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Abstract—In real-time task scheduling, semi-partitioning 
allows some tasks to be split into portions and each portion to 
be assigned to a different core. This improves the performance 
of system but by counting each portion as a separate task it 
increases effective number of tasks to be scheduled. This 
research suggests a semi-partitioning method and assigns each 
partition to a separate core to be scheduled by the well-known 
scheduler called Rate-Monotonic (RM). To assure non-
concurrent execution of portions of a task, there is no need to 
define release time for any portion. It is theoretically proven 
that with the proposed semi-partitioning and RM scheduling, all 
cores always run their tasks overrun-free. Besides, experimental 
results show that overall system utilization is noticeably boosted 
and also number of broken tasks is not higher than the best RM-
based methods. 

keywords: rate-monotonic least splitting, semi-partitioning, 
hard real-time scheduling 

I.  INTRODUCTION 
A multicore system is composed of several processing 

elements, called cores, in which all cores can do their 
processing in parallel. They all share the same main memory 
but each can have its own private cache memory. With this 
structure, a sequential computation can be shared among 
many cores if not more than one core is executing the 
computation simultaneously [1]. While manufacturers tend to 
use multicore processors in new artifacts, software facilities to 
use all available power of multicores are yet to develop [2]. 
Scheduling algorithms play a significant role in overrun-
freeness verification of hard real-time systems, i.e., making 
sure that every request is executed before its deadline. 
However, being multiprocessor/multicore adds a new 
dimension to the analysis; how to assign tasks or their requests 
to different processors/cores. 

 In this paper, the problem of scheduling periodic hard 
real-time task sets with implicit deadlines, i.e., when the 
relative deadline of a request is equal to its minimum request 
interval, on multicores is investigated. One way of 
categorizing scheduling methods for multicores is global, 
partitioned, and semi-partitioned, categories. In global 
scheduling, there is only one queue (or pool) of requests and 
each core takes its next request for execution from this queue. 
In partitioned, the set of tasks are divided and each partition is 
assigned to a separate core. Finally, in semi-partitioned, some 
tasks are wholly assigned to specific cores and some tasks are 
shared among more than one cores, with the restriction that 

not more than one core can work on a request of the shared 
task, simultaneously.  

It is usually the case that semi-partitioned scheduling leads 
to a higher overall utilization of the whole system than global 
scheduling, for both fixed-priority and dynamic priority. 
However, partitioning is a time consuming task which is 
computationally equivalent to bin-packing problem that is 
known to be an NP-hard problem [3]. The good side of it is 
that portioning is done off-line. Therefore, for small number 
of tasks the time taken by partitioning is tolerable, but for large 
number of tasks efficient heuristics are thought. A semi-
partitioned approach binds a disjoint set of whole tasks to each 
core and lets remaining tasks be executed on multiple cores 
while everyone’s share is defined. In one of the researches on 
semi-partitioned methods in which Rate-Monotonic (RM) 
scheduler is used in each processor, worst case utilization is 
reported to be 0.693 [4]. 

In this paper, a different semi-partitioned scheduling 
algorithm called Rate-Monotonic Least Splitting (RMLS) is 
proposed for multicores. The scheduler of each core is 
basically RM with very minor changes to avoid simultaneous 
execution of a shared task by more than one processor. Using 
this algorithm, the number of split tasks is at the most equal to 
number of used cores minus one. Besides, no task is split in 
more than two portions. Splitting fewer tasks has two benefits, 
(1) effective number of tasks in the Liu and Layland’s bound, 
i.e., (n)=2(21/n-1), is reduced which in turn (2) increases 
overall system utilization. 

 The following notations are used throughout the paper. n: 
total number of tasks, n1: total number of task and subtasks, 
m: total number of available cores (or processors), m1: total 
number of used cores, i: ith task, Ti: minimum interarrival time 
between any two consecutive requests of task i, Ci: maximum 
computation time needed by every request of task i with Ci  
Ti, and finally : the utilization of task i which is equal to 
Ci/Ti. 

In Section 2 related work is briefly reviewed: Section 3 
describes the proposed RMLS semi-partitioned scheduling, 
Section 4 is the theoretical foundations and overrun-freeness 
proof of the algorithm, in Section 5 the algorithm is simulated 
and results are documented, and finally a summary and future 
work is presented in Section 5. 

