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a b s t r a c t

This study presents a robust evolutionary computational technique, called multi-expression program-
ming (MEP), to derive a highly nonlinear model for the prediction of compression index of fine-grained
soils. The proposed model relates the soil compression index to its liquid limit, plastic limit and void
ratio. The experimental database used for developing the models was established upon 108 consolida-
tion tests conducted on different soils sampled from different construction sites in Iran. The general-
ization capability of the model was verified via several statistical criteria. The parametric and sensitivity
analyses were performed and discussed. The results indicate that the MEP approach accurately
characterizes the soil compression index leading to a very good prediction performance. The correlation
coefficients between the experimental and predicted soil compression index values are equal to 0.935
and 0.901 for the calibration and testing data sets, respectively. The developed model has a significantly
better performance than the existing empirical equations for the soil compression index.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A vital phase in geotechnical foundation design is to provide a
reliable estimation of the compressibility characteristics of soils.
The compressibility characteristics have a key role for the analysis
of the settlement of the soil layers under the applied load (Tiwari
and Ajmera, 2012; Singh and Noor, 2012). In general, the soil
compressibility is defined as the volume reduction under pressure
taking place due to the drainage of pore water. The rate of drainage
of pore water is a time-dependent process because it is a function
of the soil permeability. Consequently, analysis of the soil com-
pressibility properties is mostly important for fine-grained, low
permeable soils. Compression index (Cc), coefficient of compressi-
bility (av), and coefficient of consolidation (Cv) are the main
indicators of the soil compressibility. Among these parameters,
Cc is often used for the direct calculation of settlement (Carter and
Bentley, 1991; Gulhati and Datta, 2005; Singh and Noor, 2012).
Typically, the settlement associated with load increments is
obtained using the logarithm of the normal compressive stress
(s') against soil void ratio (e) curve. A schematic representation
of the e� log s' curve is illustrated in Fig. 1. As can be seen in
this figure, the characteristic curve has two distinct regions: (1)
an elastic rebound curve and (2) a linear virgin compression curve

at higher stresses. Cc is the modulus of the slope of the virgin
compression curve which is usually obtained from a standard
consolidation (oedometer) test on an undisturbed sample
(Gregory et al., 2006). Subsequently, the total settlement (St) for
a layer of normally consolidated clay can be determined using the
following equation:

St ¼H
Cc

1þe0

� �
log

s0
0þΔs
s0
0

� �
ð1Þ

where e0 is the initial void ratio, s' is the effective overburden
pressure, Δs is the applied load, H is the thickness of the layer.

Determination of Cc from the oedometer test is a cumbersome,
expensive and time consuming process, especially for the fine-
grained soils. In order to avoid the labor of conducting consolida-
tion tests, several studies have been focused on the prediction of
the compressibility behavior of soils using its basic physical
properties (e.g., Skempton, 1944; Nishida, 1956; Cozzolino, 1961;
Terzaghi and Peck, 1967). Most of the existing models are devel-
oped based on traditional statistical analyses which notable
modeling drawbacks (Alavi and Gandomi, 2011). Thus, more
sophisticated methods are required to capture the complex beha-
vior of Cc. In this context, computational intelligence (CI) techni-
ques can be considered as efficient alternatives to traditional
methods. They determine the structure of a prediction model by
automatically learning from data. CI has different well-known
branches such as artificial neural network (ANN), fuzzy inference
system (FIS), adaptive neuro-fuzzy system (ANFIS), and support
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vector machines (SVM). These techniques have been successfully
employed to solve problems in engineering field (e.g., Kerh and
Chu, 2002; Kerh and Ting, 2005a,b; Kerh and Lee, 2006; Muttil and
Chau, 2007; Traore et al., 2010; Azamathulla and Wu, 2011; Majid
et al., 2011; Cheng et al., 2012; Azamathulla et al., 2012; Ismail et
al., 2013; Masmoudi and Haït, 2013; Emamgholizadeh et al., 2013).
Despite the good performance of ANNs, FIS, ANFIS, SVM and many
of the other CI methods, they are considered black-box models.
That is, they are not capable of generating practical prediction
equations. This is a fundamental disadvantage that limits their
practicability (Alavi and Gandomi, 2011). In order to cope with the
limitations of the existing methods, a robust CI approach, namely
genetic programming (GP) has been introduced (Koza, 1992). GP is
an evolutionary computational (EC) approach. The EC methods use
the principle of Darwinian natural selection to generate computer
programs for solving a problem. GP has several advantages over
the conventional and other similar techniques. A notable feature of
GP and its variants is that they can produce highly nonlinear
prediction equations without a need to pre-define the form of the
existing relationship (Sette and Boullart, 2001; Javadi et al., 2006;
Çiftçi et al., 2009; Guven, 2009; Guven et al., 2009; Gandomi et al.,
2010; Gandomi and Alavi, 2011; Rezania et al., 2011; Tsai, 2011;
Azamathulla et al., 2011; Alavi et al., 2011; Chen et al., 2012;
Azamathulla, 2012; Mahmood et al., 2013).

