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The axisymmetric bending and stretching of circular and annular functionally graded plates with variable thicknesses under combined
thermal-mechanical loading and various boundary conditions are investigated. The mechanical and thermal properties of functionally
graded material (FGM) are assumed to vary continuously throughout the thickness of a plate in accordance with a simple power law
of volume fraction of constituent material. Based on the first-order shear deformation theory, the governing equilibrium equations
are derived, and the dynamic relaxation (DR) method is employed to solve these equations. Additionally, the effects of the thickness
variation, temperature gradient, material constant n, and boundary conditions are discussed.
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1. Introduction

To eliminate interface problems and mitigate thermal stress
concentrations in conventional laminated composite materi-
als, functionally graded materials (FGMs) were first designed
and introduced by a group of Japanese scientists in 1984 as
thermal barrier materials for aerospace structural applications
and fusion reactors [1]. In general, FGMs are microscopically
inhomogeneous composites that are typically made from a
mixture of metals and ceramics. This mixture can be achieved
by gradually varying the composition of the constituent ma-
terials (typically only in the direction of thickness). FGMs
have received a significant amount of attention in engineer-
ing applications, especially in high temperature environments,
such as nuclear reactors, space planes, and chemical plants,
due to their ability to withstand a high temperature gradient
while maintaining structural integrity. Therefore, it is impor-
tant to account for combined thermal-mechanical loading for
the accurate, reliable analysis and design of FGM plates.

Based on the first-order shear deformation theory (FSDT),
Praveen and Reddy [2] investigated the static and dynamic re-
sponses of a functionally graded (FG) plate under mechan-
ical and thermal loads by using a finite element method.
Based on the FSDT, the dynamic thermo-elastic response of
functionally graded cylinders and plates was considered by
Reddy and Chin [3]. Ferreira et al. [4] analyzed static defor-
mations of functionally graded plates by using the collocation
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method, the radial basis functions, and a higher-order shear
deformation theory. Ootao and Tanigawa [5] conducted an
approximate analysis of three-dimensional thermal stresses
in an FG rectangular plate. Reddy and Cheng [6] investi-
gated three-dimensional thermo-mechanical deformations of
a functionally graded rectangular plate. In their study, distri-
butions of the temperature, displacements, and stresses in the
plate were calculated for different volume fractions of ceramic
constituent. The pseudo-dynamic thermoelastic response of
functionally graded ceramic-metal cylinders was studied by
Praveen et al. [7]. Using a perturbation approach, Obata and
Noda [8] investigated thermal stresses in an FG hollow sphere
and an FG hollow circular cylinder.

Although, extensive studies have been performed with re-
spect to the thermal bending of functionally graded rectangu-
lar plates, thermoelastic analyses of circular and annular FGM
plates and disks have received less attention. Based on the
classical nonlinear von Karman plate theory, Ma and Wang
[9] investigated the axisymmetric large deflection bending of
a functionally graded circular plate under mechanical, ther-
mal, and combined thermal–mechanical loading; they used
the shooting method to numerically solve the equations. Based
on FSDT, Bayat et al. [10] studied the thermoelastic analysis
of functionally graded rotating disks with uniform and vari-
able thicknesses under various boundary conditions. Bakhshi
et al. [11] studied the dynamic thermoelastic behavior of an
annular disk based on classical theory; in that study, a suit-
able transfinite element method was used to provide results
in the time domain. There are also a small number of closed-
form solutions for the elastic analysis of plates with variable
thicknesses. Ohga and Shigematsu [12] used a combination
of boundary-element and transfer-matrix methods to solve
variable thickness rectangular plates. That method provided

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
7:

33
 2

2 
M

ar
ch

 2
01

4 



2 M. E. Golmakani and M. Kadkhodayan

a solution for only a special case of variable thickness rectan-
gular plates. Fertis and Mijatov [13] developed a convenient,
general method for the analysis of variable thickness plates
with various boundary conditions and loading by using equiv-
alent flat plates. Zenkour [14] presented an exact solution for
the bending of thin rectangular plates with uniform, linear,
and quadratic thickness variations. Xu and Zhou [15] pre-
sented a three-dimensional elasticity solution for rectangular
FGM plates with variable thicknesses. To the knowledge of
the authors, there is no literature regarding the thermoelastic
response of a circular and annular functionally graded plate
with uniform and variable thicknesses, that is, based on the
FSDT.

