move, having the most improvement in the objective
function improvement is selected to be applied on the original timetable. The local search process is
repeated with the new timetable and will be stopped, whenever, there is no improvement in the
objective function by rescheduling all available courses.

3.2. Scatter search algorithm

Scatter search is an evolutionary method that was first introduced by Glover (1977) for integer
programming problems. This algorithm uses strategies in which both diversification and
intensification of solutions are maintained using combination strategies as opposed to probabilistic
learning approaches. For a general introduction to SS, we refer the reader to Laguna and Marti´
(2003). The general framework of the developed SS algorithm is depicted in Figure 4.

1. Construct an initial population POP of size psize using the initial population generation

method.

2. Build the reference set using the RefSet building method.

3. Generate Newsubsets with the subset generation method. Set P=.

while (Newsubsets≠) do

 4. Select the next subset  in NewSubsets.

 5. Apply the crossover operator to  to obtain two new solutions.

 6. Apply the repairing operator over each new generated solution and add the new obtained

solutions to the POP.

 7. Apply the local search operator over each new element of POP by probability of ݌௟௦.

 8. Delete  from Newsubsets.

 end while

9. If one of the termination criteria is met, stop. Otherwise, go to 2.

Figure 4 Scatter search algorithm

In the first step, we generate an initial population POP containing psize solutions using the initial
population generation method, described in Section 3.1.1. In the second step, we construct the
reference set RefSet including RefSet1 and RefSet2 where the former containing b1 solutions with low
objective functions and the latter containing b2 solutions with high diversity (b=b1+b2). The
solutions of RefSet1 and RefSet2 are called reference solutions. Next, the algorithm generates the
NewSubsets, each of them containing two reference solutions. The Reference set building and
subset generation methods are described in section 3.2.1. Subsequently, the two solutions of each

Memetic and scatter search metaheuristic algorithms for a … 261

subset are combined, and new solutions are generated using the uniform crossover operator,
described in section 3.2.2. Since generated solutions in step 5 may not be feasible, the repairing
operator, described in section 3.1.5, is applied over each new generated infeasible solution. In order
to improve the new generated solutions, we perform a local search around each of them with local
search probability pls. Steps 2 to 8 are repeated until the termination criterion, a given time limit, is
reached.

3.2.1. Reference set building and subset generation methods

The set of reference solutions (RefSet), includes both high quality and diverse solutions. The
construction of high-quality solutions, RefSet1, starts with the selection of the solution in POP with
the best objective functions (ties are broken randomly). This solution is added to RefSet1 and
removed from POP. Following this step, the algorithm proceeds by selecting from POP, the
solution with the best objective function (ch) and ܦ௠௜௡ሺ݄ܿሻ ൒ ௠௜௡ሺ݄ܿሻ is theܦ ଵ, whereݐݏ݅݀_݄ݐ
minimum distances of solution ch from those currently in RefSet1 and ݐݏ݅݀_݄ݐଵis a threshold
distance. Essentially, the distance between two solutions is equal as the total number of identical
lectures in different time slots divided by 60. This process is repeated until b1solutions are selected
for RefSet1. To construct diverse solutions (RefSet2), we follow the same strategy as that already
explained for solutions 2 to ܾଵ of RefSet1, but withݐݏ݅݀_݄ݐଶ ൐ ௠௜௡ሺ݄ܿሻ as theܦ ଵ, and withݐݏ݅݀_݄ݐ
minimum distance to the solutions in both RefSet1 and RefSet2. Therefore, both RefSet1 and RefSet2
contain diversified solutions, with more emphasis on diversification in RefSet2. When no qualified
solution can be found in the population, we populate RefSet with randomly generated solutions by
following the initialization procedure, explained in Section 3.1.2. In this case, we do not check the
minimum threshold distance condition for the generated solutions.

Upon constructing the RefSet, the algorithm proceeds by generating the NewSubsets. Essentially,
NewSubsets contains all possible selection of two solutions belonging to RefSet1 or one solution
from RefSet1 and the other from RefSet2. Assuming |ܴ݂݁ܵ݁ݐଵ| ൌ ܾଵ and |ܴ݂݁ܵ݁ݐଶ| ൌ ܾଶ, then

|ݏݐ݁ݏܾݑܵݓ݁ܰ| ൌ
௕భሺ௕భିଵሻ

ଶ
൅ ܾଵܾଶ.

