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Abstract—In time series forecasting, it is a crucial step to identify 

proper set of variables as the inputs to the model. Many input 

variable selection (IVS) techniques fail to perform suitably due to 

inherent assumption of linearity or rich redundancy between 

variables. The motivation behind this research is to propose an 

input variable selection algorithm which not only can handle 

nonlinear problems and redundant data, but also is 

straightforward and easy-to-implement. In the field of 

information theory, partial mutual information is a reliable 

measure to evaluate linear/nonlinear dependency and 

redundancy among variables. In this paper, we propose an IVS 

algorithm based on partial mutual information. The algorithm is 

tested on three time series with known dependence attributes. 

Results confirm credibility of the proposed method to capture 

linear/non-linear dependence and redundancy between variables. 

Keywords- input variable selection; partial mutual information; 

time series forecasting; information theory. 

 

I. INTRODUCTION 

Input variable selection (IVS) is the procedure of 
selecting a proper subset of variables from all potential 
inputs to a model. In prediction tasks, suitable input 
variables not only have maximum dependency with 
prediction variable (target) but also demonstrate 
minimum redundancy among themselves[1]. 

Forecasting problems has attracted much attention in 
electricity markets in order to predict market signals 
including demand, market clearing price and, recently, 
wind generation. Proper input variable selection is a 
crucial step in any time series forecasting procedures[2]; 
because data driven techniques are greatly sensitive to 
input variables fed to the model. Both excessive and 
deficient numbers of inputs degrades prediction 
performance of the model. Excessive number of inputs 
might have the following consequences: (i) irrelevant 
inputs have negative impacts on the learning procedure 
of the model [3] (ii) computational burden and 

complexity increases without improvements of model 
accuracy (iii) the true drivers of the modeled system 
become difficult to recognize. On the other hand, if 
variables relevant to target are ignored, forecasting 
model will be unable to properly distinguish input-output 
relationships [4].  

Input variable selection methods could be 
categorized into model-based and filter (model-free) 
techniques (Fig. 1). Model-based approaches search the 
space of variable subsets, using the training/validation 
accuracy of a particular forecasting model. Potential 
proper variables are fed to the model; then, utility of the 
variables is measured based on forecasting performance 
of the model [5]. In contrast, filter methods do not 
depend on any pre-existing model; they separate model 
training and input variable selection tasks and 
incorporate statistical analysis methods to measure 
significance of input variables [6].  Recently, filter 
methods have gained popularity due to their 
independency to any specific model and higher 
computational speed in comparison to model-based 
methods[5]. 

Filter methods are classified into correlation (linear) 
and information theoretic (non-linear) approaches. As 
the name indicates, linear methods cannot capture non-
linear dependencies between data; therefore, effective 
variables might be omitted from the selected input set. 
Besides, they are sensitive to noise and data 
transformation[7], which might be applied in pre-
processing steps of forecasting procedure[2]. 

Fig.1 Taxonomy of input variable selection algorithms 
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Recently, techniques based on information theoretic 
(non-linear) approaches have been applied in several 
IVS algorithms. They adapt properly with popular non-
linear forecasting techniques such as Artificial Neural 
Networks (ANN) and Support Vector Machines (SVM).  

In information theory field, mutual information (MI) 
is widely used to measure and analyze information. 
Mutual information between two variables indicates the 
predictability level of a variable if another one is known 
[8]. In the literature, several researches have used mutual 
information as a measure of dependency for non-linear 
problems [1][9][10]. However, MI does not take into 
account possible redundancies among selected input 
variables [4]. As an example, suppose variables X and Z 
are highly relevant to the target value and also they are 
dependent on each other (say X=2Z). They are both 
selected as input variables, because they have high 
values of MI with the target value. However, Z should 
not belong to selected set as it is a redundant variable, 
described totally by X. 

In order to overcome this limitation of MI 
algorithms, partial mutual information (PMI) was 
proposed[11]. PMI(Y,X|Z) is analogous to the partial 
correlation coefficient and quantifies the dependence of 
Y (target value) on input variable X that is not accounted 
for by the input variable Z [2]. In other words, PMI 
measures additional information that a new variable 
provide for a pre-existing prediction model[12]; 
therefore, PMI is potentially a proper tool for 
distinguishing redundant variables. 

In this paper, we propose a model free IVS algorithm 
called PMI based max relevance-min redundancy.  We 
acquire PMI measurements to deal with non-linear and 
redundant variables. Moreover, unlike other algorithms, 
dependencies between selected and non-selected 
variables are taken into account.     