In this study, an axisymmetric bending and stretching anal-
ysis of a circular and annular functionally graded plate under
mechanical and combined thermal–mechanical loadings was
investigated. The material properties of constituent materials
in the FGM plate, except for Poisson’s ratio (which is con-
stant), were assumed to be graded in the thickness direction
according to a power law distribution of the material compo-
sition. The plate was subjected to uniform pressure loading
under various boundary conditions (simply supported and
clamped). Due to the remarkable use of plates with variable
thicknesses in engineering structures, four thickness profiles
(constant, concave, convex, and linear) were employed to con-
sider the effect of plate thickness. The dynamic relaxation
(DR) method and a finite difference discretization technique
were employed to solve the plate field equations. Validation
of the DR solutions was performed by comparing the results
to the exact solution reported by Reddy et al. [16]. Numerical
results are presented to show the parametric effect of the ma-
terial properties, plate thickness profile, boundary conditions,
mechanical loading; and temperature fields on the different
response characteristics of the FGM plates.

2. Theoretical Formulation

2.1. FGM Modeling

A functionally graded circular (or annular) plate with a thick-
ness, inner radius, and outer radius of h, ri , and r0, respectively,
was considered, as shown in Figure 1. The FGM plate was
subjected to the transverse loading q and the thermal loading
�T = T(z). Axial symmetry in the geometry and loading was
assumed, and cylindrical coordinates (r, �, z) were used. An
FGM is typically made from a mixture of ceramics and metal
with a continuously varying volume fraction throughout the
thickness of the plate. Some models in the literature express
the variation in the mechanical and thermal properties in the
FGMs. The most commonly used model is the power law dis-
tribution of the volume fraction. According to this model, the
material property gradation throughout the thickness of the
plate p can be expressed as [3, 9]:

P(z) = (Pm − Pc)Vm + Pc, (1)

where the subscripts m and c denote the metallic and ceramic
constituents, respectively. The volume fraction of the metal Vm
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Fig. 1. Thickness profiles of the FGM plate: (a) concave, (b) linear,
and (c) convex.

and ceramic Vc corresponding to the power law are assumed
as: ⎧⎨

⎩ Vm =
(

h − 2z
2h

)n

,

Vc = 1 − Vm,

(2)

where z is the thickness coordinate (−h/2 ≤ z ≤ h/2) and n is
a material constant. According to this distribution, the bot-
tom surface (z = −h/2) of the functionally graded plate is
pure metal, and the top surface (z = h/2) is pure ceramic.
Then different volume fractions of metal can be obtained for
different values of n. This study assumes Poisson’s ratio v to
be constant and the elastic modulus E, thermal conductivity
K , and thermal coefficient of expansion � to vary according
to the gradation relation in Eq. (1). By substituting Eq. (1)
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Thermoelastic Analysis of FGM Plates 3

into Eq. (2), the material properties of the FGM plate are
determined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(z) = (Em − Ec)
(

h − 2z
2h

)n

+ Ec,

�(z) = (�m − �c)
(

h − 2z
2h

)n

+ �c,

K(z) = (Km − Kc)
(

h − 2z
2h

)n

+ Kc,

v(z) = v,

(3)

where h changes along the radial direction if a plate with
nonuniform thickness is considered. The thickness profile h of
the plate is assumed to vary radially according to:

h(r ) = ho

(
1 − q

(
r
ro

)m1
)

, (4)

where q and m1 are geometric parameters, such that 0 ≤ q <

1, m1 > 0 , and ho is the thickness at the center of the plate.
A disk with uniform thickness can be obtained from Eq. (4)
by setting q = 0, and a linearly decreasing thickness can be
obtained for q �= 0 and m1 = 1. The profile is concave if m1 <

1, or the profile is convex if m1 > 1. Different forms of the
thickness profiles for various values of q and m1 are shown in
Figure 1.

For thermal loading problems, it is assumed that the tem-
perature variation is only along the thickness direction. The
one-dimensional heat transfer equation for the z-direction is
given by:

− d
dz

(
K(Z)

dT(z)
dz

)
= 0, (5)

with the boundary conditions T(h/2) = Tc and T(−h/2) =
Tm, and a stress-free state is assumed to exist at T0 = 0◦C.
Here, the thermal conductivity coefficient K(z) is in accor-
dance with the power law relationship in Eq. (3). The temper-
ature difference T(z) can be obtained from Eq. (5) as [9]:

T(z) = Tm + (Tc − Tm)
∫ z

−h

dz
K(z)

/∫ h

−h

dz
K(z)

. (6)