3.2.2. Uniform crossover

In this crossover operator, each cell of the first new solution is randomly selected either from its
father or from its mother corresponding cell. For generation of the second new solutions, we use the
first new solution but with exchanging the role of parents.

4. COMPUTATIONAL EXPERIMENTS

The MA and SS algorithms have been coded in C using Visual Studio 2010 while all the
experiments were run on a computer with Intel (R) Core ™2 Duo, 2.93 GHz processor, 3.21 GB of
internal memory and a 32-bit operating system, equipped with Windows XP. CPLEX 12.3 was used
for solving the developed integer linear programming model. As the test problem, we consider a
real test problem including the set of courses of B.Sc. and M.Sc. programs of Industrial Engineering
at Ferdowsi University of Mashhad. In our test problem, there are 36 courses including 6 courses of
M.Sc. program and 30 courses of B.Sc. program. Totally, 25 of undergraduate courses belong to the
set ܥଷ while the remaining 11 courses belong to the set ܥଶ. Moreover, all courses are grouped into
four families and there is no course to be pre-assigned to specified timeslots. There are 18
professors to present courses including 8 faculty members and 10 adjunct professors.

In addition of real test problem, we generated a set of 21 random instances to evaluate the efficiency

262 Movahedfar, Ranjbar, Salari, and Rostami

of three different solution approaches.

4.1. Setting of parameters

4.1.1. Test problems

In this section we explain the way of setting parameters involved in the design of the test problems,
i.e. ݌ ௜݂௧, ܿ݋௜௜ᇲ and ݓ௞. To obtain values corresponding to ݌ ௜݂௧, a simple questionnaire was designed
and random sample of students and also all faculty members are asked to determine ideal values for
݌ ௜݂௧.

We divide all courses into four groups in terms of profitability in different time slots. For example,
the first group includes harder courses which need more concentration for both students and
professors. Thus, it is unfavorable to assign this set of courses to time slots such as noon time that
either students or professors are tired. The profit values of four groups of courses in different time
slots are shown in Table 3 in which group 4 is related to the courses of the M.Sc. program.

Table 3: Profit values of courses in different time slots

Group Time slot 8-10 10-12 12-14 14-16 16-18 18-20

1 9 10 4 5 7 6

2 7 8 3 4 6 5

3 5 5 2 5 5 3

4 5 5 2 3 6 6

In order to calculate overlapping cost for each two different courses ݅ and ݅ᇱ, we first need to know
the earliest and the last semesters in which a courses i can be registered by a student, shown by ݁ݏ௜
and ݈ݏ௜, respectively. These two values are determined based on the number of predecessors and
successors of each course in the corresponding program. Letting ܿݏ௜௜ᇲ to represent the number of
common semesters of two intervals ሾ݁ݏ௜, ௜ᇲݏ௜ሿ and ሾ݁ݏ݈ , ௜௜ᇲ isܿ݋ ௜ᇲሿ, then overlapping costݏ݈
calculated as ܿ݋௜௜ᇲ ൌ ௜௜ᇲݏܿ ൫ሺ݈ݏ௜ െ ௜ݏ݁ ൅ 1ሻ ൅ ሺ݈ݏ௜ᇲ െ ௜ᇲݏ݁ ൅ 1ሻ൯⁄ .

In order to determine four weights ݓଵ to ݓସ, we used the well-known Analytical Hierarchy Process
(AHP) method (Triantaphyllou, 2000). For this purpose, we first considered a 44 matrix of pair-
wise comparison in which cell ݇ and ݇ᇱshow the relative preference of objective functions
݇ and ݇ᇱ, respectively. For objective functions ଵ݂ to ସ݂, we considered pair-wise comparison matrix,
shown in Table 4. Then, using the AHP, the weights ݓଵ to ݓସ are extracted as follows: ݓଵ ൌ 0.49,
ଶݓ ൌ 0.1 , ଷݓ ൌ 0.25 and ݓସ ൌ 0.16 .

