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Transversity distribution functions in the valon model
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We use the valon model to calculate the transversity distribution functions inside the nucleon. Transversity
distributions indicate the probability to find partons with spin aligned (antialigned) to the transversely polarized
nucleon. The results are in good agreement with all available experimental data and also global fits.
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I. INTRODUCTION

The nucleon “spin crisis” is still one of the most funda-
mental problems in high-energy spin physics. Results of deep
inelastic scattering (DIS) experiments suggest that just 30% of
the spin of the proton is carried by the intrinsic spin of its quark
constituents. This discovery has challenged our understanding
about the internal structure of the proton. Therefore many
theoretical and experimental studies have been conducted to
investigate and understand the role of spin in the proton’s
internal structure.

The key question is how the spin of the nucleon is
shared among its constituent quarks and gluons. That is, the
determination and understanding of the shape of quarks and
gluon spin distribution functions have become an important
task.

In general, there are three collinear parton distribution func-
tions: the unpolarized parton distribution functions (PDFs), the
longitudinally polarized distribution functions (PPDFs), and
the transversity distributions. They are defined as follows: if
we show the number density of quarks with helicity ±1 inside
a positive hadron with q±(x,Q2), then we have

q(x,Q2) = q+(x,Q2) + q−(x,Q2), (1)

�q(x,Q2) = q+(x,Q2) − q−(x,Q2), (2)

where q(x,Q2) is the probability of finding a parton with frac-
tion x of parent hadron momentum and �q(x,Q2) represents
the probability of finding a polarized parton with fraction x of
parent hadron momentum and spin align/antialign to hadron’s
spin. It measures the net helicity of partons in a longitudinally
polarized hadron.

The third parton distributions are transversity distribution
functions. They have a simple meaning too: In a transversely
polarized hadron, transversity distribution is denoted by
�T q(x,Q2) and represents the number density of partons with
momentum fraction x and polarization parallel to that of the
hadron minus the number density of partons with the same
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momentum fraction and antiparallel spin direction:

�T q(x,Q2) = q↑(x,Q2) − q↓(x,Q2). (3)

Historically they were first introduced in the 1970s by Ralston
and Soper [1] and rediscovered by Artru and Mekhfi [2] in the
beginning of the 1990s and their QCD evolution studied by
Jaffe and Ji [3].

Since �T q(x,Q2) is a chirally odd quantity, it cannot be
probed in the cleanest hard process, DIS. It can only be
accessed in a process where it couples to another chirally
odd quantity. As such, �T q(x,Q2) can be measured in
hard reactions such as semi-inclusive leptoproduction or in
the Drell-Yan di-muon production. Measuring the transverse
polarization of partons is the goal of experiments such as
COMPASS, HERMES, RHIC, and SMC collaborations [4–6].
These measurements can teach us about the transversity
distribution and the transverse motion of quarks and thus the
role that their orbital angular momentum plays in the structure
of proton and fragmentation processes.

Calculation of transversity distribution functions, using
some phenomenology is an active task in spin physics [7–10].
We intend to do the same and calculate transversity distribution
using the valon model. The valon model is a phenomenological
model originally proposed by R. C. Hwa, [11] in the early
1980s. It was improved later by Hwa [12] and others [13–15]
and extended to the polarized cases [16–18]. In this model a
hadron is viewed as three (two) constituent quarklike objects,
called valons. Each valon is defined to be a dressed valence
quark with its own cloud of sea quarks and gluons. The dressing
processes are described by QCD. The structure of a valon is
resolved at high Q2. At low Q2, a valon behaves as constituent
quark of the hadron. In this model the recombination of
partons into hadrons is a two stage process: in the first step
the partons emit and absorb gluons in the process of the
evolution of the quark-gluon cloud and become “valons”;
then these valons recombine into hadron. The model de-
scribes the unpolarized and polarized nucleon structure rather
well [15,18].

In the present paper we apply the valon concept to the
transverse polarization and calculate the transversity distribu-
tion functions. The paper is organized as follows. In Sec. II
we review the valon model for calculating the polarized parton
distribution functions (PPDFs). Then in Sec. III we utilize it
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TABLE I. Numerical values of the parameters in Eq. (5) for
polarized valon distributions inside the proton.

Valon(j ) Nj αj βj aj bj cj dj

U 3.44 0.33 3.58 − 2.47 5.07 − 1.859 2.780
D − 0.568 − 0.374 4.142 − 2.844 11.695 − 10.096 14.47

to calculate the transversity distribution. Our conclusions are
given in Sec. IV.