Multi-expression programming (MEP) (Oltean and Dumitrescu,
2002) is new variant of GP. MEP has a special ability to encode
multiple computer programs of a problem in a single program

(Alavi et al., 2010). In contrast with traditional GP and its variants,
and also other soft computing techniques, application of MEP
in the field of civil engineering is totally new and original
(Baykasoglu et al., 2008; Alavi et al., 2010; Alavi and Gandomi,
2011; Gandomi et al., 2011a; Gandomi and Alavi, 2013). This paper
proposes the MEP technique to derive a precise predictive equa-
tion for the compression index of Iranian soils from basic soil
parameters. A comprehensive and reliable set of data including
108 consolidation test results was established to develop the
models. The robustness of the proposed model was verified
through different validation phases.

2. Review of previous studies

Over the decades, various empirical models have been devel-
oped to correlate Cc with various index properties of soils such as
the liquid limit, natural water content, plasticity index, specific
gravity, and void ratio (Skempton, 1944; Nishida, 1956; Cozzolino,
1961; Terzaghi and Peck, 1967; Sowers, 1970; Azzouz et al., 1976;
Wroth and Wood, 1978; Mayne, 1980; Park and Lee, 2011). Table 1
presents some of the well-known empirical prediction equations
in this field. Nearly all these relationships were derived by
performing multiple linear regression analysis. In fact, the com-
monly used regression analyses can have large uncertainties. The
classical regression analysis has major limitations due to the
oversimplification of the complicated mechanism of the consoli-
dation process. As can be seen in Table 1, this type of analysis
assumes the structure of the model in advance by a limited
number of linear or nonlinear equations. Thus, such models cannot
efficiently consider the highly nonlinear interactions between the
soil parameters and Cc.

It is worth mentioning that among different CI techniques, only
ANNs have been used to predict the Cc of soil layers (Desai et al.,
2009; Jianping et al., 2010; Farkhonde and Bolouri, 2010; Daryaee
et al., 2010; Kumar and Rani, 2011; Park and Lee, 2011; Kumar et
al., 2012; Rani et al., 2013). However, this powerful method does
not provide practical predictions which limit its applicability for
further analysis.

3. Evolutionary computation

Inspired by the natural evolution and the Darwinian concept of
“Survival of the Fittest”, the EC-based methods generate computer
models to solve complicated problems. Some of the well-known
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Fig. 1. The features of the soil compression characteristic (Gregory et al., 2006).

Table 1
Some of the well-known empirical prediction equations for Cc.

Reference Equation Applicability

Skempton (1944) Cc¼0.007(LL�10) Remolded clays
Nishida (1956) Cc¼1.15(e0�0.35) All clays
Cozzolino (1961) Cc¼0.43(e0�0.11) Brazilian clays
Terzaghi and Peck (1967) Cc¼0.009(LL�10) Normally consolidated clays
Sowers (1970) Cc¼0.75(e0�0.50) Soils of very low plasticity
Azzouz et al. (1976) Cc¼0.40(e0�0.25) All natural soils

Cc¼0.01(ω�5)
Cc¼0.006(LL–9)

Wroth and Wood (1978) Cc¼0.50� PI�Gs All remolded normally consolidated clays
Mayne (1980) (LL�13)/109 All clays
Koppula (1981) 0.01ω Chicago and Alberta clays
Herrero (1983) 0.01ω�0.075 Normally consolidated clays
Nagaraj and Murty (1985) Cc¼0.2343(LL/100)Gs All inorganic clays
Park and Lee (2011) Cc¼0.49(e0�0.11) Korean natural soils