Table 4: Pair-wise comparison of different objective functions

 ଵ݂ ଶ݂ ଷ݂ ସ݂

ଵ݂ 1 5 2 3

ଶ݂
1
5

 1
2
5

3
5

ଷ݂
1
2

5
2

 1
3
2

ସ݂
1
3

5
3

2
3

 1

Memetic and scatter search metaheuristic algorithms for a … 263

In addition of the real test problem, we generated 21 other theoretical test problems which differ in
the number of time slots that professors are available. We define the stretchability degree (SD) of a
test problem as the summation of available time slots for all professors divided by the maximum
number of available time slots (60*m). We considered three values SD=1, 0.75 and 0.5 and
generated 10 test instances corresponding to each of values SD= 0.75 and 0.5 in which available
time slots of professors are assigned to set of time slots randomly such that a feasible timetable
could be obtained. Since SD=1 means that all professors are available in all time slots, only one test
problem could be considered for this case. Also, it should be noticed that for the real test problem
we have SD= 0.96.

It should be mentioned that four parameters ݓଵ to ݓସ are determined randomly for theoretical test
instances such that 0 ൑ ௜ݓ ൑ 1; ݅ ൌ 1, 2, 3, 4 and ∑ ௜ݓ

ସ
௜ୀଵ ൌ 1. The values of weights for theoretical

test problems are reported in Table 5.

Table 5: The weight values of theoretical test problems
SD Test problem# w1 w2 w3 w4
1 1 0.63 0.08 0.22 0.07

0.75

1 0.20 0.45 0.30 0.05
2 0.21 0.10 0.24 0.45
3 0.34 0.27 0.10 0.29
4 0.21 0.13 0.50 0.16
5 0.13 0.25 0.26 0.36
6 0.57 0.16 0.15 0.12
7 0.16 0.14 0.65 0.05
8 0.08 0.48 0.30 0.14
9 0.12 0.43 0.15 0.30

10 0.33 0.12 0.27 0.28

0.5

1 0.42 0.37 0.07 0.14
2 0.30 0.10 0.41 0.19
3 0.24 0.18 0.33 0.25
4 0.30 0.30 0.18 0.22
5 0.06 0.29 0.22 0.43
6 0.29 0.24 0.25 0.22
7 0.11 0.12 0.66 0.11
8 0.15 0.23 0.25 0.37
9 0.20 0.43 0.17 0.20

10 0.14 0.07 0.40 0.39

4.1.2. Setting of the MA parameters

In order to improve the performance of the MA, we set the values of parameters psize, ݌௠௨௧ and ݌௟௦
using a design of experiments. We considered three values for each parameter based on the given
time limits (TL), i.e. TL=10,30,60,180,300,600,900,1800 and 3600, but the best values of
parameters, reported in Table 6, are strictly dependent to the given time limits.

264 Movahedfar, Ranjbar, Salari, and Rostami

Table 6: Setting of the MA parameters

TL(Seconds) psize ݌௟௦ ݌௠௨௧

10 50 0.05 0.01

30, 60, 180 75 0.05 0.01

300, 600, 900, 1800, 3600 500 0.05 0.01

4.1.3. Setting of the SS parameters

Similar to the previous section, in this section the obtained values for parameters ܾଵ and ܾଶ are
reported in Table 7.

Table 7: Setting of the SS parameters for the real test problem

TL(Seconds) ܾଵ ܾଶ ݌௟௦ ݐݏ݅݀_݄ݐଵ ݐݏ݅݀_݄ݐଶ

10 3 7 0.05 0.1 0.6

30 5 10 0.05 0.1 0.6

60, 180, 300, 600, 900, 1800, 3600 10 20 0.05 0.1 0.6

4.2. Comparative Results with time limits

4.2.1. Comparative results for the real test problem

Based upon the results acquired from the implementation of the linear integer model using the
CPLEX over the data of the real test problem, we obtained the values of ௞݂

ା as ଵ݂
ା ൌ 736, ଶ݂

ା ൌ
3.54, ଷ݂

ା ൌ 51 and ସ݂
ା ൌ 27. Also, we obtained vales of ௞݂

ି using a long run of MS and SS
algorithm as ଵ݂

ି ൌ 413, ଶ݂
ି ൌ 257.63, ଷ݂

ି ൌ 95 and ସ݂
ି ൌ 49. Figure 5 shows the objective

function’s improvement of different solution methods over the time. At the beginning, CPLEX has
the worst objective cost but it has been improved quickly. Although CPLEX cannot find a better
solution than SS during 3600 seconds of CPU time, but it surpasses the MA after 600 seconds of
CPU time. Furthermore, we conclude that SS performs better than MA in all time limits and also,
the best solution has been obtained by the SS.