This paper is organized as follows: In section II we 
first present the background on MI and PMI concepts 
and review conventional minimal redundancy maximal 
relevance (mRMR) criterion. Section III presents a new 
PMI based input variable selection algorithm. Section IV 
gives experimental results on three data sets. Finally, 
paper is concluded in section V. 

II. BACKGROUND  

A. Mutual information 

Mutual information between two random variables x 
and y is denoted as: 

 (   )  ∬ (   )   
 (   )
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              ( ) 

 
Where f(x) and f(y) are the probability density 

functions of X and Y and f(x,y) is the joint probability 
density function of X and Y. In the case of no 
dependency between two variables, joint probability 
density f(x,y) would be equal to the product of 
probability densities, so MI equals to zero. 

Mutual information measures dependencies between 
variables without any assumption concerning the 
linearity of dependency[8]. In fact, MI is considered as 
the information each variable describes about the other 
one[6].  

B. mRMR 

The ultimate aim of input variable selection is to 
recognize input set, which are most dependent on the 
output. This is ideally achieved by Max-Dependency 
according to following relationship: 

     (   )     ({         }  )    ( ) 
 

Where S is selected variable set with m variables and y is the 

target value. 
However, calculation of D involves computation of 

multivariate density p(x1 ,..,xm)  and  p(x1 ,.., xm ,y) which 
introduces some difficulties including: i) large number of 
samples are required which might be unavailable ii) in 
order to estimate multivariate density function, it is 
required to compute inverses of high dimensional 
matrices which is burdensome[13][14]. 

To deal with these limitations, especially in the case 
of large number of variables, MI based methods usually 
tend to use bivariate statistics [6]. For instance, an 
alternative approximation for Max-Dependency based on 
maximal relevance (MR) could be used which is defined 
as: 
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Selecting input variables based on this criterion may 
not yield optimum input variable set. Reference [15] 
emphasizes that there is a distinction between relevance 
to target and usefulness of a variable. Redundancy 
between variables may make some variables useless for 
forecasting purposes[6]. 

Max relevance algorithm lacks a procedure for 
discriminating redundancy; in order to avoid this issue, 
an auxiliary minimal redundancy (mR) condition may be 
considered as follow: 
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In order to exploit advantages of both above criteria, 
minimal-redundancy maximal relevance (mRMR) [13] is 
defined as: 

      (   )                 ( ) 

Consequently, input variables are selected based on 
both relevance with respect to target value and 
independence with respect to other selected variables. 
Intuitively, mRMR yields better performance in 
comparison with mR and MR alone[6][16]. 



In practice, mainly incremental search strategies are 
applied to find the suitable set of variables. Incremental 
search methods selects one individual variable at each 
step and add to the selected set; the most significant 
variable is selected and then the procedure continues 
iteratively according to the fulfillment of the criteria[6]. 

 

C. Partial Mutal Information 

MI cannot deal with redundancy among variables 
directly. Partial mutual information (also known as 
conditional mutual information) was proposed in [11] to 
rectify this problem . As a definition, partial mutual 
information is the amount of information shared between 
two variables considering pre-existing variables. The 
PMI between variable x and target y with respect to 
selected set of w is defined as[4]: 
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Where    x’ = x – E [ x|z]   ;  y’= y – E [y|z] 

Operator E[.] refers to the expectation of variable. 
The variables x’ and y’ are residuals of variables x and y 
regarding selected set z. The discrete version of partial 
mutual information criterion is given by[4]: 
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Interpretation of different values for MI and PMI are 
summarized in Table I. 

III. PROPOSED METHOD 

mRMR algorithm has a few deficiencies including: i) 
Min-redundancy criterion has been defined loosely as: to 
minimize relevance between selected variables. 
However, to be more precise, the relevance between 
selected variables with respect to the target is the critical 
factor for detecting redundancy. ii) Relationships 
between selected variables and non-selected variables 
have not been explicitly considered. For instance, if a 
non-selected variable has a high MI value, there must be 
at least one variable in the selected set that is highly 
relevant to it. No criterion exists in mRMR to ensure 
such features. 

TABLE I. INTERPRETATION OF DIFFERENT VALUES FOR MUTUAL 

INFORMATION (MI) AND PARTIAL MUTUAL INFORMATION (PMI) 

 High value Low value 

 

 

PMI(y,x|z) 

X is independent of z 
with regard to 

forecasting target y 

Z is a well-suited 
representative of x with 

regard to forecasting 

target y 

 

MI(x,y) 
X and Y is highly 

correlated 
X and Y is almost 

independent  

 

To overcome these shortcomings, we propose a 
method that utilizes partial mutual information (PMI) to 
modify redundancy criteria and captures dependencies 
between selected and non-selected variables. Following 
paragraphs will firstly define and elaborate three desired 
characteristics of a proper input variable set. Then they 
are formulated based on MI and PMI. These 
characteristics and formulations are defined such that 
only bivariate MI and PMI calculations are required; 
thus the whole algorithm is robust, easy-to-implement 
and time efficient. 

