
Overrun-freeness verification of Rate-Monotonic
Least-Splitting Real-Time Scheduler on Multicores

Mahmoud Naghibzadeh and Amin Rezaeian
Department of Computer Engineering

Ferdowsi University of Mashhad, Mashhad, Iran
naghibzadeh@um.ac.ir, amin.rezaeian@stu-mail.um.ac.ir

Abstract—In real-time task scheduling, semi-partitioning
allows some tasks to be split into portions and each portion to
be assigned to a different core. This improves the performance
of system but by counting each portion as a separate task it
increases effective number of tasks to be scheduled. This
research suggests a semi-partitioning method and assigns each
partition to a separate core to be scheduled by the well-known
scheduler called Rate-Monotonic (RM). To assure non-
concurrent execution of portions of a task, there is no need to
define release time for any portion. It is theoretically proven
that with the proposed semi-partitioning and RM scheduling, all
cores always run their tasks overrun-free. Besides, experimental
results show that overall system utilization is noticeably boosted
and also number of broken tasks is not higher than the best RM-
based methods.

keywords: rate-monotonic least splitting, semi-partitioning,
hard real-time scheduling

I. INTRODUCTION
A multicore system is composed of several processing

elements, called cores, in which all cores can do their
processing in parallel. They all share the same main memory
but each can have its own private cache memory. With this
structure, a sequential computation can be shared among
many cores if not more than one core is executing the
computation simultaneously [1]. While manufacturers tend to
use multicore processors in new artifacts, software facilities to
use all available power of multicores are yet to develop [2].
Scheduling algorithms play a significant role in overrun-
freeness verification of hard real-time systems, i.e., making
sure that every request is executed before its deadline.
However, being multiprocessor/multicore adds a new
dimension to the analysis; how to assign tasks or their requests
to different processors/cores.

 In this paper, the problem of scheduling periodic hard
real-time task sets with implicit deadlines, i.e., when the
relative deadline of a request is equal to its minimum request
interval, on multicores is investigated. One way of
categorizing scheduling methods for multicores is global,
partitioned, and semi-partitioned, categories. In global
scheduling, there is only one queue (or pool) of requests and
each core takes its next request for execution from this queue.
In partitioned, the set of tasks are divided and each partition is
assigned to a separate core. Finally, in semi-partitioned, some
tasks are wholly assigned to specific cores and some tasks are
shared among more than one cores, with the restriction that

not more than one core can work on a request of the shared
task, simultaneously.

It is usually the case that semi-partitioned scheduling leads
to a higher overall utilization of the whole system than global
scheduling, for both fixed-priority and dynamic priority.
However, partitioning is a time consuming task which is
computationally equivalent to bin-packing problem that is
known to be an NP-hard problem [3]. The good side of it is
that portioning is done off-line. Therefore, for small number
of tasks the time taken by partitioning is tolerable, but for large
number of tasks efficient heuristics are thought. A semi-
partitioned approach binds a disjoint set of whole tasks to each
core and lets remaining tasks be executed on multiple cores
while everyone’s share is defined. In one of the researches on
semi-partitioned methods in which Rate-Monotonic (RM)
scheduler is used in each processor, worst case utilization is
reported to be 0.693 [4].

In this paper, a different semi-partitioned scheduling
algorithm called Rate-Monotonic Least Splitting (RMLS) is
proposed for multicores. The scheduler of each core is
basically RM with very minor changes to avoid simultaneous
execution of a shared task by more than one processor. Using
this algorithm, the number of split tasks is at the most equal to
number of used cores minus one. Besides, no task is split in
more than two portions. Splitting fewer tasks has two benefits,
(1) effective number of tasks in the Liu and Layland’s bound,
i.e., (n)=2(21/n-1), is reduced which in turn (2) increases
overall system utilization.