II. POLARIZED PARTON DISTRIBUTION FUNCTIONS
IN THE VALON MODEL

In the valon representation of hadrons the polarized parton
distribution in a polarized hadron is given by

δqh
i (x,Q2) =

∑ ∫ 1

x

dy

y
δGh

valon(y)δqvalon
i

(
x

y
,Q2

)
, (4)

where δGh
valon(y) is the helicity distribution of the valon in the

hosting hadron, i.e. (the probability of finding the polarized
valon inside the polarized hadron). Here we study the internal
structure of the proton, so we have to use the polarized valon
distributions inside the proton. δG

p
valon(y) is related to the

unpolarized valon distribution, G
p
j (y), by

δG
p
j (y) = δFj (y)Gp

j (y) = Njy
αj (1 − y)βj

× (1 + ajy
0.5 + bjy + cjy

1.5 + djy
2), (5)

where j refers to U - and D-type valons [11,15]. Polarized
valon distributions are determined by a phenomenological
argument [16]. The parameters in Eq. (5) are summarized
in Table I and δG

p
valon(y) are plotted in Fig. 1. The term

δqvalon
i (x/y,Q2) for h = p in Eq. (4) is the polarized parton

distribution inside a valon. Their evolution is governed
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [19–21]. Finally, the polarized proton structure

FIG. 1. (Color online) Polarized valon distributions for U and D

valons inside the proton.

functions are obtained via a convolution integral as follows:

g
p
1 (x,Q2) =

∑
valon

∫ 1

x

dy

y
δG

p
valon(y)gvalon

1

(
x

y
,Q2

)
, (6)

where gvalon
1 ( x

y
,Q2) is the polarized structure function of

the valon. The details of the actual calculations are given
in [16–18].

III. TRANSVERSITY DISTRIBUTION FUNCTIONS
IN THE VALON MODEL

We now follow the same procedure as in Sec. II, to calculate
the transversity distribution functions of partons in the proton.
For the transversely polarized proton, Eq. (4) reads as

�T q
p
i (x,Q2) =

∑
valons

∫ 1

x

dy

y
�T G

p
valon(y)�T qvalon

i

(
x

y
,Q2

)
,

(7)
where �T G

p
valon(y) is the transverse valon distribution func-

tions describing the probability of finding a valon with
spin aligned or antialigned with the transversely polarized
proton. In fact, �T G

p
valon(y) is identical to δG

p
valon(y) in the

longitudinal case. This is so, because we know that in the
nonrelativistic limit of the quark motion, the PPDFs and
transversity distribution would be identical, since the rotations
and Euclidean boosts commute and a series of boosts and
rotation can convert a longitudinal polarized proton into a
transversely polarized one with an infinite momentum [9,22].
The only difference between the transversity distributions
and PPDFs reflects the relativistic character of quark motion
in the proton and shows up in the splitting functions and
DGLAP equations. Consequently, here we set �T G

p
valon(y) =

δG
p
valon(y). Also notice that �T qvalon

i ( x
y
,Q2) in Eq. (7) are the

transversity distribution functions in the valon. They can be
calculated using the DGLAP evolution equations, as described
below.

In the Mellin space, transversity distribution functions are
given by

�T q±(n) = �T q(n) ± �T q(n), (8)

FIG. 2. (Color online) �T q(n) as a function of n in different
ranges of Q2 .
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FIG. 3. (Color online) x�T u(x) and x�T d(x) as a function of x for different ranges of Q2 .

where �T q±(n) are the singlet and nonsinglet transversity
distribution functions of partons. The first moment (n =
1) of transversity distribution refers to the proton’s tensor
charge [3,23–24]. Their DGLAP evolution equations are [25]

d

d ln Q2
�T q−(n,Q2) = �T γqq,−(n,αs(Q

2))�T q−(n,Q2),

(9)

d

d ln Q2
�T q+(n,Q2) = �T γqq,+(n,αs(Q

2))�T q+(n,Q2).

(10)

The solution of the DGLAP evolution equations in the Mellin
space at NLO approximation is [26]

�T q±(n,Q2) =
{

1 + αs

(
Q2

0

) − αs(Q2)

πβ0

×
[
�T γ

(1)
qq,±(n) − β1

2β0
�T γ (0)

qq (n)

]}

×
(

αs(Q2)

αs

(
Q2

0

)
)−2�T γ

(0)
qq (n)/β0

�T q±
(
n,Q2

0

)
, (11)

In the above equation, �T q±(n,Q2
0) are the initial input

densities. They are determined by a phenomenological ar-
gument in the valon model. �T γ

(0)
qq,±(n) and �T γ

(1)
qq,±(n)

are the usual anomalous dimensions and are given in the
Appendix.