II. RELATED WORK 
Many researchers have studied the semi-partitioning 

problem with Earliest Deadline First (EDF) scheduling [5-7].  



The best known worst-case utilization bound using semi-
partitioned EDF scheduling on multicores is 65% for Earliest 
Deadline Deferrable Portion (EDDP) algorithm [8]. Later, 
they proposed EDF with Window-constraint Migration (EDF-
WM) which has less context switch overhead [9]. The NPS-F 
is a configurable method that has a tradeoff parameter 
between utilisation and preemptions [10]. On the other hand, 
relatively fewer algorithms are proposed for fixed-priority 
algorithms [11]. Rate Monotonic Deferrable Portion (RMDP) 
and Deadline Monotonic with Priority Migration (DM-PM) 
fixed-priority algorithms are proposed by Kato et al [12, 13]. 
The worst-case utilization bound of those algorithms is 50%. 
The concept of portion and how a shared request migrates 
between two cores is explained in the same references. 
PDMS_HPTS_DS is proposed by Lakshmanan et al. [2] 
which reaches 65% utilization. This bound can be extended to 
69.3% for light tasks, i.e., tasks with utilizations less than 0.41. 
Guan et al. proposed two algorithms called SPA1 and SPA2 
[4, 11]. SPA2 has a pre-assignment phase in which special 
heavy tasks are assigned to processors, first. The number of 
split tasks is m-1 and SPA2 reaches the worst-case utilization 
bound of 0.693. This is equal to the Liu and Layland bound 
[14] for single processor systems. However, the worst-case 
bound in SPA2 is calculated using n which is the cardinality 
of the whole task-set, and every processor’s utilization must 
be less than or equal to that. For further reading on real-time 
scheduling algorithms and related issues refer to [15]. 

III. SEMI-PARTITIONED RMLS 
Basic idea of the semi-partitioned method which is being 

presented here is presented in workshop [16]. There, the 
fundamental theorem which guarantees the overrun-freeness 
of system was not proven. In addition, none of the other 
theoretical results provided by this paper have appeared in that 
paper. A brief introduction of the method is repeated here and 
new findings and performance evaluations follow. The 
method is called Rate-Monotonic Least splitting (RMLS) 
because it is a semi-partitioned method in which only m1-1 
tasks are split. 

 Our experiments show that achieved processor utilization 
is higher than the best known results for general real-time 
systems, i.e., no restrictions on utilization of individual tasks, 
running with fixed-priority schedulers up to now. The 
proposed assignment algorithm is composed of two steps, see 
Algorithm 1. 

In Step 1 (Lines 1 to 9), all pairs of tasks, i, and j, with 
total utilizations satisfying (3)  Ui + Uj  1 are found and 
each pair is assigned to a separate processor. Meanwhile, 
heavy tasks, i.e. a task l with Ul  (2), are recognized and 
each such task is assigned to a separate processor. The 
scheduler of each core with two tasks is taken to be Delayed 
Rate Monotonic (DRM) which is a modified version of RM. 
Details of how DRM works are explained in [17]. Any system 
composed of two tasks with utilization less than or equal to 
one can run overrun-free with DRM. The scheduler of all 
other sets will be the conventional RM.  

Step 1 serves two purposes: (1) it increases the number of 
cores with high, and (2) it increases the number of processors 

with no split task, i.e., decreases the total number of split-
tasks. 

  
Algorithm 1. Packing algorithm 

In step 2 (Lines 11 to 16.), all unassigned task are sorted in 
decreasing order of RM priorities, i.e., non-descending order 
of their request interval lengths. An empty core is picked and 
starting from the first unassigned task, tasks are assigned to 
the core one at a time until the current task, say task i, will 
make the core overloaded. Task i is also assigned to the core 
but one of the assigned tasks, except the one which is shared 
with the previous core, is selected to be split and shared with 
the next core. The split task may happen to be i. In the 
following example a scenario is explained and it is clarified 
what criteria is used to select a task to be split. The selected 
task is split into two subtasks such that the first subtask is 
assigned to the current core and makes it full with respect to 
Liu and Layland’s bound for the respective number of tasks 
and subtasks in this processor. 