Memetic and scatter search metaheuristic algorithms for a … 265

Figure 5: Comparative results for the real test problem

4.2.2. Comparative results for the theoretical test problems

Similar to the previous section, we first calculate the values of ௞݂
ା and ௞݂

ି for all ݇ ൌ 1,2,3 and 4
which are reported in Table 8.

Table 8: The values of ௜݂
ା and ௜݂

ି

SD
Test

problem#
100 1 736 395 1.067 267.62 51 97 27 49

0.75

1 732 397 1.067 250.27 51 97 27 49
2 734 395 1.067 246.86 51 97 27 49
3 736 399 1.067 251.08 51 96 27 49
4 718 397 1.067 265.08 56 94 28 49
5 731 397 1.067 257.97 51 97 27 49
6 716 397 1.067 246.55 55 91 27 49
7 728 405 3.067 240.37 56 91 28 49
8 734 395 1.067 251.11 52 97 27 49
9 735 395 1.067 258.86 51 96 27 49

10 717 411 3.428 234.963 52 81 27 49

0.5

1 723 401 1.067 252.64 52 97 27 49
2 729 401 1.067 229.49 56 97 29 49
3 717 403 1.142 236.42 59 91 28 49
4 717 395 1.067 246.18 55 97 27 49
5 705 395 1.067 246.48 54 94 27 49
6 720 395 1.067 232.49 52 94 27 49
7 725 395 1.067 241.29 52 96 27 49
8 729 395 1.067 242.11 51 97 27 49
9 717 411 3.428 213.523 52 82 27 49

10 729 395 1.067 235.10 52 94 27 49

Figures 6, 7 and 8 indicate over different time limits, how the objective function is being improved

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 500 1000 1500 2000 2500 3000 3500

CPLEX

MA

SS

time (s)

O
b
je
ct
iv
e
Fu
n
ct
io
n

266 Movahedfar, Ranjbar, Salari, and Rostami

by different solutions approaches. In Figure 6, the improvement trends for all three solutions
algorithms are almost similar to Figure 5 but this time, the CPLEX surpasses the MA after 900
seconds. Also, the best solution has been found by the SS.

Figure 6: Comparative results for the test problem with SD=1

Since for SD=0.75 and 0.5, we have 10 test problems, the average of objective functions over 10
test instances has been reported in Figures 7 and 8, respectively.

Figure 7: Comparative results for the test problems with SD=0.75

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 500 1000 1500 2000 2500 3000 3500

CPLEX

MA

SS

time (s)

O
b
je
ct
iv
e
Fu
n
ct
io
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 500 1000 1500 2000 2500 3000 3500

CPLEX

MA

SS

time (s)

O
b
je
ct
iv
e
Fu
n
ct
io
n

Memetic and scatter search metaheuristic algorithms for a … 267

Figure 8: Comparative results for the test problems with SD=0.5

Figure 7 indicates that the SS algorithm has the best performance among three proposed solution
approaches but Figure 8 reveals that CPLEX has surpassed the MA and SS algorithms after end of
maximum time limit. By comparing the trend of improvements in three previous figures, we
conclude that for harder test instance (higher value of SD) and for shorter time limits, the MA and
SS have better performance that CPLEX but when the SD is decreased or the given time limit is
increased, CPLEX is able to find better solutions that MA and SS.

Tables 9 and 10 report the attained values for different objective functions over test problems with
SD=0.75 by the MA and SS, respectively. These results have been obtained by the time limits
TL=300 seconds.