 A proper set of selected input variables own the 
following features: 

1- Max relevance of the selected inputs to target 
value: selected inputs should have the largest relevance 
to the target variable; which is basically the same as 
maximal relevance criterion. Therefore sum value of all 
mutual information values between selected inputs and 
target variable should be maximized: 

     (   )      
 

    
∑  (    )

    

      ( ) 

Where S denotes the selected set. 

2- Max independent relevance of selected variables 
to the target value: selected inputs should show minimal 
redundancy with each other. In partial mutual 
information terms, it means that PMI between each two 
selected variables and target value should indicate high 
values which ensure selected variables are not only 
relevant to the target value, but also independent from 
each other (without redundancy). In other words, when 
PMI between two selected variables and target value is 
low (close to zero), one of those selected variables could 
be removed without having any negative effects on the 
utility of the selected input set.   

We propose optimization problem in (9) to represent 
this criterion: 
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3- Min independent relevance of non-selected 

variables to target value: non-selected variables are 
candidates that do not belong to selected input set. Any 
non-selected variable should have at least one of these 
two features: (i) it has insignificant relevance to target 
value (First criterion (9) ensures this feature is taken into 
account in our method). (ii) If it is relevant to target 
value, there is at least one variable in the selected input 
set which is highly relevant to the not-selected; hence it 
is unnecessary that selected set includes this non-selected 
variable. As mentioned earlier, low values of         
PMI(Y, X|Z) indicates that X is highly relevant to Z 
while trying to forecast target value Y. Therefore in PMI 
terms, for each non-selected variable, the PMIs between 
the non-selected variable and at least one of the selected 



variables with respect to target value should indicate low 
values.  

Fig. 2 exemplifies a proper set of selected variables 
with respect to this feature. Although variable Xu2 has a 
high MI value with respect to the target value, it belongs 
to non-selected set; because low value for             
PMI(Y, Xu2|Xs1) ensures that Xs1 is a well-suited variable 
representing Xu2; therefore Xu2 is removed from selected 
set, correctly. However, being a careful observer, one 
might notice that PMI(Y, Xu2|Xs2) has a high value, but it 
does not have a negative impact on appropriateness of 
the selected input variables; because only one variable 
(Xs2) is sufficient to represent Xu2 in the selected input 
set. In other words, only the minimum value of PMI 
between the non-selected value and each of the selected 
values is important. Other members of non-selected set 
should also demonstrate the same features. 

We define the formula (10) to approximate above-
mentioned criterion: 
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Where U is the subset of not-selected variables. The 
“min” operator inside the objective function ensures that 
only the minimum value of PMI between not-selected 
value and each of the selected values are considered. 
Sigma also indicates that the criterion should be studied 
for all members of not-selected set. 

We call the criterion combining all three objective 
functions above PMI based max relevance-min 
redundancy (PMI-mRMR) which could be stated in the 
simplest form as the following optimization problem: 

 

                         (  ) 
 

 
The optimization problem may be modified or 

redefined to satisfy arbitrary additional constraints; for 
instance, size of selected set (number of selected input 
variables) may be specified as a constraint to the 
problem. 

In order to solve the optimization problem, we 
perform a global search, in opposition to conventional 
incremental search. Incremental search strategies 
commence at a location and move through the searching 
space by adding one variable at a time. Therefore, they 
may achieve a locally optimal solution and terminate 
prematurely. Optimality degree of the solution highly 
depends on the amount of search space that is explored. 
Accordingly, global methods yield to better solutions 
because they consider more possible combinations. 

 

Not Selected Set Selected Set

Xu1

Xu2

.

.

.

Xun

Xs1

Xs2
PMI(Y,Xu1|Xs2)=0.7

PMI(Y,Xu1|Xs1)=0.01

(MI(Y, Xu2)=0.8)

Fig.2 Suitable sets of selected and non-selected input variables with 
respect to Xu2. Although Xu2 is highly relevant to target value 
(MI(Y,Xu2) is high), low value of PMI(Y,Xu2|Xs1) ensures that Xs1 is a 
proper representative for Xu2 in the selected set. 