In the following, first we solve the DGLAP evolution
equations for a valon. This will give transversity distribution
functions in each valon. We then use them in the convolution
integral, Eq. (7), to obtain transversity distribution functions
in the proton. In doing so, we adopt the MS scheme with
�QCD = 0.22 GeV and Q2

0 = 0.283 GeV2. This value of
Q2

0 corresponds to a distance of 0.36fm which is roughly
equal to or slightly less than the radius of a valon. It may
be objected that such distances are probably too large for a
meaningful pure perturbative treatment. We note that valon
structure function has the property that it becomes δ(z − 1)
as Q2 is extrapolated to Q2

0, which is beyond the region of
validity. This mathematical boundary condition signifies that
the internal structure of a valon cannot be resolved at Q2

0 in
the NLO approximation. Consequently, when this property
is applied to Eq. (7), the structure function of the nucleon
becomes directly related to xδT Gvalon at those values of Q2

0.
Furthermore, as noted in [15], we have checked that when Q2

approaches Q2
0, the quark moments approach unity and gluon

FIG. 4. (Color online) The transversity distribution function for valence u quark calculated by our model as a function of x and k⊥ at
Q2 = 2.4 GeV2. They are compared with those from Soffer and Anselmino global fits [9,30].
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FIG. 5. (Color online) The transversity distribution function for valence d quark calculated by our model as a function of x and k⊥ at
Q2 = 2.4 GeV2. They are compared with those from Soffer and Anselmino global fits [9,30].

moments go to zero. From the theoretical standpoint, both
�QCD and Q2

0 depend on the order of the moments, but here,
we have assumed that they are independent of moment order.
In this way, we have introduced some degree of approximation
to the Q2 evolution of the valence and sea quarks. However,
on one hand there are other contributions like target-mass
effects, which add uncertainties to the theoretical predictions
of perturbative QCD, while on the other hand since we are
dealing with the valons, there are no experimental data to
invalidate moment order independent of �QCD. Therefore we
are led to choose our initial input densities at Q2

0 to be δ(z − 1),
leading to

�T q+
(
z,Q2

0

) = �T q−
(
z,Q2

0

) = δ(z − 1). (12)

Thus, their moments are

�T q+
(
n,Q2

0

) = �T q−
(
n,Q2

0

) =
∫ 1

0
zn−1δ(z − 1)dz = 1.

(13)
It is also interesting to note that our selected value for Q2

0
is very close to the transition region reported by the CLAS

Collaboration for the behavior of the first moment of the proton
structure function around Q2 = 0.3 GeV2 [27].

The moments of valence quark transversity distribution are
now easily obtained from the solution of DGLAP evolution
equations, Eq. (11), in Mellin space; they are shown in Fig. 2.
Finding the transversity distribution functions in a valon, using
Eq. (11), is now reduced to an inverse Mellin transformation.
This enable us with the help of Eq. (7) to obtain x�T u(x) and
x�T d(x) as a function of x. They are shown in Fig. 3 for a
number of Q2 values.

It is common to write the transversity distribution functions
as

�T q(x) =
∫

�T q(x,k⊥) d2k⊥, (14)

where �T q(x,k⊥) are the unintegrated transversity distribution
functions. We assume that k⊥ dependence of transversity
distributions are factorized in a Gaussian form:

�T q(x,k⊥) = �T q(x)
e−k2

⊥/〈k2
⊥〉

π〈k2
⊥〉 , (15)

FIG. 6. (Color online) The transversity distribution functions for valence u and d quarks in our model as a function of x and at Q2 =
2.4 GeV2 and comparison with Anselmino fit (2013) [10].
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FIG. 7. (Color online) The combination of transversity distribu-
tion functions for valence u and d flavors. Black circles for SIDIS
data from HERMES [31], red squares from COMPASS [32], and
Green curve is obtained by our model at Q2 = 2.5 GeV2. Blue curve
shows the result of Radici’s model [33] with its associated uncertainty
band which represents the same observable as deduced from the
parametrization of Ref. [34].

where �T q(x) is transverse distribution function and the
average values of k⊥ are taken from SIDIS cross-section
data [28,29] to be

〈k2
⊥〉 = 0.25 GeV2. (16)

In Fig. 4, we show our results for the transversity distribution
function of the valence u quark, x�T u(x,Q2). It is
compared with Anselmino’s (2008) and Soffer’s global
fits at Q2 = 2.4 GeV2 [9,30]. We also show the result for
x�T u(x,k⊥) distribution at x = 0.1 in the right panel of Fig. 4.
The same plot is given for d valence quark in Fig. 5. Figure 6
shows more recent global fit results [10] as compared to our
analysis.