A new core is taken and the second portion of the current 
split task is assigned to it. The process of assigning tasks to 
cores continues until all tasks are assigned. If there are enough 
cores the assignment successfully complete. 

Example 1: suppose the current core is pk and task i is the 
task which is split into two portions i1 and i2 with execution 
times Ci1 and Ci2, respectively. The utilization of i1 is 

 for core pk. A new core, pk+1, is taken and the second 
portion of task i, i2, is assigned to this core.  Although the 
actual utilization of this portion is , its effective utilization 
on core pk+1 is taken to be  
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This is because, in the worst case, a request from subtask i2 
will have only Ti-Ci1 time to be executed. Effective utilization 
of the subtask is always greater than or equal to its actual 
utilization. Therefore, . 
Since higher utilization loss causes lower total utilization of 
system, when we are forced to split a task, a whole task with 
the least utilization loss is selected. 

Data: Task-Set 
Result: Processor assignments  
1   Find tasks with largest and smallest utilizations; 
2   While smallest and the largest tasks are different 
3       If it’s worth assigning them to a separate processor 
4            do so and find the next largest and smallest; 
5       Else if it’s worth to assign largest task to a separate 
6                  processor do so and find the next largest; 
7               Else if sum of both utilization is too large 
8                         discard current largest and find next largest; 
9                       Else discard current smallest and find next smallest; 
11   Take an unassigned processor as current-processor 
12   While there is an unscheduled task 
13      Find the unscheduled task with highest priority as  
                 current-task and assign it to current-processor; 
14      If current-processor is not overrun-free 
15          Remove the task with least loss from current-processor as 
                     split-task, split it and assign its  first-portion to  
                     current-processor; 
16          Take a new processor and make it current-processor and  
                     assign the second-portion of the task to it; 



IV. OVERRUN-FREENESS VERIFICATION OF RMLS 
In this section, we assume that two processors pk and pk+1 

share a task i = (Ti, Ci) and for each request of the common 
task Ci1 is executed by pk and Ci2 is executed by pk+1 such that 
Ci=Ci1+Ci2. 

Lemma 1: If Liu&Layland’s bound is satisfied by all 
processors, the second part of a request from a shared task, i, 
between two processors, pk and pk+1, never overruns. 

Proof: The preference of executing a request from a 
shared task i between processors pk and pk+1 is always given 
to pk. Whenever pk is not executing such a request pk+1 will be 
executing it unless the execution of the second part of the 
request is completed. This is because this request has the 
highest priority in pk+1. Therefore, in the worst case, the 
execution of the second part of the task will be complete after 
a time length of Ci is passed since the request is received, 
where Ci  Ti.  

Definition 1: a conflict-idle period is a time interval in 
which both processors, pk and pk+1, that share the shared task, 

i, want to run a request from the task but because pk is given 
a higher precedence it will proceed with the execution; and at 
the same time, there is no other pending request for processor 
pk+1 within this period and it will be idle. Note that, not all 
conflict periods of processors pk and pk+1 are necessarily 
conflict-idle because if there are other requests for pk+1 it will 
proceed with their execution and hence it will not be idle.  

Lemma 2: If the utilization of each of the two processors, 
pk and pk+1, which share a tasks, i, is not higher than Liu and 
Layland’s bound and there is no conflict-idle period with 
respect to the share task, both processors always run their 
corresponding tasks safely. 

Proof: Since processor pk has a higher precedence to run 
the shared task i than pk+1, this processor will always run safe. 
On the other hand, the only effect that pk can have on tasks of 
processor pk+1 is that it may cause the execution of the second 
part of a request from the shared task to be postponed. This 
may harm the safety of the shared task in pk+1 but it may be 
beneficial to other tasks of this processor. However, in Lemma 
1 it is proven that the second part of a request from a shared 
task never overruns.  

Lemmas 1 and 2 will hold even if actual utilization of 
subtask i2, i.e.  , is used in the computation of utilization of 
pk+1. It is for compensation of possible conflict-idle periods 
that, in general, effective utilization of the shared task on 
processor pk+1 is computed as  . 