2.2. Displacement Field and Strains

The FSDT is a simple theory that accounts for nonzero trans-
verse shear strain. In FSDT, the transverse shear strain is as-
sumed to be constant with respect to the thickness coordinate.
Shear correction factors are used to correct the inconsistency
among the actual transverse shear-force distributions and the
computed distributions using the kinematic relationships of
the FSDT. This theory is based on the following displacement

field [17]:

{
ur (r, z) = u0(r ) + z� (r ),

uz(r, z) = w(r ),
(7)

where ur and u0 are displacements along the coordinate r .
Also, uz and w are displacements along the coordinate z. The
term � denotes the rotation of a transverse normal at z = 0 of
the deformed line that was straight in the un-deformed plate.
By substituting Eq. (7) into the linear strain-displacement re-
lationships of elasticity, the strain components are obtained
as [18]: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

εr = ∂ur

∂r
= du0

dr
+ z

d�

dr
,

ε� = ur

r
= u0

r
+ z

�

r
,

�rz = ∂ur

∂z
+ ∂uz

∂r
= � + dw

dr
.

(8)

2.3. Constitutive Relations

According to Hooke’s law, for a plate, the stress-strain rela-
tionships for the FGMs are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�r = E(z)
(1 − �2)

[εr + �ε� − (1 + �)�T(z)],

�� = E(z)
(1 − �2)

[ε� + �εr − (1 + �)�T(z)],

�rz = E(z)
2(1 + �)

εrz,

(9)

where � is Poisson’s ratio. The stress and moment resultants
Nr , N�, Mr , M�, and Qr are expressed as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Nr , N�, Qr ) =
∫ h(r )/2

−h(r )/2
(�r , ��, �rz)dz,

(Mr , M�) =
∫ h(r )/2

−h(r )/2
(�r , ��)zdz.

(10)

By substituting Eqs. (8) and (9) into Eq. (10), the constitutive
relations are given as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nr = A(r )
(

du
dr

+ �
u
r

)
+ B(r )

(
d�

dr
+ �

�

r

)
− NT

r ,

N� = A(r )
(

u
r

+ �
du
dr

)
+ B(r )

(
�

r
+ �

d�

dr

)
− NT

� ,

Mr = B(r )
(

du
dr

+ �
u
r

)
+ C(r )

(
d�

dr
+ �

�

r

)
− MT

r ,

M� = B(r )
(

u
r

+ �
du
dr

)
+ C(r )

(
�

r
+ �

d�

dr

)
− MT

� ,

Qr = D(r )
(

� + dw

dr

)
,

(11)
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4 M. E. Golmakani and M. Kadkhodayan

where A(r ), B(r ), C(r ), and D(r ) can be expressed as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A(r ), B(r ), C(r )) =
∫ h(r )/2

−h(r )/2

E(z)
1 − �2

(1, z, z2)dz,

D(r ) =
∫ h(r )/2

−h(r )/2

ks E(z)
2(1 + �)

dz,

(12)

where ks = 5/6 is the shear-correction factor. The membrane
forces and bending moments in Eqs. (11) and (12) induced by
thermal load can be calculated as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NT
r = NT

� =
∫ h(r )/2

−h(r )/2

E(z)
1 − �

�(z)T(z)dz,

MT
r = MT

� =
∫ h(r )/2

−h(r )/2

E(z)
1 − �

�(z)T(z)zdz.

(13)

2.4. Equilibrium Equations

For a circular plate, if U1 is the total strain energy and V1 is
the total external work done on the body by the total specified
external forces, then the total energy � can be represented as
� = U1 − V1, where:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U1 =
∫

V
�ijεijdV

=
∫ ro

ri

∫ h(r )/2

−h(r )/2
2�(�r εr + ��ε� + �rz�rz)rdrdz,

V1 = −
∫ ro

ri

2�rqz(r )uzdrdz,

(14)

where V represents the total volume of the plate and qz(r ) = q
is the vertical pressure applied to the surface of the plate. Using
the principle of minimum total energy 	� = 0, the following
equilibrium equations can be derived:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dNr

dr
+ 1

r
(Nr − N�) = 0,

dMr

dr
+ 1

r
(Mr − M�) − Qr = 0,

dQr

dr
+ Q

r
+ q = 0.