 

IV. CASE STUDY 

D. Test problems 

In order to test performance of newly proposed input 
variable selection algorithms, they are fed several benchmark 
synthetic data. Use of synthetic data, in comparison to real-
world data, is more useful because true effective variable sets 
are known beforehand; thus algorithms are evaluated more 
accurately [2]. 

The proposed algorithm is tested on three data sets 
generated by both linear and non-linear models. These models 
were also used in some other papers to evaluate credibility of 
proposed algorithms. 

i) AR9- Linear Autoregressive time-series, order 9 

                                 (  ) 

Where et is a Gaussian random noise with a zero mean and 
unit standard deviation. 

ii) TAR2-Threshold Autoregressive time-series, order2 

   {
                                  
                                                 

  (  ) 

iii) Non-linear system 

    (  )
     (  )        (  )     (  ) 

E. Data 

For the first two time series models, 520 data points 
were generated; we discarded first 20 points to decrease 
the effect of an arbitrary initialization. Candidate set 
consists of the first 15 lags of X. For the non-linear 
model, 15 standard Gaussian random variables were 
generated (x1 to x15), each 500 data points long. Target 
value (y) was generated using x2, x6 and x9; and x1 to x15 
were chosen as candidate set of potential inputs. 



 

F. Results 

The proposed method, PMI based max relevance-min 
redundancy (PMI-mRMR), was evaluated for two 
scenarios where true numbers of effective input 
variables: i) were given to the optimization problem as a 
constraint. ii) were not specified. True numbers of 
effective variables for test problems are respectively: 3, 2 
and 3. The results are shown in table 2. 

We used Genetic Algorithm (G.A) to solve optimization 
problem of the algorithm. However, we observed that the 
algorithm is such highly time efficient that even conducting an 
exhaustive search for the optimum solution is reasonable for 
the test functions evaluated. For instance, for the first scenario, 
it took only 0.18 seconds, on average, to execute exhaustive 
search for each of the models; all computations are performed 
on a Pentium IV with 3 GB of RAM at 2GHz. All MI and PMI 
measurements were done using Feast toolbox in MATLAB 
provided by [5] available at [17].    

Proposed algorithm works properly if number of selected 
variables is given (first row in table 2); for TAR2 and Non-
linear models, correct variables are selected. Although, in the 
case of AR9 model, one of the variables is identified incorrect 
(lag 11 instead of 1), further investigations indicated that 
second best answer of the optimization problem (11) is actually 
the expected values (lags 1, 4 and 11). Therefore, for 
forecasting applications, it is recommended to store first few 
best answers provided by the algorithm and test their 
predictability performance separately. 

 On the other hand, when number of effective variables is 
not already specified (second row in table II), although no 
irrelevant or redundant variables are selected, the algorithm 
tends to under-estimate size of the input variable set; one 
effective variable is ignored for each of the test problems. 

In comparison with other algorithms, results confirm that 
the PMI based algorithm performs reasonably well with high 
computational efficiency. All other algorithms are unable to 
identify correct input variable set; they choose several 
redundant variables due to their inherent deficiencies. 

 

TABLE II. RESULTS OF INPUT SELECTION ALGORITHMS ON TEST 

PROBLEMS 

 

Algorithms 
AR9 
(1,4,9) 

TAR2 
(6,10) 

Non-linear 

system 
(X2,X6,X9) 

 PMI-mRMR 

Scenario I 
Lags 4 9 11

a
 Lags 6 10 X2 X6 X9 

PMI-mRMR 

Scenario II 
Lags 4 9 Lag 10 X2 X6 

Correlation [18] Lag 4,13 and 

others 

Lag 10 and 

others 
X2 and others 

Trial- Method[18] Lag 4,9 and 

others 

Lag 10 and 

others 
X2 X6 

D-value [18] Lag 4 and 

others 

Lag 10 and 

others 

X2, X6 and 

others 

Supervised- SOM[3] Lag 1,3,5, 

7,8,9 
Lag 3,4,5, 6 X2 X14 

a. second best answer is the correct value: 1, 4, 11 

 

V. CONCLUSION 

 
 Selecting proper Input variable is a crucial task in time 

series forecasting. The motivation behind this research was to 
formulate a simple, straightforward and easy-to-implement, yet 
effective, input variable selection algorithm. Therefore, a 
criterion based on partial mutual information was proposed and 
tested on benchmark time series with known dependence 
attributes. Results confirm credibility of the proposed method 
to capture linear and non-linear dependence between variables. 
Moreover, it is immune to redundancies between variables. 
Since the proposed method is based on only bivariate MI and 
PMI measurements, it is robust and computationally efficient. 
As a result, the algorithm potentially suits well for real-world 
problems with large and high dimensional data sets. 
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