Definition 2: Effective utilization of a request (not a task 
or subtask) at a given time t is defined as below:  

 

For example, suppose task  = (10, 4) has generated a 
request at time 20 and current time is 26 and up to now this 
request has received 1.5 unit of CPU time then the effective 
utilization of the request at time 26 is  (4-1.5)/(30-26)=0.625.  

Lemma 3: Suppose two processors pk and pk+1 share a 
task i. Effective utilization of a request from i for processor 
pk+1 is maximal at the exact time when the execution of 
processor pk’s share of this request is completed and pk starts 
this request immediately after it is generated and continues 
until completion.  

Proof: Suppose as soon as a request from i is generated at 
a time t0 processor pk starts executing it until its share is 
finished at time t0+Ci1. At this time effective utilization of the 
subtask i2 on pk+1 is equal to . We show that this is in 
fact maximal effective utilization of i2, which means subtask 

i2’s effective utilization never becomes greater than this. 
Recall that requests of task i have the highest priority in 
processor pk+1. This implies that any request from this task 
will be immediately pick up for execution by pk+1 if pk is not 
executing it. On the other hand, if the execution of the second 
part of a request from task i is completed by processor pk+1, 
then its effective utilization becomes zero and remains zero 
until a new request is generated from the same task. With these 
points in mind, consider a situation where at any time t1, t0  
t1  t0+Ci, processor pk has executed this request for duration 
of length a, a  Ci1, and processor pk+1 has executed the same 
request for duration b, b < Ci2 and a+b = t1-t0. See Figure 1. 

 
Fig. 1. A Sapmle execution of parts of a split task. 

At time t1 effective utilization of i2 is  . 

Since a  Ci1, 

     =  

To show that maximal effective utilization of i2 is  it has 

to be shown that      . 

That is,  
Or,  

  
Or, 

 
which is always true because b is positive and . 

 Theorem 1: If effective utilization of each of two 
processors pk and pk+1 which share a task i, is not greater than 
Liu and Layland’s bound, both processors will always safely 
run their corresponding tasks. 

Proof: This theorem is similar to Lemma 2 in which it is 
assumed that there will be no conflict-idle period. However, 
here, this restriction is removed. In Lemma 2, it is mentioned 
that processor pk+1 does not have any influence on the 
execution of tasks and subtasks assigned to processor pk. Since 

t0            t1 

i1 in pk 

 

i2 in pk+1 

time 

a

b



Liu and Layland’s bound is satisfied for pk it will always 
safely run its assigned tasks. In the packing algorithm, the 
utilization of the shared task on processor pk+1 is computed as 

 which, based on Lemma 3, is the maximum utilization 
which i2 can ever impose on the processor. On the other hand, 
the utilization is taken to be less than or equal Liu and 
Layland’s bound. Therefore, this processor will always safely 
run its assigned tasks, too.  

V. SIMULATIONS 
In this section, the proposed method is compared with 

SPA2. We used UUnifast algorithm [18] to produce random 
unbiased task-sets in which each task’s utilization must not 
exceed one. For each category of task sets, e.g., task sets with 
total utilization equal to 4, the total of 3000 task-sets, with 
different number of tasks are generated. For RLMS we do not 
have to know the number of cores in advanced but we must 
know it for SPA2. Therefore, for a fair comparison, for SPA2 
and for each tasks set, we had to find the overrun-free case 
with the least number of processors.  As the minimum number 
of processors needed for each method are found, the average 
utilization of all processor is calculated by dividing overall 
utilization of the task-set by the number of processors used. 

To be brief, only two experiments are shown here. In the 
first experiment, for task-sets with total utilization equal to 16 
and task sets of sizes 38, 48, 67, 106, and 183, the calculated 
average utilizations are depicted in Figure 2. RLMS leads to 
an average utilization which is always higher than that of 
SPA2. Figure 3 shows number of cores used by each method. 

 
Fig. 2. Average of performance, by each method, for U=16 

 

Fig. 3. Number of cores used for each method, for U=16 

In the second experiment, rates of schedulable tasks are 
compared. Figure 4 shows the result of one such experiment 
where average utilization of task sets grows from 0.5 to 1.0. 

 

Fig. 4. Rate of schedulable task-sets 

More experiments should be performed on RMLS and also 
should be compared with other methods. Finding a utilization 
bound for RMLS is in progress. 
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