(15)

By substituting Eqs. (11), (12), and (13) into Eq. (15), the
following three ordinary differential equations are derived for

the displacement field:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA(r)
dr

(
du
dr

+ �u
r

)
+ A(r )

(
d2u
dr 2

+ 1
r

du
dr

− u
r 2

)

+ dB(r)
dr

(
d�

dr
+ ��

r

)
+ B(r )

(
d2�

dr 2
+ 1

r
d�

dr
− �

r 2

)

− dNT
r

dr
= 0,

dB(r)
dr

(
du
dr

+ �u
r

)
+ B(r )

(
d2u
dr 2

+ �

r
du
dr

− �u
r 2

)

+ dC(r )
dr

(
d�

dr
+ ��

r

)
+ C(r )

(
d2�

dr 2
+ �

r
d�

dr
− ��

r 2

)

+ B(r )
r

(
du
dr

+ �u
r

− u
r

− �du
dr

)
+ C(r )

r

(
d�

dr
+ ��

r

− �

r
− �

d�

dr

)
− D(r )

(
� + dw

dr

)
− dMT

r

dr
= 0,

D(r )
(

d�

dr
+ d2w

dr 2
+ �

r
+ 1

r
dw

dr

)
+ d D(r )

dr

(
� + dw

dr

)
+ q = 0.

(16)

2.5. Boundary Conditions

The following boundary conditions are used in this study:

(a) For a solid circular plate with a roller support at r = ro:

{
At r = 0, u = 0, � = 0, Qr = 0,

At r = ro, w = 0, Nr = 0, Mr = 0.
(17)

(b) For a solid circular plate with a hinged support at r = ro:

{
At r = 0, u = 0, � = 0, Qr = 0,

At r = ro, u = 0, w = 0, Mr = 0.
(18)

(c) For a solid circular plate with a clamped support at r = ro:

{
At r = 0, u = 0, � = 0, Qr = 0,

At r = ro, u = 0, w = 0, � = 0.
(19)

(d) For an annular plate with clamped inner and outer edges
at r = ri and r = ro:

{
At r = ri , u = 0, w = 0, � = 0,

At r = ro, u = 0, w = 0, � = 0.
(20)

(e) For an annular plate with a clamped inner edge at r = ri
and a simply supported outer edge at r = ro:

{
At r = ri , u = 0, w = 0, � = 0,

At r = ro, u = 0, w = 0, Mr = 0.
(21)
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Thermoelastic Analysis of FGM Plates 5

3. Numerical Solution Methodology

In this study, the dynamic relaxation (DR) method and a fi-
nite difference discretization technique were employed to solve
the differential equations for the circular FGM plate under
thermal and mechanical loading. Dynamic relaxation is an
iterative method in which a static problem is converted into a
dynamic problem by adding acceleration and damping terms;
to obtain a steady-state solution. The explicit nature of the
method makes it highly suitable for computers because all of
the quantities can be treated as vectors, which results in an eas-
ily programmable method with low storage requirements. Day
[19] first used this method to consider linear problems; during
the next three decades, that technique was developed and used
by other researchers to analyze linear and nonlinear responses
of structural components, such as the bending, buckling, wrin-
kling, and stamping of plates [20–28]. It is convenient to first
outline how the boundary value problem changes to an ini-
tial value format for the application of the DR procedure.
Then some comments can be made regarding the numerical
computations and the finite difference discretization.

3.1. Dynamic Relaxation Method

The DR method is essentially a pseudo-time-stepping initial-
value technique. Therefore, to apply the DR method, it is
necessary to convert the system of governing equations from
boundary-value to initial-value format. The plate equations
are transformed into DR format by adding the damping and
inertia terms to the right-hand side of the equilibrium equa-
tions. Consequently, the equilibrium equations become:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dNr

dr
+ 1

r
(Nr − N�) = mu

d2u
dt2

+ cu
du
dt

,

dMr

dr
+ 1

r
(Mr − M�) − Qr = m�

d2�

dt2
+ c�

d�

dt
,

dQr

dr
+ Q

r
= mw

d2w

dt2
+ cw

dw

dt
− q,

(22)

where mu, m� , mw and cu, c� , cw are elements of the di-
agonal fictitious mass and the damping matrices M and C,
respectively. In the DR method, the mass matrix and nodal
damping factor should be defined to guarantee the stability
and convergence of the iterative procedure. The most com-
mon method of determining ml

ii [l : u, � , w] at node i during
the nth iteration is to use the Gershgörin theorem. According
to this theorem, the following inequality must be satisfied to
guarantee stability of the iterations:

ml
ii ≥ 0.25(
 n)2

N∑
j=1

∣∣∣kl
ij

∣∣∣ , (23)

where the superscript n represents the nth iteration step and

 is an increment of fictitious time. The element, kij, of the

stiffness matrix, K , is calculated by:

K = ∂P
∂X

, (24)

where X = u, � , w is the approximate solution vector and P
is the left-hand side of the equilibrium equations (Eq. (22)).
Furthermore, based on the modified adaptive dynamic relax-
ation (maDR) method that was proposed by Zhang and Yu
[28], the nodal damping factor cn during the nth iteration is
calculated by:

cn = 2
{

(Xn)t P(Xn)
(Xn)t MXn

}1/2

. (25)

To complete the transformation process, the velocity and
acceleration terms must be replaced with the following equiv-
alent central finite-difference expressions [28]:

Ẋ
n− 1

2 = (Xn − Xn−1)/
 n, (26)

Ẍ
n = (Ẋ

n+ 1
2 −Ẋ

n− 1
2 )/
 n. (27)

By substituting Eqs. (26) and (27) into the right-hand side of
Eq. (22), the equilibrium equations can be rearranged into an
initial value format as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇n+ 1
2 = 2 − 
 ncn

2 + 
 ncn
u̇n− 1

2 + 2
 n

2 + 
 ncn
M−1

×
(

dNr

dr
+ 1

r
(Nr − N�)

)n

,

�̇ n+ 1
2 = 2 − 
 ncn

2 + 
 ncn
�̇ n− 1

2 + 2
 n

2 + 
 ncn
M−1

×
(

dMr

dr
+ 1

r
(Mr − M�) − Qr

)n

,

ẇn+ 1
2 = 2 − 
 ncn

2 + 
 ncn
ẇn− 1

2 + 2
 n

2 + 
 ncn
M−1

(
dQr

dr
+ Q

r
+ q

)n

.

(28)

By integrating the velocities after each time step, the displace-
ments can be obtained as:

un+1 = un + 
 n+1u̇n+ 1
2 . (29)

Similar equations can be used to compute the other two
displacement components, � andw. Using the Eqs. (26), (27),
and (3)–(13) along with the appropriate boundary conditions
and Eqs. (17)–(21) in their finite difference form, the set of
equations for the sequential DR algorithm is formed, which
is briefly outlined in the following section.

3.1.1. The DR Algorithm
a. Set all of the velocity, displacement, stress resultant, and

stress couple variables initially to zero, and apply the trans-
verse load q and maximum iteration number N.

b. Set the time increment 
 to unity and the number of itera-
tions n to zero.
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6 M. E. Golmakani and M. Kadkhodayan

Table 1. Maximum dimensionless deflection obtained in this article compared to the results obtained by Reddy et al. [16] for a
thickness radius ratio of h/ro = 0.15

Reddy et al. [16] Present article

Material constant (n) Clamped Simply supported Roller-supported Clamped Simply supported Roller-supported

0 2.781 10.623 10.623 2.774 10.572 10.572
2 1.515 5.610 5.826 1.511 5.565 5.801
4 1.384 5.217 5.325 1.382 5.200 5.305
8 1.278 4.870 4.909 1.277 4.876 4.850
10 1.250 4.772 4.799 1.251 4.760 4.793
50 1.137 4.348 4.349 1.134 4.346 4.349
100 1.119 4.280 4.280 1.116 4.281 4.281
1000 1.103 4.214 4.214 1.107 4.229 4.229
100,000 1.101 4.207 4.207 1.102 4.217 4.217

c. Compute M and C.
d. Compute the velocities using Eq. (28).
e. Integrate the velocities to achieve the displacements Xn by

using Eq. (29).
f. Apply the boundary conditions.
g. Compute the strain components using Eq. (8).
h. Compute the stress resultants using Eq. (11).
i. Check if the right-hand side of Eq. (22) Rn is too small, i.e.,

≤10−6 on all interior nodes, stop and print out the static
solution Xn , otherwise continue.

j. Calculate Ẋn+ 1
2 and cn .

k. Check if
∑

j (Ẋ
n+ 1

2
j )2 ≤ 10−12, stop and print out the static

solution Xn , otherwise continue.
l. Set n = n + 1, if n ≥ N stop, otherwise return to step c and

repeat the sequence.