Cc¼0.014(LL�0.168)

e0 is the initial void ratio, ω is the natural water content, LL is the plastic limit, PI is the plastic index, Gs is the specific gravity.
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branches of EC are genetic algorithms (GA) (Holland, 1975),
evolutionary strategies (ESs) (Rechenberg, 1973), and evolutionary
programming (EP) (Fogel et al., 1996). These techniques are
collectively known as evolutionary algorithms (EAs). In general,
an EA consists of an initial population of random individuals
improved by a set of genetic operators (e.g., reproduction, muta-
tion and recombination). The individuals are encoded solutions in
the form of binary strings of numbers evaluated by some fitness
functions (Coello et al., 2007). Improvement of the population is a
process to reach the fittest solution with the maximum conver-
gence. Typically in an EA, a population of individual is randomly
created and then the members are ranked according to a fitness
function. The members with the highest fitness ranking are given a
higher chance to become parents for the next generation (off-
spring). The approach used to generate offspring from the parents
is referred to as the reproduction heuristic. Then selected mem-
bers are randomly transformed into new members via mutation,
recombination or crossover. These steps are repeated until the
convergence conditions are satisfied and the fittest member is
selected (Fogel et al., 1996; Koza, 1992; Coello et al., 2007). The
differences between EAs are in the way that they represent the
individual structures, types of selection mechanism, forms of
genetic operators, and measures of performance.

GA has been shown to be a suitably robust EA for dealing with a
wide variety of complex civil engineering problems (e.g. Keedwell
and Khu, 2005; Castilho et al., 2007; Sanchis et al., 2010). GP is a
specialization of GA where the encoded solutions (individuals) are
computer programs rather than binary strings (Banzhaf et al.,
1998). Fig. 2 shows a comparison of the encoded solutions
(individuals) by GA and GP. In GP, inputs and corresponding
output data samples are known and the main goal is to generate
predictive models relating them (see Fig. 3) (Weise, 2009).

There GP solutions are represented in different ways such tree-
shaped, graph-shaped and linear encodings (Banzhaf et al., 1998;
Alavi and Gandomi, 2011). Tree-shaped is the mostly widely used
representation of the GP programs. However, the emphasis of the
present study is placed on the linear-based GP techniques.

3.1. Expression programming

Recently, several linear variants of GP have been developed
such as linear genetic programming (LGP) (Brameier and Banzhaf,
2007), gene expression programming (GEP) (Ferreira 2001), multi-
expression programming (MEP) (Oltean and Dumitrescu, 2002),
grammatical evolution (GE) (Ryan and O’Neill, 1998), and cartesian
genetic programming (CGP) (Miller and Thomson, 2002). These
variants make a clear distinction between the genotype and the
phenotype of an individual. Thus, the individuals are represented
as linear strings that are decoded and expressed like nonlinear
entities (trees) (Oltean and Grosşan, 2003). There are some main
reasons for using linear GP. Computers do not naturally run tree-
shaped programs. Therefore, slow interpreters have to be used as a
part of classical tree-based GP. Conversely, by evolving the binary
bit patterns, the use of an expensive interpreter is avoided. Con-
sequently, a linear GP system can run several orders of magnitude
faster than comparable interpreting systems. The enhanced speed
of the linear variants of GP (e.g., LGP and MEP) permits conducting
many runs in realistic timeframes. This leads to deriving consistent
and high-precision models with little customization (Francone and
Deschaine, 2004; Poli et al., 2007; Gandomi et al., 2011b).

EP techniques such as GEP and MEP are the most common
linear-based GP methods. MEP was first introduced by Oltean and
Dumitrescu (2002). Linear chromosomes are used by MEP for
solution encoding. This technique encodes multiple computer
programs in a single chromosome. A programwith the best fitness
represents the chromosome. The MEP decoding process is not
more complicated than other GP variants storing a single program
in a chromosome (Alavi et al., 2010). The steady-state algorithm of
MEP starts by the creation of a random population of computer
programs. MEP uses the following steps to evolve the best
program until a termination condition is reached (Oltean and
Grosşan, 2003; Alavi et al., 2010; Alavi and Gandomi, 2011):

I. Selection of two parents using a binary tournament procedure
(Koza, 1992) and recombination of them with a fixed crossover
probability.

II. Obtaining two offspring by the recombination of two parents.
III. Mutation of the offspring and replacement of the worst

individual in the current population with the best of them (if
the offspring is better than the worst individual in the current
population).

The representation of the MEP solutions is similar to the
procedure followed by C and Pascal to convert expressions into a
machine code. Functions and terminals are a part of a population
member created by MEP (Alavi et al., 2010; Alavi and Gandomi,
2011). The terminal and function symbols are elements in the
terminal and function sets, respectively. A function set can contain
the basic arithmetic operations or any other mathematical func-
tions. The terminal set can contain numerical constants, logical
constants and variables. Each gene encodes a terminal or a
function symbol. The first symbol in a chromosome is a terminal
symbol. An example of a MEP chromosome is as given below:

1: A
2: B
3: n 1, 2
4: �2, 3

EA 

GA 

1 0 1 0 0 

   GP 

Fig. 2. A comparative illustration of encoded solutions by GA and GP.