 The following notations are used throughout the paper. n:
total number of tasks, n1: total number of task and subtasks,
m: total number of available cores (or processors), m1: total
number of used cores, i: ith task, Ti: minimum interarrival time
between any two consecutive requests of task i, Ci: maximum
computation time needed by every request of task i with Ci
Ti, and finally : the utilization of task i which is equal to
Ci/Ti.

In Section 2 related work is briefly reviewed: Section 3
describes the proposed RMLS semi-partitioned scheduling,
Section 4 is the theoretical foundations and overrun-freeness
proof of the algorithm, in Section 5 the algorithm is simulated
and results are documented, and finally a summary and future
work is presented in Section 5.

II. RELATED WORK
Many researchers have studied the semi-partitioning

problem with Earliest Deadline First (EDF) scheduling [5-7].

The best known worst-case utilization bound using semi-
partitioned EDF scheduling on multicores is 65% for Earliest
Deadline Deferrable Portion (EDDP) algorithm [8]. Later,
they proposed EDF with Window-constraint Migration (EDF-
WM) which has less context switch overhead [9]. The NPS-F
is a configurable method that has a tradeoff parameter
between utilisation and preemptions [10]. On the other hand,
relatively fewer algorithms are proposed for fixed-priority
algorithms [11]. Rate Monotonic Deferrable Portion (RMDP)
and Deadline Monotonic with Priority Migration (DM-PM)
fixed-priority algorithms are proposed by Kato et al [12, 13].
The worst-case utilization bound of those algorithms is 50%.
The concept of portion and how a shared request migrates
between two cores is explained in the same references.
PDMS_HPTS_DS is proposed by Lakshmanan et al. [2]
which reaches 65% utilization. This bound can be extended to
69.3% for light tasks, i.e., tasks with utilizations less than 0.41.
Guan et al. proposed two algorithms called SPA1 and SPA2
[4, 11]. SPA2 has a pre-assignment phase in which special
heavy tasks are assigned to processors, first. The number of
split tasks is m-1 and SPA2 reaches the worst-case utilization
bound of 0.693. This is equal to the Liu and Layland bound
[14] for single processor systems. However, the worst-case
bound in SPA2 is calculated using n which is the cardinality
of the whole task-set, and every processor’s utilization must
be less than or equal to that. For further reading on real-time
scheduling algorithms and related issues refer to [15].

III. SEMI-PARTITIONED RMLS
Basic idea of the semi-partitioned method which is being

presented here is presented in workshop [16]. There, the
fundamental theorem which guarantees the overrun-freeness
of system was not proven. In addition, none of the other
theoretical results provided by this paper have appeared in that
paper. A brief introduction of the method is repeated here and
new findings and performance evaluations follow. The
method is called Rate-Monotonic Least splitting (RMLS)
because it is a semi-partitioned method in which only m1-1
tasks are split.

 Our experiments show that achieved processor utilization
is higher than the best known results for general real-time
systems, i.e., no restrictions on utilization of individual tasks,
running with fixed-priority schedulers up to now. The
proposed assignment algorithm is composed of two steps, see
Algorithm 1.

In Step 1 (Lines 1 to 9), all pairs of tasks, i, and j, with
total utilizations satisfying (3) Ui + Uj 1 are found and
each pair is assigned to a separate processor. Meanwhile,
heavy tasks, i.e. a task l with Ul (2), are recognized and
each such task is assigned to a separate processor. The
scheduler of each core with two tasks is taken to be Delayed
Rate Monotonic (DRM) which is a modified version of RM.
Details of how DRM works are explained in [17]. Any system
composed of two tasks with utilization less than or equal to
one can run overrun-free with DRM. The scheduler of all
other sets will be the conventional RM.

Step 1 serves two purposes: (1) it increases the number of
cores with high, and (2) it increases the number of processors

with no split task, i.e., decreases the total number of split-
tasks.