3.2. Finite Difference Discretization

To apply the DR method to solve the previously men-
tioned system of equations, the equations must be discretized.
Hence, the central finite difference technique was applied to re-
place the derivatives. The boundary conditions were imposed
via the specification of values at fictitious nodes that are lo-
cated outside of the plate boundaries. Due to the axisymmetric
nature of the loading and the plate geometry, only a radial line
of the plate was used, and the governing plate equations were
applied to nodal points along this line. Because it is not possi-
ble to apply the equations to the center node of the plate, the
limiting process suggested by Kobayashi and Turvey [29] was
used here to overcome the singularity problem at the center.
This scheme was applied to every term with the factor (1/r )
in the governing equations, i.e.,

lim
r→0

u0

r
= du0

dr
. (30)

3.3. Verification of the DR Analysis

To demonstrate the efficiency and accuracy of this numer-
ical study, the results of our analysis for an axisymmetric

bending problem of a functionally graded circular plate with
clamped, roller-supported, and simply supported boundary
conditions were compared to the results of Reddy et al. [16].
The analysis of the FG plate with uniform thickness was
conducted for a combination of ceramic and metal. Tita-
nium and zirconia with values of � = 0.288, Ec = 151.0 GPa,
and Em/Ec = 0.396 were selected as the constituent mate-
rials. A comparison of the numerical results obtained from
this study with the analytical results obtained by Reddy et al.
[16] is shown in Table 1. For the dimensionless maximum de-
flection Wmax = 64wDc/qor 4

o with Dc = Ech3/12(1 − �2) and
the transverse load qo = 0.14 GPa, good agreement was ob-
served.

4. Results and Discussion

In this article, the axisymmetric bending and stretching of a
functionally graded circular and annular plate was numerically
studied under combined thermal–mechanical loadings. To
achieve this goal, the plate was subjected to a transverse uni-
form load and a temperature field. An FG plate with uniform
and nonuniform thicknesses (Figure 1) under various bound-
ary conditions (simply supported and clamped circular plates
as well as clamped-clamped (CC) and clamped-simply sup-
ported (CS) in the inner and outer edge of the annular plates
was considered. The material properties (which are listed in
Table 2) were used from Ref.[2]. Then, a metal/aluminum and
ceramic/zirconia system of FGM was considered in which
the ceramic-rich top surface was maintained at 300◦C, and
the metal-rich bottom surface was maintained at 20◦C. The
stress-free temperature is T0 = 0◦C. A mechanical pressure
loading of q = 10 MPa was also applied to the top surface of
the plate in which the ratio of thickness to external radius is
h/ro = 0.15. For the annular plate, the ratio of the outer to
inner radius was assumed as ro/ri = 5. The results presented
in Table 3 are defined in terms of dimensionless parameters.
In this table, the dimensionless radius, thickness, center deflec-
tion, stress resultant and moment resultant are expressed as r̄ ,
z̄, w̄, N̄r , and M̄r , respectively.

Figure 2 shows the distribution of the metal volume frac-
tion throughout the thickness of the plate for various values of
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Thermoelastic Analysis of FGM Plates 7

Table 2. Material properties of metal, aluminum and ceramic, zirconia in the FGM

Young’s modulus Poisson’s Thermal conductivity Thermal expansion
Materials E(GPa) ratio � coefficient K(W/mk) coefficient �(1/◦C)

Aluminum 70 0.3 204 23 × 10–6

Zirconia 151 0.3 2.09 10 × 10–6

Table 3. Dimensionless parameters

Parameter r̄ w̄ z̄ N̄r M̄r

Definition r/r0 w/h z/h Nrr2
0/Emh3 Mrr2

0/Emh4

the grading index n. The temperature distribution throughout
the thickness of the FG plate that was calculated from Eq. (6)
for various values of n is shown in Figure 3. This figure shows
that the temperature change along the thickness of a homoge-
neous plate consisting completely of metal or ceramic is linear,
whereas for an FGM plate, the temperature change is nonlin-
ear. Furthermore, in nonhomogeneous plates, the variation in
temperature increases along the thickness with an increase in n
such that the temperature of the mid-plane in an FG plate for
n = 10 is approximately twice of that for n = 2. Additionally,

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1

Metallic Volume Fraction

z/
h

n=0.1

n=0.5

n=1

n=5

n=0.2

n=3

n=10

Fig. 2. Variation in the volume fraction of the metallic phase throughout the dimensionless thickness for different values of n.
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0

0.5

0030020010

T( oC)

z/
h

Ceramic-Metal

n=10

n=5
n=3

n=2

Fig. 3. Temperature distributions throughout the thickness of the FGM plate.
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8 M. E. Golmakani and M. Kadkhodayan
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Fig. 4. Dimensionless vertical displacement along the radial direction of the clamped circular FGM plate: (a) uniform thickness and
(b) convex thickness profile.
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Fig. 5. Dimensionless vertical displacement along the radial direction of the clamped circular FGM plate: (c) linear thickness profile
and (d) concave thickness profile.
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Fig. 6. Comparison of the dimensionless vertical displacement for the convex thickness profile of the CC annular FGM plate under
mechanical loading: (a) with thermal loading and (b) without thermal loading.
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Thermoelastic Analysis of FGM Plates 9

the temperature in the FG plate is always lower than that in a
pure metallic or ceramic plate.