Table 9: Objective functions values obtained by MA over test
problems with SD=0.75 in 300 seconds

f1 f2 f3 f4 f
634 12.30 54 40 0.13
650 16.15 60 29 0.15
686 46.71 65 29 0.16
640 43.62 56 35 0.13
604 40.46 55 30 0.16
682 51.68 61 36 0.17
622 45.53 57 34 0.11
612 12.37 56 35 0.13
587 21.66 58 29 0.14
661 53.21 55 33 0.20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000 3500

CPLEX

MA

SS

time (s)

O
b
je
ct
iv
e
Fu
n
ct
io
n

268 Movahedfar, Ranjbar, Salari, and Rostami

Table 10 : objective functions values obtained by SS over test
problems with SD=0.75 in 300 seconds

f1 f2 f3 f4 f
635 11.25 54 40 0.13
658 39.64 61 28 0.14
684 32.22 65 30 0.16
664 45.20 57 39 0.15
621 28.99 56 27 0.10
686 75.86 56 40 0.19
638 30.22 56 34 0.07
615 8.40 57 32 0.11
591 10.30 63 27 0.11
636 50.99 54 30 0.17

4.2.3. Statistical comparisons

In order to have a more meticulous comparison of the three developed solution approaches, we have
developed a statistical comparisons based on randomized complete block designs (Montgomery
2012). In particular, for each value of SD, we perform a statistical test in which different solution
approaches and time limits are considered as treatments and blocks, respectively. For the real test
problem and the randomly generated instances with SD=1, we have only one replication (one test
problem) while for random instances with SD=0.5 and 0.75, totally 20 replications corresponding to
20 test problems, are available. We denote as "rp" the number of replications. In all of the four
aforementioned statistical tests, the null hypothesis is ܪ଴: ݂CPLEX ൌ ݂MA ൌ ݂SS and the alternate
hypothesis is ܪଵ: ,in which ݂CPLEX ݁ݏ݅ݓݎ݄݁ݐܱ ݂MA and ݂SS indicate the average performance of
CPLEX, MA and SS over the corresponding instances, respectively. Table 11 reports the analysis of
variance (ANOVA) in which ்ܵܵ, ்ܵܵ௥, ܵܵ௕ and ܵܵா denote, respectively, the total corrected sum
of squares, sum of squares of the differences between the treatments averages and the grand
average, sum of squares of the difference between the blocks average and the grand average and
sum of squares errors, obtained by subtraction. In other words, we have ்ܵܵ ൌ ்ܵܵ௥ ൅ ܵܵ௕ ൅ ܵܵா.
Also, ்ܵܯ௥, ܵܵ௕and ܵܵா denote the mean squares of treatments, blocks and errors, respectively.

The test statistic corresponding to ܪ଴ and ܪଵ is ܨ଴ ൌ
ெௌ೅ೝ

ெௌಶ
 which has F-distribution.

The ANOVA corresponding to the real test problem is shown in Table 12 for which the

Table 11: ANOVA table

Source of deviation Sum of squares Degree of freedom Mean squares ܨ଴

Treatments (algorithms) ்ܵܵ௥ 3-1=2 ்ܵܯ௥ ൌ
்ܵܵ௥

2

௥்ܵܯ

ாܵܯ

Blocks (time limits) ܵܵ௕ 9-1=8 ܵܯ௕ ൌ
ܵܵ௕

8

Error ܵܵா 27rp-11 ܵܯா ൌ
ܵܵா

݌ݎ27 െ 11

Total ்ܵܵ 27rp-1

P-value is around 0.03. Also, if we use the paired t-tests for pair comparisons of the three solution
approaches, for statistical tests ܪ଴: ݂஼௉௅ா௑ ൌ ݂ெ஺, ܪ଴: ݂஼௉௅ா௑ ൌ ݂ௌௌ and ܪ଴: ݂ௌௌ ൌ ݂ெ஺ the
corresponding P-values are 0.048, 0.026 and 0.008, respectively. These results indicate that for the

Memetic and scatter search metaheuristic algorithms for a … 269

real test problem, the difference between algorithms performance is not significant especially for
two algorithms MA and SS.

Table 12: ANOVA corresponding to the real test problem

Source of deviation Sum of squares Degree of freedom Mean squares ܨ଴

Treatments (algorithms) 0.028 3-1=2 0.014 4.39

Blocks (time limits) 0.056 9-1=8 0.007

Error 0.051 27-11=16 0.003

Total 0.135 27-1=26

Similar to the real test problem, we develop Table 12 for the ANOVA of the theoretical test with
SD=1 in which the P-value is again around 0.03. Also, If we use the paired t-tests for pair
comparisons of the three solution approaches, for statistical tests ܪ଴: ݂஼௉௅ா௑ ൌ ݂ெ஺, ܪ଴: ݂஼௉௅ா௑ ൌ
݂ௌௌ and ܪ଴: ݂ௌௌ ൌ ݂ெ஺ the corresponding P-values are 0.047, 0.023 and 0.04, respectively.