Algorithm 1. Packing algorithm

In step 2 (Lines 11 to 16.), all unassigned task are sorted in
decreasing order of RM priorities, i.e., non-descending order
of their request interval lengths. An empty core is picked and
starting from the first unassigned task, tasks are assigned to
the core one at a time until the current task, say task i, will
make the core overloaded. Task i is also assigned to the core
but one of the assigned tasks, except the one which is shared
with the previous core, is selected to be split and shared with
the next core. The split task may happen to be i. In the
following example a scenario is explained and it is clarified
what criteria is used to select a task to be split. The selected
task is split into two subtasks such that the first subtask is
assigned to the current core and makes it full with respect to
Liu and Layland’s bound for the respective number of tasks
and subtasks in this processor.

A new core is taken and the second portion of the current
split task is assigned to it. The process of assigning tasks to
cores continues until all tasks are assigned. If there are enough
cores the assignment successfully complete.

Example 1: suppose the current core is pk and task i is the
task which is split into two portions i1 and i2 with execution
times Ci1 and Ci2, respectively. The utilization of i1 is

 for core pk. A new core, pk+1, is taken and the second
portion of task i, i2, is assigned to this core. Although the
actual utilization of this portion is , its effective utilization
on core pk+1 is taken to be

1

2
2

ii

i
i CT

C
u (1)

This is because, in the worst case, a request from subtask i2
will have only Ti-Ci1 time to be executed. Effective utilization
of the subtask is always greater than or equal to its actual
utilization. Therefore, .
Since higher utilization loss causes lower total utilization of
system, when we are forced to split a task, a whole task with
the least utilization loss is selected.

Data: Task-Set
Result: Processor assignments
1 Find tasks with largest and smallest utilizations;
2 While smallest and the largest tasks are different
3 If it’s worth assigning them to a separate processor
4 do so and find the next largest and smallest;
5 Else if it’s worth to assign largest task to a separate
6 processor do so and find the next largest;
7 Else if sum of both utilization is too large
8 discard current largest and find next largest;
9 Else discard current smallest and find next smallest;
11 Take an unassigned processor as current-processor
12 While there is an unscheduled task
13 Find the unscheduled task with highest priority as
 current-task and assign it to current-processor;
14 If current-processor is not overrun-free
15 Remove the task with least loss from current-processor as
 split-task, split it and assign its first-portion to
 current-processor;
16 Take a new processor and make it current-processor and
 assign the second-portion of the task to it;

IV. OVERRUN-FREENESS VERIFICATION OF RMLS
In this section, we assume that two processors pk and pk+1

share a task i = (Ti, Ci) and for each request of the common
task Ci1 is executed by pk and Ci2 is executed by pk+1 such that
Ci=Ci1+Ci2.

Lemma 1: If Liu&Layland’s bound is satisfied by all
processors, the second part of a request from a shared task, i,
between two processors, pk and pk+1, never overruns.

Proof: The preference of executing a request from a
shared task i between processors pk and pk+1 is always given
to pk. Whenever pk is not executing such a request pk+1 will be
executing it unless the execution of the second part of the
request is completed. This is because this request has the
highest priority in pk+1. Therefore, in the worst case, the
execution of the second part of the task will be complete after
a time length of Ci is passed since the request is received,
where Ci Ti.

Definition 1: a conflict-idle period is a time interval in
which both processors, pk and pk+1, that share the shared task,

i, want to run a request from the task but because pk is given
a higher precedence it will proceed with the execution; and at
the same time, there is no other pending request for processor
pk+1 within this period and it will be idle. Note that, not all
conflict periods of processors pk and pk+1 are necessarily
conflict-idle because if there are other requests for pk+1 it will
proceed with their execution and hence it will not be idle.

Lemma 2: If the utilization of each of the two processors,
pk and pk+1, which share a tasks, i, is not higher than Liu and
Layland’s bound and there is no conflict-idle period with
respect to the share task, both processors always run their
corresponding tasks safely.

Proof: Since processor pk has a higher precedence to run
the shared task i than pk+1, this processor will always run safe.
On the other hand, the only effect that pk can have on tasks of
processor pk+1 is that it may cause the execution of the second
part of a request from the shared task to be postponed. This
may harm the safety of the shared task in pk+1 but it may be
beneficial to other tasks of this processor. However, in Lemma
1 it is proven that the second part of a request from a shared
task never overruns.