Figures 4 and 5 show the dimensionless vertical displace-
ment w̄ along the radial direction of the clamped circular
FG plate (for different thickness profiles) that was subjected
to mechanical and thermal loading. As expected, due to the
stiffness of the plate, the displacement of the concave plate
was the largest, and the displacement of a uniform plate was
the smallest. For the sake of brevity, the graphs showing the
vertical displacement of the simply supported FG plate are

omitted. The difference between the ratio of maximum deflec-
tion of the plates with nonuniform thicknesses to the uniform
plates with homogenous properties is almost 10% greater than
that in the FGM plate with n = 1. In other words, variation
in the thickness has a smaller effect on the deflection of FGM
plates compared to homogenous plates.

Figure 6 shows the dimensionless vertical displacement
w̄ along the radial direction of the CC annular FG plate
subjected to mechanical loading with and without thermal
gradients in the plates with convex thickness profiles. The

Fig. 7. Variation in the dimensionless vertical displacement with different volume fractions, n, for convex, linear, and concave thickness
profiles of the CS annular FGM plate under mechanical loading: (a) with thermal loading and (b) without thermal loading.
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10 M. E. Golmakani and M. Kadkhodayan
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Fig. 8. Dimensionless stress resultant of the simply supported circular FGM plate with uniform thickness under mechanical loading:
(a) without thermal loading and (b) with thermal loading.
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Fig. 9. Dimensionless radial stress resultant of the simply supported circular FGM plate with linear thickness under mechanical
loading: (a) without thermal loading and (b) with thermal loading.
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Fig. 10. Dimensionless radial stress resultant of the CS annular FGM plate.
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Thermoelastic Analysis of FGM Plates 11
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Fig. 11. Dimensionless moment resultant along the radial direction of the clamped circular FGM plate: (a) uniform thickness and
(b) convex thickness profile.

temperature causes a larger increase in the maximum deflec-
tion in the metallic or ceramic plate instead of the nonhomoge-
neous FGM plate. For example, the maximum deflection of an
FGM plate with n = 1 with the temperature field is about 15%
greater than that of the plate without the temperature field.
However, the difference is about 35% for the homogeneous
(metallic or ceramic) plate.

The maximum dimensionless deflection of the CC annu-
lar FG plate with convex, linear, and concave thickness pro-
files with respect to different volume fractions, n, that was
subjected to mechanical loading with and without the tem-
perature field is shown in Figure 7. The largest and smallest
differences between the maximum deflections with and with-
out the temperature field are related to the convex and concave

plates, respectively, which can be attributed to different values
of the mechanical and thermal strains due to the different
thickness profiles of the plates. As previously mentioned, the
smallest difference of maximum deflection of the plate with
and without thermal gradients occurred in a FG plate with
n = 1 for all of the thickness profiles. The amount of maxi-
mum deflections in the presence of thermal loading increased
by about 54, 13.6, and 6.8% for the metal, ceramic, and FGM
plates, respectively, compared to the case without the thermal
gradient.

The dimensionless stress resultant, N̄r , for the simply-
supported circular FG plate with two different thickness pro-
files (uniform and linear) is shown in Figures 8 and 9. As n
increases, the material properties of the plate become similar to
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Fig. 12. Comparison between the dimensionless moment resultant for the simply supported FGM plate (n = 1) with different thickness
profiles: (a) uniform, (b) convex, (c) linear, and (d) concave.
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12 M. E. Golmakani and M. Kadkhodayan
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Fig. 13. Distribution of the dimensionless resultant moment along the radial direction for two thickness profiles of the clamped-simply
supported annular FGM plate: (a) with thermal loading and (b) without thermal loading.

those of ceramic. Therefore, an increase in the stiffness causes
a decrease in the strain value and, consequently, a decrease
in the radial stress resultant for a given radius. Furthermore,
unlike the variable thickness plate, a variation in stiffness (and
consequently N̄r ) is not significant along the radial direction
for uniform thickness profiles.