In Fig. 7 we present the result for x[�T uv(x,Q2) −
1
4�T dv(x,Q2)] and compare with those reported by HERMES
and COMPASS collaborations [31,32], as well as Radici’s
model [33]. Another interesting quantity, related to the first
moment, is the tensor charge, defined by the integral (17)
as

δq =
∫ 1

0
dx (�T q − �T q). (17)

In our analysis the first moment of sea transversity distributions
turns out to be very small: (−0.001 05) for Q2 = 1 GeV2.
Therefore, the tensor charges are absolutely the first moment of
valence transversity distribution functions. Actually the valon
model predicts that the sea quark polarization is very small
and is consistent with zero. It is undetectable, since the valon
structure is generated by perturbative dressing in QCD. In
such processes with massless quarks, helicity is conserved
and therefore, the hard gluons cannot induce sea quark
polarization perturbatively. The experiments also support this
finding [35–38]. Thus we have no sea polarization in our
model. As a consequence, the first moment of transversity
distributions of u and d quark (tensor charges) at Q2 = 1GeV2

are

δu = 0.7386, δd = −0.3782. (18)

Finally, in Fig. 8 our results for tensor charge are compared
with the predictions of some models [9,10,39–43].

IV. CONCLUSIONS AND REMARKS

We have utilized the so-called valon model and calculated
transversity distribution functions for u and d quarks inside
the proton. The transversity distribution functions together
with the helicity distribution functions provide a more com-
prehensive picture of the proton structure. While the former is
fairly well understood, the latter is just beginning to be probed.
Our calculation in this paper is a step towards this goal. As
noted in Eq. (18) of the text, in our model the sea partons

FIG. 8. (Color online) The tensor charge for u and d quarks. Our prediction is shown by number one and compared with those from several
models [10,39–43].
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contribution to the transversity distributions is consistent with
zero, whereas the valence sector assumes a sizable value. In
a sense, this prediction is similar to the one we have made
for the helicity distribution in Ref. [16], which was later on
confirmed by experiment. However, the obtained results do
not exhaust the spin of the proton and implies that there
is room for further contribution from, perhaps, the orbital
angular momentum. It also shows that a simple model like
valon reasonably well reproduces the experimental data and
hence provides a physical picture of the proton structure in the
NLO approximation.
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APPENDIX

Here we list the anomalous dimensions in mellin space and
the MS scheme [44] the γ (0)(n),γ (1)(n) adequate to �T q are
as follows:

�T γ (0)
qq (n) = CF

⎡
⎣3

2
− 2

n∑
j=1

1

j

⎤
⎦ , (A1)

�T γ (1)
qq,η(n) = C2

F

{
3

8
+ 2

n(n + 1)
δη− − 3S2(n) − 4S1(n)

[
S2(n) − Ś2

(n

2

)]
− 8S̃(n) + Ś3

(n

2

) }

+ 1

2
CF Nc

{
17

12
− 2

n(n + 1)
δη− − 134

9
S1(n) + 22

3
S2(n) + 4S1(n)

[
2S2(n) − Ś2

(n

2

)]
+ 8S̃(n) − Ś3

(n

2

) }

+ 2

3
CF TF

{
−1

4
+ 10

3
S1(n) − 2S2(n)

}
, (A2)

where η = ± and S (harmonic functions) are defined by

Sk(n) ≡
n∑

j=1

1

jk
, (A3)

S ′
k

(n

2

)
≡ 2k−1

n∑
j=1

1 + (−)j

j k
= 1

2
(1 + η)Sk

(n

2

)
+ 1

2
(1 − η)Sk

(
n − 1

2

)
, (A4)

S̃(n) ≡
n∑

j=1

(−)j

j 2
S1(j )

= −5

8
ζ (3) + η

[
S1(n)

n2
+ π2

12
G(n) +

∫ 1

0
dx xn−1 Li2(x)

1 + x

]
(A5)

with G(n) ≡ ψ( n+1
2 ) − ψ( n

2 ), ψ(z) = d ln �(z)/dz, and η = ±1 for δP
(1)n
NS± and η = −1 for the flavor singlet anomalous

dimensions.
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