Lemmas 1 and 2 will hold even if actual utilization of
subtask i2, i.e. , is used in the computation of utilization of
pk+1. It is for compensation of possible conflict-idle periods
that, in general, effective utilization of the shared task on
processor pk+1 is computed as .

Definition 2: Effective utilization of a request (not a task
or subtask) at a given time t is defined as below:

For example, suppose task = (10, 4) has generated a
request at time 20 and current time is 26 and up to now this
request has received 1.5 unit of CPU time then the effective
utilization of the request at time 26 is (4-1.5)/(30-26)=0.625.

Lemma 3: Suppose two processors pk and pk+1 share a
task i. Effective utilization of a request from i for processor
pk+1 is maximal at the exact time when the execution of
processor pk’s share of this request is completed and pk starts
this request immediately after it is generated and continues
until completion.

Proof: Suppose as soon as a request from i is generated at
a time t0 processor pk starts executing it until its share is
finished at time t0+Ci1. At this time effective utilization of the
subtask i2 on pk+1 is equal to . We show that this is in
fact maximal effective utilization of i2, which means subtask

i2’s effective utilization never becomes greater than this.
Recall that requests of task i have the highest priority in
processor pk+1. This implies that any request from this task
will be immediately pick up for execution by pk+1 if pk is not
executing it. On the other hand, if the execution of the second
part of a request from task i is completed by processor pk+1,
then its effective utilization becomes zero and remains zero
until a new request is generated from the same task. With these
points in mind, consider a situation where at any time t1, t0
t1 t0+Ci, processor pk has executed this request for duration
of length a, a Ci1, and processor pk+1 has executed the same
request for duration b, b < Ci2 and a+b = t1-t0. See Figure 1.

Fig. 1. A Sapmle execution of parts of a split task.

At time t1 effective utilization of i2 is .

Since a Ci1,

 =

To show that maximal effective utilization of i2 is it has

to be shown that .

That is,
Or,

Or,

which is always true because b is positive and .

 Theorem 1: If effective utilization of each of two
processors pk and pk+1 which share a task i, is not greater than
Liu and Layland’s bound, both processors will always safely
run their corresponding tasks.

Proof: This theorem is similar to Lemma 2 in which it is
assumed that there will be no conflict-idle period. However,
here, this restriction is removed. In Lemma 2, it is mentioned
that processor pk+1 does not have any influence on the
execution of tasks and subtasks assigned to processor pk. Since

t0 t1

i1 in pk

i2 in pk+1

time

a

b

Liu and Layland’s bound is satisfied for pk it will always
safely run its assigned tasks. In the packing algorithm, the
utilization of the shared task on processor pk+1 is computed as

 which, based on Lemma 3, is the maximum utilization
which i2 can ever impose on the processor. On the other hand,
the utilization is taken to be less than or equal Liu and
Layland’s bound. Therefore, this processor will always safely
run its assigned tasks, too.

V. SIMULATIONS
In this section, the proposed method is compared with

SPA2. We used UUnifast algorithm [18] to produce random
unbiased task-sets in which each task’s utilization must not
exceed one. For each category of task sets, e.g., task sets with
total utilization equal to 4, the total of 3000 task-sets, with
different number of tasks are generated. For RLMS we do not
have to know the number of cores in advanced but we must
know it for SPA2. Therefore, for a fair comparison, for SPA2
and for each tasks set, we had to find the overrun-free case
with the least number of processors. As the minimum number
of processors needed for each method are found, the average
utilization of all processor is calculated by dividing overall
utilization of the task-set by the number of processors used.

To be brief, only two experiments are shown here. In the
first experiment, for task-sets with total utilization equal to 16
and task sets of sizes 38, 48, 67, 106, and 183, the calculated
average utilizations are depicted in Figure 2. RLMS leads to
an average utilization which is always higher than that of
SPA2. Figure 3 shows number of cores used by each method.