Table 13: ANOVA corresponding to the test problem with SD=1

Source of deviation Sum of squares Degree of freedom Mean squares ܨ଴

Treatments (algorithms) 0.024 3-1=2 0.012 4.49

Blocks (time limits) 0.033 9-1=8 0.004

Error 0.043 27-11=16 0.0026

Total 0.1 27-1=26

Tables 14 and 15 represent the ANOVA for test instances with SD=0.75 and 0.5, respectively. Since
number of replications is 10, the degrees of freedoms are changed. Table 14 indicates that the
performance of the three developed algorithms are significantly different such that the P-value of
this statistical test is approximately zero. Thus, we establish three paired t-tests to compare more
exactly the solution approaches. For test problems with SD=0.75, the P-values of statistical tests
:଴ܪ ݂஼௉௅ா௑ ൌ ݂ெ஺, ܪ଴: ݂஼௉௅ா௑ ൌ ݂ௌௌ and ܪ଴: ݂ௌௌ ൌ ݂ெ஺ are all approximately zero which
indicates they have significantly different performance.

Table 14: ANOVA corresponding to the test problem with SD=0.75

Source of deviation Sum of squares Degree of freedom Mean squares ܨ଴

Treatments (algorithms) 0.217 3-1=2 0.108 30

Blocks (time limits) 0.621 9-1=8 0.078

Error 0.93 259 0.0036

Total 1.768 269

Analysis of the results of Table 15 is exactly similar to our analysis over the results of Table 13 and
we conclude exactly the same P-values and conclusions.

Finally, we conclude that performance of the three solutions approaches (i.e. CPLEX, MA and SS)
are not significantly different for easier test problems (test problems with higher value of SD) but
they show different performance on harder instances in which SS has the best performance and the

270 Movahedfar, Ranjbar, Salari, and Rostami

CPLEX has the worst performance.

Table 14: ANOVA corresponding to the test problem with SD=0.5

Source of deviation Sum of Squares Degree of Freedom Mean Squares ܨ଴

Treatments (algorithms) 0.045 3-1=2 0.0225 14.06

Blocks (Time limits) 0.287 9-1=8 0.036

Error 0.427 259 0.0016

Total 0.759 269

5. SUMMARY AND CONCLUSIONS

In this paper, we considered a case study of the fortnightly university course timetabling problem.
We developed an integer linear programming model in which four different objective functions are
combined into a single objective using the ܮ௉-metric method. We solved the developed model using
CPLEX 12.3. Moreover, we developed a MA and a SS to solve the problem. For harder test
problems and in shorter time limits, the metaheuristic algorithms have better performance than the
CPLEX while SS outperforms always the MA. We showed this conclusion by the statistical tests as
well. By decreasing the stretchability degree or complexity of test problems and in larger time
limits, the CPLEX is able to surpass the developed metaheuristic algorithms. Since exact methods
are unable to solve such a hard problem, developing heuristic or other metaheuristic solution
techniques can be interesting research topics.

REFERENCES:

[1] Alkan A, Ozcan E (2003), Memetic algorithms for timetabling; Proc. of IEEE Congress on
Evolutionary Computation; 1796–1802.

[2] Bagchi T P (1999), Multi-objective scheduling by genetic algorithms; Kluwer Academic Publishers.

[3] Bardadym V A (1996), Computer-aided school and university timetabling: The new wave. In E. Burke
& P. Ross (Eds.), Practice and theory of automated timetabling; Lecture notes in computer science
1153; 22–45, Berlin: Springer.

[4] Belton V, Stewart T J (2002), Multiple criteria decision analysis - An Integrated Approach; Kluwer
Academic Publishers.

[5] Boland N, Hughes B D, Merlot L T G, Stuckey P J (2008), New integer linear programming
approaches for course timetabling; Computers & Operations Research 35(7); 2209-2233.