Running 
Program

Input 1

Input 2

Input 3 ...

Input n

Output 

To be Found by MEP 

Fig. 3. Conceptual scheme of input–process–output (IPO) in GP.
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The function set for the above example includes “�" and “�”. A
and B are the elements of the terminal set. The MEP individuals are
converted into programs by reading the chromosome top-down
starting with the first position. In this example, genes 1 and
2 encode simple expressions which are E1¼A and E2¼B. Gene
3 indicates the operation “n” on the operands located at positions
1 and 2. Therefore, gene 3 encodes the expression: E3¼AnB. Gene
4 indicates the operation “� ’ on the operands located at positions
2 and 3. Therefore, gene 4 encodes the expression: E4¼B � (AnB).
Each of the above expressions can be considered as a possible
solution. The MEP chromosomes can be illustrated as a forest of
trees rather than a single tree because of their multi-expression
representation (see Fig. 4) (Alavi et al., 2010; Alavi and Gandomi,
2011). The best expression is selected after controlling the fitness
of all expression in an MEP chromosome using the following
equation (Oltean and Grosşan, 2003):

f ¼ min
i ¼ l;m

∑
n

j ¼ 1
jEj�Oi

J j
( )

ð2Þ

in which n is the number of fitness cases; Ej is the expected value
for the fitness case j; Oj

i is the value returned for the jth fitness
case by the ith expression encoded in the current chromosome,
and m is the number of chromosome genes (Alavi et al., 2010;
Alavi and Gandomi, 2011).

4. Formulation for compression index of fine-grained soils

In order to reach reliable estimations of the Cc of soils, the
impact of several parameters should be incorporated into the
model development. The general forms of the existing prediction
equations, represented in Table 1, indicate that Cc mainly depends
on the soil physical properties. Referring to the form of the existing
models (Skempton, 1944; Nishida, 1956; Cozzolino, 1961; Terzaghi
and Peck, 1967; Sowers, 1970; Azzouz et al., 1976; Mayne, 1980;
Park and Lee, 2011), the proposed model for the prediction of the
Cc of fine-grained soils was considered to be a function of the
following parameters:

Cc ¼ f ðLL; PL; e0Þ ð3Þ
where LL (%) is the liquid limit, PL (%) is the plastic limit, e0 is the
initial void ratio.

LL, PL and e0 represent the intrinsic soil properties. It is worth
mentioning that the main purpose of this research was to prove
the possibility of providing good estimations of the Cc of soil by
using only its basic physical properties. That is why only LL, PL and
e0 were considered as the predictor variables. Determining LL, PL
and e0 does not require complicated laboratory tests compared to

the consolidation tests. Therefore, using these basic soil properties
to make precise predictions of Cc would result in a significant cost
savings for many geotechnical investigations. Besides, the LL, PL
and void ratio are rationally correlated to the natural water
content for saturated soils (Bartlett and Lee, 2004).

The steps of the proposed methodology for developing a
precise model are as follows:

1. Determination of input and output variables of the model.
2. Collect data set S containing intrinsic soil properties (LL, PL and

e0) and corresponding Cc values.
3. Divide S into three subsets: learning (SLearning), validation

(SValidation) and testing (STesting) data.
The details of the data division procedure are described in
Section 4.2.

4. Run the MEP algorithm to estimate relation between input and
output variables:
(a) Select optimal parameters for the MEP algorithm.
(b) Train the model using SLearning.
(c) Evaluate the model using SValidation.

5. Pick the best MEP model based on the following criteria (Alavi
et al., 2011):
(a) The simplicity of the model.
(b) Best fitness on SLearning.
(c) Best fitness on SValidation.

6. Run MEP for STesting.
7. Calculate the parameters for evaluating the performance of the

models on SLearning, SValidation and STesting.

Steps of the proposed methodology are shown in Fig. 5.
In order to evaluate the performance of the derived models, the

correlation coefficient (R), root mean squared error (RMSE) and
mean percent error (MAE) were used:

R¼ ∑n
i ¼ 1ðhi�hiÞðti�tiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i ¼ 1ðhi�hiÞ2∑n

i ¼ 1ðti�tiÞ2
q ð4Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1ðhi�tiÞ2
n

s
ð5Þ

MAE¼ 1
n

∑
n

i ¼ 1
hi�tij
�� ð6Þ

where hi and ti are, respectively, the actual and predicted output
values for the ith output, hi and ti are, respectively, the average of
the actual and predicted outputs, and n is the number of samples.