Fig. 2. Average of performance, by each method, for U=16

Fig. 3. Number of cores used for each method, for U=16

In the second experiment, rates of schedulable tasks are
compared. Figure 4 shows the result of one such experiment
where average utilization of task sets grows from 0.5 to 1.0.

Fig. 4. Rate of schedulable task-sets

More experiments should be performed on RMLS and also
should be compared with other methods. Finding a utilization
bound for RMLS is in progress.

REFERENCES
[1] C.L. Liu, “Scheduling algorithms for multiprocessors in a hard real-

time environment”. JPL Space Programs Summary, vol. 37-60, pp. 28–
31, 1969.

[2] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned xed-
priority preemptive scheduling for multi-core processors,” in Real-
Time Systems, 2009. ECRTS’09. 21st Euromicro Conference on. IEEE,
2009, pp. 239–248.

[3] M. R. Gary and D. S. Johnson: “Computers and Intractability; A Guide
to the Theory of NP-Completeness” (W. H. Freeman & Co.), 1979

[4] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority
multiprocessor scheduling with liu and layland's utilization bound,”
in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2010 16th IEEE. IEEE, 2010, pp. 165–174.

[5] J. Anderson, V. Bud, and U. Devi, “An edf-based scheduling algorithm
for multiprocessor soft real-time systems,” in Real-Time
Systems, 2005. (ECRTS 2005). Proceedings. 17th Euromicro
Conference on, 2005, pp. 199–208.

[6] B. Andersson and E. Tovar, “Multiprocessor scheduling with few
preemptions,” in Embedded and Real-Time Computing Systems and
Applications, 2006. Proceedings. 12th IEEE International Conference
on. IEEE, 2006, pp. 322–334.

[7] A. Burns, R. I. Davis, P. Wang, and F. Zhang, “Partitioned edf
scheduling for multiprocessors using a c=d task splitting scheme,”
Real-Time Systems, vol. 48, no. 1, pp. 3–33, 2012.

[8] S. Kato and N. Yamasaki, “Portioned edf-based scheduling on
multiprocessors,” in Proceedings of the 8th ACM international
conference on Embedded software. ACM, 2008, pp. 139–148.

[9] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned scheduling
of sporadic task systems on multiprocessors,” in Real-Time Systems,
2009. ECRTS’09. 21st Euromicro Conference on. IEEE, 2009, pp.
249–258.

[10] Bletsas, K. & Andersson, B. “Preemption-light multiprocessor
scheduling of sporadic tasks with high utilisation bound” Real-Time
Systems, vol. 47, no. 4, pp. 319-355, 2011

[11] N. Guan and W. Yi, “Fixed-priority multiprocessor scheduling:
Critical instant, response time and utilization bound,” in Parallel and
Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, 2012, pp. 2470–
2473.

[12] S. Kato and N. Yamasaki, “Portioned static-priority scheduling on
multiprocessors,” in Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on. IEEE, 2008, pp. 1–
12.

[13] S. Kato and N. Yamasaki, “Semi-partitioned xed-priority scheduling
on multiprocessors,” in Real-Time and Embedded Technology and
Applications Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009,
pp. 23–32.

[14] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal of the
ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[15] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys (CSUR), vol. 43,
no. 4, p. 35, 2011.

[16] M. Naghibzadeh, P. Neamatollahi, R. Ramezani, A. Rezaeian, and T.
Dehghani, “Ef cient semi-partitioning and rate-monotonic scheduling
hard real-time tasks on multi-core systems,” in Industrial Embedded
Systems (SIES), 2018 8th IEEE International Symposium on. IEEE,
2013, pp. 85–88.

[17] M. Naghibzadeh, and K.H. Kim “The yielding-first rate-monotonic
scheduling approach and its efficiency assessment”, International
Journal of Computer System Science & Engineering, 2003, pp. 173-
180

[18] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154,
2005.