[6] Burke E K, Eckersley A J, McCollum B, Petrovic S, Qu R (2010), Hybrid variable neighborhood
approaches to university exam timetabling; European Journal of Operational Research 206(1); 46-53.

[7] Brucker P, Drexl A, Mohring R, Neumann K, Pesch E (1999), Resource-constrained project
scheduling: notation, classification, models and, methods; European Journal of Operational Research
112; 3-41.

[8] Burke E K, McCollum B, Meisels A, Petrovic S, Qu R (2007), A graph-based hyper heuristic for
timetabling problems; European Journal of Operational Research 176(1); 177–192.

[9] Ceschia S, Di Gaspero L, Schaef A (2012), Design, engineering, and experimental analysis of a
simulated annealing approach to the post-enrolment course timetabling problem; Computers &
Operations Research 39(7); 1615-1624.

Memetic and scatter search metaheuristic algorithms for a … 271

[10] Daskalaki S, Birbas T (2005), Efficient solutions for a university timetabling problem through integer
programming; European Journal of Operational Research 160(1); 106-120.

[11] Daskalaki S, Birbas T, Housos E (2004), An integer programming formulation for a case study in
university timetabling; European Journal of Operational Research 153(1); 117-135.

[12] Ehrgott M, Gandibleux X (2000), A survey and annotated bibliography of multi-objective
combinatorial optimization; OR Spectrum 22(4); 425-460.

[13] Glover F (1977), Heuristics for integer programming using surrogate constraints; Decision Sciences 8;
156-166.

[14] Holland J H (1975), Adaptation in natural and artificial systems; Univ. Mich. Press.

[15] Ishibuchi H, Yoshida T, Murata T (2002), Selection of initial solutions for local search in multi-
objective genetic local search; Proceedings of the 2002 Congress on Evolutionary Computation (CEC
2002), IEEE Press; 950-955.

[16] Jones D F, Mirrazavi S K, Tamiz M (2001), Multi-objective meta-heuristics: an overview of the current
state-of-the-art; European Journal of Operational Research 137(1); 1-9.

[17] Krasnogor N (2002), Studies on the theory and design space of memetic algorithms. Ph.D. Thesis;
University of the West of England, Bristol, United Kingdom.

[18] Laguna M, Marti´ R (2003), Scatter search—methodology and implementations in C; Kluwer
Academic Publishers, Boston.

[19] Lewis R (2008), A survey of metaheuristic-based techniques for university timetabling problems. OR
Spectrum 30 (1); 167–190.

[20] Lü Z, Hao J K (2010), Adaptive Tabu search for course timetabling; European Journal of Operational
Research 200(1); 235-244.

[21] Mirhassani S A (2006), A computational approach to enhancing course timetabling with integer
programming; Applied Mathematics and Computation 175(1); 814-822.

[22] Mitchell M (1998), An introduction to genetic algorithms (Complex Adaptive Systems); A Bradford
Book.

[23] Montgomery D C (2012), Design and analysis of experiments; Springer.

[24] Neri F, Cotta C, Moscato P (2011), Handbook of memetic algorithms; Springer.

[25] Paechter B, Rankin R C, Cumming A, Fogarty T C (1998), Timetabling the classes of an entire
university with an evolutionary algorithm; Proc. of Parallel Problem Solving from Nature (PPSN V);
865– 874.

[26] Pinedo M (2008), Scheduling, theory, algorithms, and systems, 3nd Edition; Prentice-Hall.

[27] Rosenthal R E (1985), Principles of multi-objective optimization; Decision Sciences 16; 133-152.

[28] Shiau D F (2011), A hybrid particle swarm optimization for a university course scheduling problem
with flexible preferences; Expert Systems with Applications 38(1); 235-248.

[29] Tan K C, Lee T H, Khor E F (2002), Evolutionary algorithms for multi-objective optimization:
performance assessments and comparisons; Artificial Intelligence Review 17; 253-290.

[30] Triantaphyllou E (2000), Multi-criteria decision making methods: A comparative Study; Springer.

[31] T’kindt V, Billaut J C (2002), Multicriteria scheduling: Theory, Models and Algorithms; Springer.

[32] Wang Y Z (2003), Using genetic algorithm methods to solve course scheduling problems; Expert
Systems with Applications 25(1); 39–50.