B

BA

1 

A

* 

2 
3 

*

A

- 4 

B

B

Fig. 4. Expressions encoded by an MEP chromosome and represented as trees.
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4.1. Experimental database

The data used for the model development consist of consolidation
and index property test results for samples obtained from different
locations in Khorasan Razavi Province, Iran. All the tests were performed
under similar conditions and using the same technique. The soil
samples were picked up from test pits at 0.5–1.0 m depth. The database
includes a fairly wide range of soil index properties. The physical and
plastic characteristics of soil were determined through extensive
geotechnical laboratory tests. Conventional oedometer tests were
performed to determine Cc. The testing procedure was as described in
Abbasim et al. (2012). A conventional oedometer apparatus having brass
ring, 75mm in diameter and 20mm height was used to perform the
tests. The top and bottom of the specimens were covered by saturated
porous stones and filter papers. The cell containing ring and specimen
was submerged and allowed to saturate for 24 h. Then, vertical dead
load was applied using a loading device until there was no change in
dial gauge reading for two consecutive hours. Other details of the test
were performed in general accordance with ASTM D2435 procedure for
one-dimensional consolidation properties of soils (ASTM D2435, 2000).
At the end of each test, the variation of void ratio versus pressure was
plotted for each specimen on a semi-logarithmic scale to obtain the Cc
values (Abbasim et al., 2012). It should be noted that the one-
dimensional consolidation and basic geotechnical characterization tests
are very well-known tests. Thus, for brevity, it was not within the scope
of this study to provide all the details about them. The information cited
in this table includes LL, PL, and e0. Cs is the measured compression
index. The database comprises 101 test results on fine-grained soil
samples. To develop a generalized correlation, a previously published
database of seven consolidation tests was further added to the available
experimental results. Different soil types used in this study were silty
clay with sand (CL–ML), gravelly lean clay with sand (CL), and silty,
clayey sand (SC–SM). The descriptive statistics of the test results are
given in Table 2.

To visualize the distribution of the samples, the data are
presented by frequency histograms (Fig. 6). As we can observe
from Fig. 6, the distributions of the predictor variables are not
uniform. The derived model provides better predictions for the
cases where the densities of the variables are higher.

4.2. Data classification

Overfitting is one of the essential problems in generalization of
the CI techniques. Overfitting is a case in which the error on the

learning set is driven to a very small value, but when new data
presented to the model, the error becomes very large. An approach
to avoid overfitting is to test individuals from the run on a
validation set to find a better generalization. Then, another data
set should be used at the end of the data analysis to verify the
generalization performance of the model (Banzhaf et al., 1998;
Gandomi et al., 2011b). Accordingly, in the present study, the
available data sets were randomly classified into three subsets:
(1) learning, (2) validation, and (3) test subsets. The learning set
was used to fit the models and the validation set was used to
estimate the prediction error for model selection. Thus, both of the
learning and validation data were involved in the modeling
process and were categorized into one group referred to as
training data (Alavi et al., 2011). Finally, the test set was employed
for the evaluation of the generalization ability of the final chosen
model. The training, validation and test data are usually taken as
50–70%, 15–25% and 15–25% of all data, respectively (Shahin and
Jaksa, 2005; Alavi et al., 2011). In the present study, about 80% of
the data sets were taken for the training and validation processes
(71 data vectors for the training process and 16 data sets as the
validation data). The remaining 20% of the data sets were used for
the testing of the obtained models.

4.3. Development of the MEP-based model

An extensive trial study was performed to select the most
relevant input parameters for the MEP model. Table 3 presents
various parameters involved in the MEP algorithm. There are eight
parameters for MEP to be tuned. Several runs were conducted to
obtain a parameterization of MEP with enough robustness and
generalization. The MEP parameters were changed for different
runs to find the global solution. The parameters were selected on
the basis of both previously suggested values (Baykasoglu et al.,
2008; Alavi et al., 2010; Alavi and Gandomi, 2011; Gandomi et al.,
2011a; Gandomi and Alavi, 2013) and making several preliminary
runs and observing the performance behavior. As shown in Table 3,
the number of generations was set to 100, 300 and 500. A fairly
large number of generations were tested on each run to find a
model with minimum error. For each case, the program was run
until there was no longer significant improvement in the perfor-
mance of the models or the runs was terminated automatically.
Three different values were set for the population size. Large
populations were used with the runs to guarantee sufficient
diversity (Alavi et al., 2010; Gandomi and Alavi, 2013). Two different
values were considered for the crossover and mutation rates. The
success of the algorithms usually increases with increasing the
chromosome length in MEP. In this case, the complexity of the
evolved functions increases and the speed of the algorithm
decreases. Different optimal levels were considered for this para-
meter as tradeoffs between the running time and the complexity of
the evolved solutions (Alavi et al., 2010; Gandomi and Alavi, 2013).
Basic arithmetic operators and mathematical functions were uti-
lized to get the optimum model. There are 3�4�2�2�3¼144