On the other hand, the difference between the values of N̄r
along the radius for different material constants, n, increased
due to the applied thermal load. For example, the difference
between the materials for n = 1 and n = 10 was approximately
40% at the center of the plate with uniform thickness. Gener-
ally, for both of the plates with uniform and linear thicknesses,
the application of the temperature field reduced the amount
of N̄r along the radial direction.

The variation of N̄r in the radial direction in the plates
with linear thickness was significantly greater than that of the
plates with uniform thickness, which is related to the thickness
variation of the plate, as shown in Figure 9. Furthermore, the
amount of N̄r increased in the nonuniform plates for a given
radius due to an increase in the mechanical strain and the
stress compared to the uniform plates. The application of the
thermal gradient to the plate with a linear thickness profile
causes less compressive stresses along the thickness, which is
a result of the larger amount of mechanical strain compared
to thermal strain in this thickness profile.

Figure 10 shows the variation of N̄r along the radius for
various thickness profiles (constant, convex, linear, and con-
cave) in clamped-simply supported annular FGM plates with
n = 1. If the temperature field is applied to a plate that is sub-
ject to a uniform mechanical load of q = 10 MPa, then N̄r
becomes compressive for uniform and convex plates, whereas
N̄r exhibits higher values for linear and concave plates and
becomes tensile from the center to r/ro = 0.4. Furthermore,
the highest and lowest variations of N̄r occurred in the plates
with a concave and constant thickness along their radius, re-
spectively, which was caused by different stiffness variations
that modify the mechanical and thermal strains.

Figure 11 shows the dimensionless resultant moment M̄r
along the radial direction. As the material constant n increases,
M̄r decreases. As previously mentioned, the stiffness of the
plate increases due to an increase in the material constant
n if the material property tends to be ceramic with a higher
stiffness.

Figure 12 shows the distribution of the dimensionless re-
sultant moment M̄r along the radial direction for different
thickness profiles. M̄r attains a minimum value for the uni-
form plate and a maximum value for the concave thickness
profile. For example, the value of M̄r for the concave plate is
2.3 times greater than that of the uniform plate at the center.
This indicates that the concave plate has higher strain values
due to the reduction of stiffness along its radius. Furthermore,
because of the higher reduction rate of thickness along the ra-
dial direction in the concave plate, the stiffness and M̄r in the
radial direction decrease significantly compared to the plate
with uniform thickness.

Figure 13 shows the distribution of the dimensionless resul-
tant moment M̄r along the radial direction in the CS annular
FG plate with the consideration of the thermal effects. In the
presence of thermal loading, M̄r decreases compared to the
case with purely mechanical loading. Also, the difference be-
tween M̄r with and without thermal loading in the plate with
constant thickness is much greater than the plate with variable
thickness. For example, the difference of M̄r in the inner edge
of the annular FG plate with a constant thickness profile is
2.5 times greater than the difference in the plate with a linear
thickness profile. The reasons for these variations are similar
to the previously mentioned reasons for N̄r .

5. Conclusions

The axisymmetric bending and stretching of a functionally
graded circular plate with variable thickness under thermal
and uniform transverse mechanical loading was considered.
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Thermoelastic Analysis of FGM Plates 13

Based on the FSDT, new equilibrium equations were devel-
oped, and a dynamic relaxation method along with a finite
difference discretization technique was used to solve these
equations. The effects of the material constant n, boundary
conditions, and different thickness profiles are studied along
with combined thermal-mechanical loading. Some general
conclusions are listed as follows:

• Variation in the thickness has a smaller effect on the de-
flection of the FGM plates compared to the homogenous
plates.

• For the annular FG plates with clamped-clamped bound-
ary conditions subjected to mechanical loading, the differ-
ence between the maximum deflections with and without
thermal loading is minimal for the FGM plate with n = 1.

• For plates with variable thicknesses, the difference between
the maximum deflections with or without temperature field
is largest for the convex plate and smallest for the concave
plate.

• An increase in the thickness profile variation in the plates
resulted in a greater variation in N̄r along the radius; N̄r
had the largest amount of variation for the concave plate
and smallest amount of variation for the plate with constant
thickness along the radius.

• The application of the thermal gradient to the plate with a
variable thickness profile causes the stress to be less com-
pressive along the thickness.

• For all of the thickness profiles, as the material constant n
increases, N̄r and M̄r decrease.

• The difference between M̄r with and without thermal load-
ing is significantly greater in the plate with constant thick-
ness rather than the plate with variable thickness.
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