Input and output determination 

Collecting a comprehensive data set S of intrinsic soil properties 
and Cc

Dividing S into learning, validation and testing subsets 

Running MEP for STesting

Calculating the performance measure parameters for the best 
model

Selecting the best MEP model with the desired precision 

Running MEP with different parameters to estimate relation 
between input and output variables 

Fig. 5. Steps of the proposed methodology for developing a prediction model for Cc.

Table 2
Descriptive statistics of the variables used for the model development.

Parameter e0 LL (%) PL (%) Cc

Mean 0.745 36.156 22.605 0.171
Standard deviation 0.123 12.786 5.639 0.047
Sample variance 0.015 163.481 31.794 0.002
Kurtosis �0.462 �0.028 1.994 �1.033
Skewness 0.538 1.044 1.422 0.484
Range 0.516 52.600 29.200 0.176
Minimum 0.514 19.400 14.800 0.077
Maximum 1.030 72.000 44.000 0.253
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different combinations of the parameters. All these parameter
combinations were tested and three replications for each were
carried out. Therefore, the overall number of optimal individual
runs is equal to 144�3¼432. The source code of MEP (Oltean,
2004) in Cþþ was modified by the authors to be utilizable for the
available problems.

Finally, the best MEP model for predicting the Cc of fine-grained
soils was in the form of following equation:

Cc ¼ 7

expðe02�e0PLþPLÞþ LLðð8=PLÞþ e0LLÞ
LL�PL þ7

þ LL
LL�e0ð�e02LLþLLþ2PL�9PLð2LL�PLÞÞ

þ e0
2PLðLL2þ403Þðe0þexp ðe0Þ exp ð6�PL�LLÞ�5Þþ5

ð7Þ

The prediction results provided by the best solution found by MEP
are illustrated in Fig. 7. The number of generation, population size,
mutation rate, crossover rate, and chromosome length for the
optimal run were equal to 500, 3000, 10, 95, and 80, respectively.

5. Performance analysis and validation

In order to evaluate the performance of a model, Smith (1986)
proposed the following statistical criteria:

� For |R|4 0.8, a strong correlation exists and the model is
suitable.

� For 0.2o |R|o0.8 a correlation exists.
� For |R|o0.2, a weak correlation exists and is not suitable to use.

In addition, the error values should be considered in all cases
(Alavi et al., 2011). It can be observed from Fig. 7 that the MEP
model, with R40.8 and low RMSE and MAE values, is able to
predict the target values with an acceptable degree of accuracy.
The performance of the model on the training and testing data
suggests that it has both good predictive ability and generalization
performance. The reliability of the models created by MEP is
notably dependant on the amount of data used for the training
process (Alavi et al., 2011). In this context, Frank and Todeschini
(1994) argue that the minimum ratio of the number of data sets in
the database over the number of predictor variables (inputs) for
model acceptability is 3. Also, they suggest that considering a
higher ratio equal to 5 is safer. In the present study, this ratio is
higher and is equal to 108/3¼36.

Furthermore, new criteria recommended by Golbraikh and
Tropsha (2002) were checked for external validation of the models
on the testing data sets. It is suggested that at least one slope of
regression lines (k or k') through the origin should be close to 1.
k is the slope of the regression line in plot of actual (hi) against
predicted (ti) values. k' is the slope of the regression line in plot of
ti against hi values (Golbraikh and Tropsha, 2002). Recently, Roy
and Roy (2008) introduced a confirm indicator of the external
predictability of models (Rm). For Rm40.5, the condition is
satisfied. Either the squared correlation coefficient (through the
origin) between predicted and experimental values (Ro2), or the
coefficient between experimental and predicted values (Ro'2)
should be close to 1. The considered validation criteria and the
relevant results obtained by the models are presented in Table 4.
As it is seen, the derived model satisfies the required conditions.
For the Rm criterion, it slightly violates the condition. The valida-
tion phase ensures the derived MEP model is strongly valid and it
is not established by chance. Note that the proposed model was
developed using the basic soil physical properties (LL, PL, and e0)
and, therefore, it can easily be used for prediction purposes via
hand calculations.

Furthermore, the predictions made by the MEP model were
compared with those provided by an ANN model developed in
this study. The ANN model was established upon the same data
used for the development of the MEP-based model. Various
training algorithms are implemented for the training of the ANN
network such as gradient descent (traingd), Levenberg–Marquardt
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Fig. 6. Histograms of the variables used for the model development.

Table 3
Parameter settings for the MEP algorithm.

Parameters Setting

Number of generation 100, 300, 500
Population size 250, 500, 1500, 3000
Function set þ , � , � , /, √, exp, ln
Mutation rate (%) 10, 90
Fitness function Linear error function
Crossover rate (%) 50, 95
Crossover type Uniform
Chromosome length 25, 50, 80 genes
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(trainlm), Quasi-Newton back-propagation (trainbfg), and resilient
(trainrp) back propagation algorithms. The best results were
obtained by the Quasi-Newton back-propagation method. Also,
the transfer function between the input and the hidden layer was
log-sigmoid of form 1/(1þe�x). A linear transfer function (purelin)
was adopted between the hidden layer and the output layer. The
ANN architecture that gave the best results for the prediction of Cc
was found to contain:

� One invariant input layer, with three (LL, PL and e0) arguments.
� One invariant output layer with 1 node providing the value of

Cc.� One hidden layer having 7 (m¼7) nodes.

The R, RMSE and MAE values of the ANN model on the training
data were equal to 0.933, 0.017 and 0.012, respectively. The
performance of ANN on the testing data was also good (R
¼0.927; RMSE¼0.017; MAE¼0.014). As it is, the ANN model
slightly outperforms the MEP model on the training and testing
data. However, this insignificant performance difference would
not question the capabilities of MEP. In fact, MEP possesses a
notable advantage over ANN. MEP has a great capability in
generating a transparent and structured representation of the
system being studied. Due to the large complexity of the network
structure, ANN does not give a transparent function relating the
inputs to the corresponding outputs.

Besides, Fig. 8 presents a comparative study between the
results obtained by proposed MEP and ANN models and those
provided by the well-known models of Skempton (1944), Nishida
(1956), Cozzolino (1961), Terzaghi and Peck (1967), Sowers (1970),
Azzouz et al. (1976), Mayne (1980), and Park and Lee (2011). The
performance of the models was evaluated on the entire database.
As can be observed from Fig. 8, the ANN model has the best
performance followed by the MEP model. The proposed MEP
formula notably outperforms the existing regression-based
models. In particular, the prediction error values (RMSE and
MAE) for the existing models are much higher than those for the
MEP model. It is worth mentioning that most of the existing
models are derived based on the traditional statistical analyses (e.
g. regression analysis). The major limitation of this type of analysis
is that the structures of the models are designated after controlling
only few equations established in advance. Thus, such models
cannot efficiently consider the interactions between the depen-
dent and independent variables (Alavi et al., 2011). On the other
hand, MEP introduces completely new features. Conversely from

the empirical and analytical methods, a major distinction of MEP
for determining Cc lies in its powerful ability to model the
mechanical behavior without requesting a prior form of the
existing relationships or any assumptions. The best equations
generated by the MEP technique are determined after controlling
numerous linear and nonlinear preliminary models (Alavi et al.,
2011; Alavi and Gandomi, 2011). It is worth mentioning that the
MEP algorithm is parameter sensitive. The performance of MEP
can be improved by using any form of optimally controlling the
parameters of the run (Dimopoulos and Zalzala, 2001). In this
context, further research can be focused on hybridizing MEP with
other optimization algorithms such as GAs, simulated annealing,
ant colony, or tabu search.

6. Parametric and sensitivity analyses

In order to ensure the validity of MEP-based model, a com-
parative parametric analysis was performed. The parametric
analysis represents the response of the Cc in the MEP-based model
to the variation of the input variables. The methodology is based
on changing only one predictor variable at a time while the other
variables are kept constant at the average values of their entire
data set. This procedure is repeated using another variable until
the model response is obtained for all the predictor variables
(Alavi et al., 2011). The robustness of the design equations is
determined by examining how well the predicted values agree
with the underlying physical behavior of the investigated system
(Kuo et al., 2009). Fig. 9 shows the tendency of the Cc predictions
to the variations of the influencing parameters, i.e., LL, PL and e0.

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40

Pr
ed

ic
te

d 
C

c 
 b

y 
M

E
P 

 

Pr
ed

ic
te

d 
C

c 
 b

y 
M

E
P 

 

R = 0.935
RMSE = 0.017
MAE = 0.014

Experimental Cc 

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40

R = 0.901
RMSE = 0.019
MAE = 0.016

Experimental Cc  

Fig. 7. Experimental versus predicted Cc values using the MEP model: (a) training data and (b) testing data.

Table 4
Statistical parameters of the MEP model for the external validation.

Item Formula Condition MEP

1 Eq. (4) 0.8oR 0.901

2 K ¼ Σn
i ¼ 1 ðhi�ti Þ

h2i
0.85oko1.15 1.000

3 K 0 ¼ Σn
i ¼ 1 ðhi�ti Þ

t2i
0.85ok0o1.15 0.988

4 Rm ¼ R2 � ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2�Ro2j

q
0.8oRm 0.46

where Ro2 ¼ 1� Σn
i ¼ 1 ðti �hoi Þ

Σn
i ¼ 1 ðti � ti Þ2

; hoi ¼ k� ti 1.000

Ro02 ¼ 1� Σn
i ¼ 1 ðhi � toi Þ

Σn
i ¼ 1 ðhi �hi Þ2

; toi ¼ k0 � hi 0.997
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Fig. 9 indicates that Cc notably increases with increasing e0. The
results of the parametric analysis for LL and PL are more compli-
cated than those for e0. Depending on the ranges of e0, the

behavior of the model differs. For e0 between 0.5 and 0.7, it can
be observed from Fig. 9(a) that the model is not very sensitive to
the changes of LL. For e0 higher than 0.9, which represents the
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range for soft clay, Cc increases with increasing LL up to about 36%
and thereafter the increment declines for higher LL values. As
shown in Fig. 9(b), for e0 between 0.5 and 0.7, Cc increases with
increasing PL up to about 18% and thereafter the increment
declines for higher PL values. For e0 higher than 0.9, the results
are different. In this case, Cc increases with increasing PL up to 18%
and afterward it starts decreasing.

Providing an estimation of relative importance of each para-
meter is an important concern for the aim of model developments
or field investigations. As discussed before, the effect of all the
considered parameters (i.e., LL, PL and e0) on Cc is well understood.
Ignoring any of these three parameters for the model development
resulted in a model with poor performance. Herein, a sensitivity
analysis was conducted to provide a more in depth understanding
of the contribution of these important parameters to the predic-
tion of Cc. A common approach for the sensitivity analysis in the
GP-based modeling is to obtain the frequency values of the input
parameters (Francone, 1998-2004; Alavi et al., 2011; Gandomi
et al., 2011a,b). A frequency value equal to 100% for an input
indicates that this input variable has been appeared in 100% of the
best 30 programs evolved by MEP. The sensitivity analysis results
are summarized in Fig. 10. This figure indicates that MEP-based
model is more sensitive to e0, LL and PL. There is a good agreement
between the results of the MEP sensitivity analysis and those
reported by other researchers (Daryaee et al., 2010).

7. Conclusion

This paper aimed at developing a new nonlinear MEP-based
model for the estimation of the Cc of fine-grained soils using LL, PL
and e0. A comprehensive database was used for the development
of the proposed model. The optimal MEP-based model was
selected after several assessment procedures. The validation of
the model was verified with different criteria. The results indicate
that the proposed model provides precise estimations of Cc. The
derived model has a notably better performance than the existing
traditional models. Although the existing linear regression-based
models may yield accurate results for their relevant databases,
their success for other data sets cannot be trusted. This is due to
high nonlinearity in the soil compressibility behavior. Despite the
slightly better performance of ANN for the investigated problem, a
major advantage of MEP over ANN is that it provides simplified
equations that can be readily used for the design purposed via
hand calculating.

A general criticism about the GP-based models is that they
are only randomly formed functions which are not based on the
physical processes. This ambiguity was illuminated by the
parametric and sensitivity analyses. The consistency between
the parametric and sensitivity analysis results and the known
behavior of Cc indicates that the derived model is a meaningful
combination of the predictor variables. However, MEP uses only
the experimental data to specify the model structure. Thus, the
derived model mainly has a predictive capability within the data
range used for its calibration. This model can be improved to
make more accurate predictions for a wider range by including
the data for other soil types and test conditions. In general, the
models derived using this method are suggested to be used for
pre-planning and pre-design purposes or to check the general
validity of the laboratory or field test results. Moreover, these
models are good alternatives to determine Cc when testing is
not possible.
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